首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
2.
3.
GPER/GPR30 is a seven-transmembrane G protein-coupled estrogen receptor that regulates many aspects of mammalian biology and physiology. We have previously described both a GPER-selective agonist G-1 and antagonist G15 based on a tetrahydro-3H-cyclopenta[c]quinoline scaffold. The antagonist lacks an ethanone moiety that likely forms important hydrogen bonds involved in receptor activation. Computational docking studies suggested that the lack of the ethanone substituent in G15 could minimize key steric conflicts, present in G-1, that limit binding within the ERα ligand binding pocket. In this report, we identify low-affinity cross-reactivity of the GPER antagonist G15 to the classical estrogen receptor ERα. To generate an antagonist with enhanced selectivity, we therefore synthesized an isosteric G-1 derivative, G36, containing an isopropyl moiety in place of the ethanone moiety. We demonstrate that G36 shows decreased binding and activation of ERα, while maintaining its antagonist profile towards GPER. G36 selectively inhibits estrogen-mediated activation of PI3K by GPER but not ERα. It also inhibits estrogen- and G-1-mediated calcium mobilization as well as ERK1/2 activation, with no effect on EGF-mediated ERK1/2 activation. Similar to G15, G36 inhibits estrogen- and G-1-stimulated proliferation of uterine epithelial cells in vivo. The identification of G36 as a GPER antagonist with improved ER counterselectivity represents a significant step towards the development of new highly selective therapeutics for cancer and other diseases.  相似文献   

4.
ABSTRACT: BACKGROUND: MicroRNA (miRNA) expression is known to be deregulated in ovarian carcinomas. However, limited data is available about the miRNA expression pattern for the benign or borderline ovarian tumors as well as differential miRNA expression pattern associated with histological types, grades or clinical stages in ovarian carcinomas. We defined patterns of microRNA expression in tissues from normal, benign, borderline, and malignant ovarian tumors and explored the relationship between frequently deregulated miRNAs and clinicopathologic findings, response to therapy, survival, and association with Her-2/neu status in ovarian carcinomas. METHODS: We measured the expression of nine miRNAs (miR-181d, miR-30a-3p, miR-30c, miR-30d, miR-30e-3p, miR-368, miR-370, miR-493-5p, miR-532-5p) in 171 formalin-fixed, paraffin-embedded ovarian tissue blocks as well as six normal human ovarian surface epithelial (HOSE) cell lines using Taqman-based real-time PCR assays. Her-2/neu overexpression was assessed in ovarian carcinomas (n = 109 cases) by immunohistochemistry analysis. RESULTS: Expression of four miRNAs (miR-30c, miR-30d, miR-30e-3p, miR-370) was significantly different between carcinomas and benign ovarian tissues as well as between carcinoma and borderline tissues. An additional three miRNAs (miR-181d, miR-30a-3p, miR-532-5p) were significantly different between borderline and carcinoma tissues. Expression of miR-532-5p was significantly lower in borderline than in benign tissues. Among ovarian carcinomas, expression of four miRNAs (miR-30a-3p, miR-30c, miR-30d, miR-30e-3p) was lowest in mucinous and highest in clear cell samples. Expression of miR-30a-3p was higher in well-differentiated compared to poorly differentiated tumors (P = 0.02), and expression of miR-370 was higher in stage I/II compared to stage III/IV samples (P = 0.03). In multivariate analyses, higher expression of miR-181d, miR-30c, miR-30d, and miR-30e-3p was associated with significantly better disease-free or overall survival. Finally, lower expression of miR-30c, miR-30d, miR-30e-3p and miR-532-5p was significantly associated with overexpression of Her-2/neu. CONCLUSIONS: Aberrant expression of miRNAs is common in ovarian tumor suggesting involvement of miRNA in ovarian tumorigenesis. They are associated with histology, clinical stage, survival and oncogene expression in ovarian carcinoma.  相似文献   

