首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Different resins were examined for their potential use in the solid phase synthesis of protected peptide amides using the 9-fluorenylmethoxycarbonyl (Fmoc) chemical protocol. The model protected peptide amide BocTyr-Gly-Gly-Phe-Leu-Arg(Pmc)NH2 (1) was synthesized on both the acid-labile 4-(2',4'-dimethoxyphenyl-Fmoc-aminomethyl)phenoxy resin (Rink amide resin) (2) and on resins containing the base-labile linker 4-hydroxymethylbenzoic acid. Of the resins examined only the methylbenzhydrylamine resin containing the 4-hydroxymethylbenzoic acid linkage, which was cleaved by ammonolysis in isopropanol, gave the model peptide 1 in good overall yield (53% including functionalization). Thus the synthesis of protected peptide amides by solid phase synthesis using Fmoc-protected amino acids with t-butyl-type side chain protecting groups is feasible. The choice of peptide-resin linkage and its cleavage conditions, however, are critical to the success of such syntheses. The potential application of this synthetic strategy to the preparation of novel peptide amides is discussed.  相似文献   

2.
The putative receptor-binding region of human transforming growth factor-alpha (TGF alpha) has been shown to be contributed by two fragments: an A-chain (residue 12-18) and a 17-residue carboxyl fragment (residue 34-50) that includes a disulfide-containing C-loop (residue 34-43). An approach to the synthesis of two-chain analogs containing an intermolecular disulfide linked A-chain and the 17-residue carboxyl fragment (C-fragment) possessing receptor-binding activity is described. The synthesis was achieved by the solid-phase method using the Boc-benzyl protecting group strategy. The single Cys of the A-chain was activated as a mixed disulfide with 2-thiopyridine to form the intermolecular disulfide bond with Cys41 or Cys46 of the C-fragment on the resin support. Prior to this reaction, the acetamido (Acm) protecting group of Cys41 or Cys46 was removed by Hg(OAc)2 on the resin support. The peptide and side chain protecting groups including the S-methylbenzyl moiety of the Cys34 and Cys43 were concomitantly cleaved by high HF. The intramolecular disulfide with two unprotected Cys was formed in the presence of an intermolecular disulfide. This intramolecular disulfide bond formation was usually not feasible under the traditionally-held scheme at basic pH since disulfide interchange would occur faster than intramolecular oxidation. To prevent the disulfide interchange, a new method was devised. The intramolecular disulfide bond oxidation was mediated by dimethylsulfoxide at an acidic pH, at which the disulfide interchange reaction was suppressed. The desired product was obtained with a 60-70% yield.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The S-acetamidomethyl (Acm) protecting group is widely used in the chemical synthesis of peptides that contain one or more disulfide bonds. Treatment of peptides containing S-Acm protecting group with iodine results in simultaneous removal of the sulfhydryl protecting group and disulfide formation. However, the excess iodine needs to be quenched or adsorbed as quickly as possible after completion of the disulfide bond formation in order to minimize side reactions that are often associated with the iodination step. We report a simple method for simultaneous post-cysteine (Acm) group removal quenching of iodination and isolation. Use of large volumes of diethyl ether for direct precipitation action of the oxidized peptide from the 90 or 95% aqueous acetic acid solution affords nearly quantitative recovery of largely iodine-free peptide ready for direct purification. It was successfully applied to the synthesis of various peptides including human insulin-like peptide 3 analogues. Although recovery yields were comparable to the traditionally used ascorbic acid quenching method, this new approach offers significant advantages such as more simple utility, minimal side reactions, and greater cost effectiveness.  相似文献   

4.
The preparation and application of a new linker for the synthesis of peptide amides using a modified Fmoc-method is described. The new anchor group was developed based on our experience with 4,4'-dimethoxybenzhydryl (Mbh)-protecting group for amides. Lability towards acid treatment was increased dramatically and results in an easy cleavage procedure for the preparation of peptide amides. The synthesis of N-9-fluorenylmethoxycarbonyl- ([5-carboxylatoethyl-2.4-dimethoxyphenyl)- 4'-methoxyphenyl]-methylamin is reported in detail. This linker was coupled to a commercially available aminomethyl polystyrene resin. Peptide synthesis proceeded smoothly using HOOBt esters of Fmoc-amino acids. Release of the peptide amide and final cleavage of the side chain protecting groups was accomplished by treatment with trifluoroacetic acid-dichloromethane mixtures in the presence of scavengers. The synthesis of peptide amides such as LHRH and C-terminal hexapeptide of secretin are given as examples.  相似文献   