5.
目的:探讨VEGF、MMP-2和MMP-9在卵巢癌组织中的表达及其与卵巢癌发生发展的关系.方法:采用免疫组织化学法检测VEGF、MMP-2和MMP-9在正常卵巢组织、卵巢癌组织中的表达,并对三者的相关性进行分析.结果:卵巢癌组织中VEGF、MMP-2和MMP-9蛋白的表达阳性率显著高于正常卵巢组织(P<0.05),且在卵巢癌Ⅲ~Ⅳ期患者标本中阳性率高于Ⅰ~Ⅱ期(P<0.05);VEGF、MMP-2和MMP-9蛋白阳性表达率与卵巢癌临床分期和淋巴结转移有关(P<0.05).结论:正常卵巢组织和卵巢癌组织中VEGF、MMP-2和MMP-9蛋白含量的变化一致;VEGF、MMP-2和MMP-9均参与了卵巢癌的发生发展过程,三者间可能有协同作用.  相似文献   

6.
Estrogen hormones are important for cartilage homeostasis, but nothing is known regarding the expression and role of the membrane G protein-coupled estrogen receptor (GPER), G protein-coupled receptor 30 (GPR30), in adult articular chondrocytes. Using immunohistochemistry of cartilage sections, quantitative real-time polymerase chain reaction and Western blot of chondrocyte extracts, we found that these cells express GPR30. Nonetheless, the pattern of bands detected by two distinct antibodies does not overlap, suggesting that the proteins detected represent partially degraded forms of the receptor. Treatment with GPR30 agonists did not induce Akt or ERK1/2 phosphorylation, two known GPR30-activated signaling pathways, suggesting that GPR30 is not functional in human chondrocytes. Therefore, the protective anti-osteoarthritic role of estrogen hormones in cartilage homeostasis is likely independent of GPR30. This study was performed using human cartilage collected from the distal femoral condyles of multiorgan donors at the Bone and Tissue Bank of the University and Hospital Center of Coimbra.  相似文献   

7.
8.
Filardo EJ  Quinn JA  Sabo E 《Steroids》2008,73(9-10):870-873
The epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases function as a common signaling conduit for membrane receptors that lack intrinsic enzymatic activity, such as G-protein coupled receptors and integrins. GPR30, an orphan member of the seven transmembrane receptor (7TMR) superfamily has been linked to specific estrogen binding, rapid estrogen-mediated activation of adenylyl cyclase and the release of membrane-tethered proHB-EGF. More recently, GPR30 expression in primary breast adenocarcinoma has been associated with pathological parameters commonly used to assess breast cancer progression, including the development of extramammary metastases. This newly appreciated mechanism of cross communication between estrogen and EGF is consistent with the observation that 7TMR-mediated transactivation of the EGFR is a recurrent signaling paradigm and may explain prior data reporting the EGF-like effects of estrogen. The molecular details surrounding GPR30-mediated release of proHB-EGF, the involvement of integrin beta1 as a signaling intermediary in estrogen-dependent EGFR action, and the possible implications of these data for breast cancer progression are discussed herein.  相似文献   

9.
10.
Estradiol‐induced structural dimorphisms exist in the songbird brain. However, how they arise is not clear since there is a scarce distribution of ERα and lack of ERβ in song control nuclei. This suggests that other receptors are involved. The G‐protein coupled membrane‐bound estrogen receptor, GPR30, is a candidate but has never been investigated in songbirds. In this study, we characterized its gene and protein in the zebra finch brain. Analysis of the putative GPR30 protein sequence revealed a strong similarity to avian and mammalian homologues. Quantitative PCR indicated that the gene was elevated in the telencephalon of both sexes from posthatching day (P) 15 to P45, with a male‐biased sex difference at P21 and P30. In comparison, expression at younger posthatching ages and in adults was significantly less. At P21, GRP30 protein was widespread, nonuniform, and overlapped with song control nuclei. Of particular interest, the number of immunoreactive cells was greatest in HVC and RA, but less in LMAN and Area X. Labeling in HVC was also dimorphic; with more cells present in males than in females. In parallel with the gene, by adulthood, protein expression was reduced across most brain regions. Taken together these data suggest that GPR30 may contribute to differences in song system development by mediating dimorphic responses to estrogens. In addition, the extensive protein distribution indicates that it may also have a role in general brain development in both sexes. © 2011 Wiley Periodicals, Inc. Develop Neurobiol, 2012  相似文献   

11.
12.
Molecular Biology Reports - Substance P (SP) has a crucial role in cancer initiation and progression via binding to its specific receptor (NK1R). Various evidence confirmed the overexpression of...  相似文献   

13.
14.
Jiang  Ming  Liu  Yue  Wu  Hao  Ma  Zhengliang  Gu  Xiaoping 《Neurochemical research》2020,45(7):1661-1673
Neurochemical Research - The cycling of sex hormones is one of the factors affecting pain in females, and the mechanisms are not fully understood. G-protein coupled estrogen receptor 30 (GPR30) is...  相似文献   