5.
为研究二硫键成环的杂环肽FIK的合成工艺, 以Fmoc氨基酸为原料, 采用固相合成法, 经TBTU/HOBT/DIEA复合缩合剂催化合成直链肽, 再经I2氧化肽链上两个半胱氨酸的巯基生成分子内二硫键而得到目标环肽, 将其用切割试剂切割脱离树脂得到粗产品, MALDI-MS和RP-HPLC进行鉴定, 分析和纯化。产率可以达到18%, 纯化后纯度达97%以上, 经MALDI-MS和Ellman试剂检测确定为目标肽。该合成法高效, 简便, 快速, 目标肽收到较理想产率, 适合大批量生产。  相似文献   

6.
This report describes a Dde resin based attachment strategy for inverse solid-phase peptide synthesis (ISPPS). This attachment strategy can be used for the synthesis of amino terminated peptides with side chains and the carboxyl terminus either protected or deprotected. Amino acid t-butyl esters were attached through their free amino group to the Dde resin. The t-butyl carboxyl protecting group was removed by 50% TFA, and inverse peptide synthesis cycles performed using an HATU/TMP based coupling method. Protected peptides were cleaved from the resin with dilute hydrazine. Side chain protecting groups could then be removed by treatment with TFMSA/TFA. The potential of this approach was demonstrated by the synthesis of several short protected and unprotected peptides in good yield and with low epimerization. Its potential for peptide mimetic synthesis was demonstrated by the synthesis of two peptide trifluoromethylketones.  相似文献   

7.
One of the main problems still hampering solid-phase peptide synthesis using orthogonal protection strategies based on the 9-fluorenylmethoxycarbonyl amino protecting group is the difficult removal of currently used arginine arylsulphonyl guanidino protecting groups. Poor acid liability of 4-methoxy-2,3,6-trimethylbenzenesulphonyl-protected arginine has led to the popularity of the newer 2,2,5,7,8- pentamethylchroman-6-sulphonyl guanidino protecting group. This group was initially believed to have liability to trifluoroacetic acid, the reagent commonly used to simultaneously deprotect peptides and detach them from the synthesis resin, comparable to tert.-butyl and trityl type protecting groups used for the protection of other peptide side-chain functionalities. In a comparison of three established cleavage/deprotection mixtures we have shown that this is not always the case, particularly in multiple arginine peptides. We have found that only hard-acid deprotection with trimethylsilyl bromide reliably removed both arylsulphonyl guanidino protecting groups from a variety of arginine-containing peptides.  相似文献   

8.
The concept of substrate mimetic strategy represents a new powerful method in the field of enzymatic peptide synthesis. This strategy takes advantage of the shift in the site-specific amino acid moiety from the acyl residue to the ester-leaving group of the carboxyl component enabling acylation of the enzyme by nonspecific acyl residues. As a result, peptide bond formation occurs independently of the primary specificity of proteases. Moreover, because of the coupling of nonspecific acyl residues, the newly formed peptide bond is not subject to secondary hydrolysis achieving irreversible peptide synthesis. Here, we report the combination of solid-phase peptide synthesis with substrate mimetic-mediated enzymatic peptide fragment condensations. First, the utility of the oxime resin strategy for the synthesis of peptide fragments in the form of substrate mimetics esterified as 4-guanidinophenyl-, phenyl- and mercaptopropionic acid esters was investigated. The study was completed by using the resulting N(alpha)-protected peptide esters as acyl donors in trypsin-, alpha-chymotrypsin- and V8 protease-catalyzed fragment condensations.  相似文献   

9.
Summary One of the critical intracellular signaling pathways involves specific interactions between growth factor receptors and the adaptor protein Grb2. These interactions normally involve specific tyrosine phosphorylated regions in receptors and other cognate proteins. Following the lead of our recent findings that a phage library based non-phosphorylated disulfide linked 11-mer peptide inhibited such interactions, we report here the synthesis of novel redox-stable cyclic peptide analogs. These include thioether cyclized and backbone cyclized structures. The thioether analog was prepared under mild conditions from an N-terminally chloroacetylated and C-terminally cysteine extended peptide precursor. The thioether peptide showed equipotent binding affinity for the Grb2-SH2 domain (IC50=10–15 μM) when compared to the disulfide cyclized lead-peptide. The bioactive thioether linked peptide was demonstrated to offer advantages to the disulfide cyclized peptides under physiological conditions.  相似文献   