15.
Ovarian cancer is the gynecological cancer exhibiting the highest morbidity and improvement of treatments is still required. Previous studies have shown that Estrogen-receptor beta (ERβ) levels decreased along with ovarian carcinogenesis. Here, we present evidence that reintroduction of ERβ in BG-1 epithelial ovarian cancer cells, which express ERα, leads in vitro to a decrease of basal and estradiol-promoted cell proliferation. ERβ reduced the frequency of cells in S phase and increased the one of cells in G2/M phase. At the molecular level, we found that ERβ downregulated total retinoblastoma (Rb), phosphorylated Rb and phospho-AKT cellular content as well as cyclins D1 and A2. In addition, ERβ had a direct effect on ERα, by strongly inhibiting its expression and activity, which could explain part of the anti-proliferative action of ERβ. By developing a novel preclinical model of ovarian cancer based on a luminescent orthotopic xenograft in athymic Nude mice, we further revealed that ERβ expression reduces tumor growth and the presence of tumor cells in sites of metastasis, hence resulting in improved survival of mice. Altogether, these findings unveil a potential tumor-suppressor role of ERβ in ovarian carcinogenesis, which could be of potential clinical relevance for the selection of the most appropriate treatment for patients.  相似文献   

16.
There is an urgent clinical need for safe and effective treatment agents and therapy targets for estrogen receptor negative (ER−) breast cancer. G protein-coupled receptor 30 (GPR30), which mediates non-genomic signaling of estrogen to regulate cell growth, is highly expressed in ER− breast cancer cells. We here showed that activation of GPR30 by the receptor-specific agonist G-1 inhibited the growth of ER− breast cancer cells in vitro. Treatment of ER− breast cancer cells with G-1 resulted in G2/M-phase arrest, downregulation of G2-checkpoint regulator cyclin B, and induction of mitochondrial-related apoptosis. The G-1 treatment increased expression of p53 and its phosphorylation levels at Serine 15, promoted its nuclear translocation, and inhibited its ubiquitylation, which mediated the growth arrest effects on cell proliferation. Further, the G-1 induced sustained activation and nuclear translocation of ERK1/2, which was mediated by GPR30/epidermal growth factor receptor (EGFR) signals, also mediated its inhibition effects of G-1. With extensive use of siRNA-knockdown experiments and inhibitors, we found that upregulation of p21 by the cross-talk of GPR30/EGFR and p53 was also involved in G-1-induced cell growth arrest. In vivo experiments showed that G-1 treatment significantly suppressed the growth of SkBr3 xenograft tumors and increased the survival rate, associated with proliferation suppression and upregulation of p53, p21 while downregulation of cyclin B. The discovery of multiple signal pathways mediated the suppression effects of G-1 makes it a promising candidate drug and lays the foundation for future development of GPR30-based therapies for ER− breast cancer treatment.Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer death in females worldwide.1 Clinically, breast cancer is generally classified into estrogen receptor α positive (ER+) or ER-negative (ER−) subtypes.2 ER− tumors are often intrinsically more aggressive and of higher grade than ER+ tumors.3 Since lack of the effectiveness of ER-targeted endocrine treatments (tamoxifen and aromatase inhibitors), patients with ER− breast cancer have significantly worse prognosis and greater 5-year recurrence rate than that of ER+ breast cancer.4 Considering that ER− breast cancer constitutes around 30% of all breast cancers,5 there is an urgent need to explore new targeted approaches for its treatment.A seven-transmembrane receptor G protein-coupled receptor 30 (GPR30), which is structurally unrelated to nuclear ER, has been recently shown to mediate rapid non-genomic signals of estrogens. The activation of GPR30 can stimulate adenylyl cyclase, transactivate epidermal growth factor receptors (EGFRs), induce mobilization of intracellular calcium (Ca2+) stores, and activate mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) signaling pathways.6,7 Previous studies revealed that GPR30 can modulate growth of hormonally responsive cancers such as endometrial,8 ovarian,9 and breast cancer.10 Therefore, GPR30 likely has an important role in modulating estrogen responsiveness and development and/or progression of ER− breast cancer. Studies revealed that activation of GPR30 can induce the expression of genes and activate pathways that facilitate cell proliferation of endometrial,11,12 breast,13 and ovarian cancer.14 On the contrary, numerous studies demonstrated that activation of GPR30 by its specific agonist G-1 results in cell-cycle arrest and proliferation inhibition of ERα-positive breast cancer,10 endothelial cells,15 prostate,16 and ovarian9 cancer cells. So it requires further investigation on the function of activating GPR30 and the effect of G-1 on the cancer cells.GPR30 has been reported to be expressed in ER− breast cancer cells and suggested to be an excellent new therapeutic target for the treatment of ER− breast cancer.17 Confusedly, the only two published papers reported contradictory results: Girgert et al.18 stated that activation of GPR30 promotes growth of ER− breast cancer cells, while Weissenborn et al.19 revealed that GPR30 functions as a tumor suppressor of ER− breast cancer cells. Therefore, there is an urgent need to illustrate the effects of GPR30 on the proliferation of ER− breast cancer and its downstream signal mechanisms. In the present study, we demonstrated that activation of GPR30 by G-1 inhibits the proliferation of ER− breast cancer cells both in vitro and in vivo.  相似文献   

17.
G protein-coupled estrogen receptor (GPER) was identified as a new member of the estrogen receptor family in recent years. It has become apparent that GPER mediates the non-genomic signaling of 17β-estradiol (E2) in a variety of estrogen-related cancers. Our previous study has found that GPER was overexpressed in human epithelial ovarian cancer and was positively correlated with the expression of matrix metalloproteinase 9 (MMP-9), which suggested GPER might promote the metastasis of ovarian cancer. However, the mechanisms underlying GPER-dependent metastasis of ovarian cancer are still not clear. In the present study, estrogen receptor α (ERα)-negative/GPER-positive OVCAR5 ovarian cancer cell line was used to investigate the role of GPER in the migration and invasion of ovarian cancer. Wound healing assay and transwell matrigel invasion assay were performed to determine the potentials of cell migration and invasion, respectively. The production and activity of MMP-9 in OVCAR5 cells were examined by Western blot and gelatin zymography analysis. The results showed that E2 and selective GPER agonist G-1 increased cell motility and invasiveness, and upregulated the production and proteolytic activity of MMP-9 in OVCAR5 cells. Small interfering RNA (siRNA) targeting GPER and G protein inhibitor pertussin toxin (PTX) inhibited the migration and invasion of OVCAR5 cells, and also reduced the expression and activity of MMP-9. Our data suggested that GPER promoted the migration and invasion of ovarian cancer cells by increasing the expression and activity of MMP-9. GPER might play an important role in the progression of ovarian cancer.  相似文献   

18.
19.
20.

Background

Testicular germ cell tumours are the most frequent cancer of young men with an increasing incidence all over the world. Pathogenesis and reasons of this increase remain unknown but epidemiological and clinical data have suggested that fetal exposure to environmental endocrine disruptors (EEDs) with estrogenic effects, could participate to testicular germ cell carcinogenesis. However, these EEDs (like bisphenol A) are often weak ligands for classical nuclear estrogen receptors. Several research groups recently showed that the non classical membrane G-protein coupled estrogen receptor (GPER/GPR30) mediates the effects of estrogens and several xenoestrogens through rapid non genomic activation of signal transduction pathways in various human estrogen dependent cancer cells (breast, ovary, endometrium). The aim of this study was to demonstrate that GPER was overexpressed in testicular tumours and was able to trigger JKT-1 seminoma cell proliferation.

Results

We report here for the first time a complete morphological and functional characterization of GPER in normal and malignant human testicular germ cells. In normal adult human testes, GPER was expressed by somatic (Sertoli cells) and germ cells (spermatogonia and spermatocytes). GPER was exclusively overexpressed in seminomas, the most frequent testicular germ cell cancer, localized at the cell membrane and triggered a proliferative effect on JKT-1 cells in vitro, which was completely abolished by G15 (a GPER selective antagonist) and by siRNA invalidation.

Conclusion

These results demonstrate that GPER is expressed by human normal adult testicular germ cells, specifically overexpressed in seminoma tumours and able to trigger seminoma cell proliferation in vitro. It should therefore be considered rather than classical ERs when xeno-estrogens or other endocrine disruptors are assessed in testicular germ cell cancers. It may also represent a prognosis marker and/or a therapeutic target for seminomas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号