10.
A method for the preparation of a biotinylated resin that can be elongated by standard methods of solid-phase peptide synthesis to give peptides biotinylated at the carboxy terminus is described. This methodology is particularly important for the preparation of biotinylated peptides in which a free amino terminus is required. Coupling of N epsilon-9-fluorenylmethoxycarbonyl-(Fmoc)-N alpha-tert-butyloxycarbonyl(Boc)-L- lysine to p-methylbenzhydrylamine resin, followed by removal of the Fmoc protecting group and reaction with (+)-biotin-4-nitrophenyl ester yielded N alpha-Boc-biocytin-p-methyl-benzhydrylamine resin. The utility of this resin was tested by the synthesis of a biotinylated peptide, Gly-Asn-Ala-Ala-Ala-Ala-Arg-Arg-biocytin-NH2, for use as an in vitro substrate for myristoyl-CoA:protein N-myristoyltransferase (NMT), the enzyme that catalyzes protein N-myristoylation. Analysis of the peptide derivative by HPLC and mass spectrometry revealed a single major product of the expected mass, indicating that the biotin group survived cleavage and deprotection with HF. The biotinylated peptide served as a substrate for NMT, and the resulting myristoylated peptide could be quantitatively recovered by adsorption to immobilized avidin.  相似文献   

11.
The design and synthesis of novel non-peptide CXCR4 antagonists is described. The peptide backbone of highly potent cyclic peptide-based CXCR4 antagonists was entirely replaced by an indole framework, which was expected to reproduce the disposition of the key pharmacophores consistent with those of potential bioactive conformations of the original peptides. A structure–activity relationship study on a series of modified indoles identified novel small-molecule antagonists having three pharmacophore functional groups through the appropriate linkers.  相似文献   

12.
This paper describes the optimization of a synthesis of a difficult sequence related to a 12-mer sequence of a Pan DR epitope (PADRE). Elongation was followed by on-line monitoring of the N(alpha)-Fmoc removal adapted for the batch methodology. Studying the intrinsic factors related to the peptide-resin, such as substitution level, resin nature and backbone protecting group, has led to an increase in the elongation yield and purity of the crude peptide. Optimal elongation was obtained by combining a polar resin such as PEGA and a pseudo-proline as the backbone protecting group.  相似文献   

13.
Summary A simple yet highly effective application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) for the rapid monitoring of Fmoc solid-phase peptide synthesis is described. A few beads of the resin are removed at any desired step during synthesis, the fully protected peptide is cleaved from the resin and an MS spectrum of the analytes present is produced. Some standard side-chain protecting groups may be cleaved off during sample preparation for MS analysis; however, these cleavages are readily identified. Using this approach, incomplete amino acid acylations are readily detected in approximately the same time as by traditional tests such as ninhydrin. The semi-on-line method also lends itself to ready optimization of synthesis protocols and to the examination of resin-bound peptide side reactions which may not be detectable by chemical means.  相似文献   

14.
A simple yet highly effective application of matrix-assisted laser desorption/ionization massspectrometry (MALDI-MS) for the rapid monitoring of Fmoc solid-phase peptide synthesisis described. A few beads of the resin are removed at any desired step during synthesis, thefully protected peptide is cleaved from the resin and an MS spectrum of the analytes presentis produced. Some standard side-chain protecting groups may be cleaved off during samplepreparation for MS analysis; however, these cleavages are readily identified. Using thisapproach, incomplete amino acid acylations are readily detected in approximately the sametime as by traditional tests such as ninhydrin. The semi-on-line method also lends itself toready optimization of synthesis protocols and to the examination of resin-bound peptide sidereactions which may not be detectable by chemical means.  相似文献   

15.
We have developed an expeditious method for the incorporation of the biotinylaminocaproyl moiety on the epsilon-amino group of a lysine residue within a peptide chain in a site-specific manner. Using t-Boc chemistry for the solid phase synthesis approach and a base labile, acid stable protecting group (Fmoc-) for the epsilon-amino group of the target lysine, we prepared fully protected resin bound peptides which are site-specifically biotinylated. Following HF cleavage, the uniquely biotinylated peptides were obtained in a high degree of purity. Using this approach, a number of biotinylaminocaproyllysyl derivatives of a monocyclic Endothelin-1 analog were prepared. Synthesis of selected bicyclic analogs of high affinity monocycles led to the preparation of the bicyclic [Nle7]ET-1 analog containing epsilon-biotinylaminocaproyllysine at position-9. This peptide, with Kd = 0.08 nM, has 1000-fold higher affinity for the ETA receptor than the commercially available N alpha-biotinylated Endothelin-1. The general utility of this biotinylation methodology was demonstrated by the synthesis of a site-specifically biotinylated PTH analog which contained several side chain functionalized amino acid residues in its sequence. The synthetic method reported here is convergent in that it allows the facile variation of the length of the spacer and also offers the potential to introduce in a site specific manner other groups such as affinity labels and fluorescent tags.  相似文献   

16.
The solid-phase synthesis of the N alpha-Fmoc analog of protein kinase C substrate (PKCS, Lys-Arg-Ala-Lys-Ala-Lys-Thr-Thr-Lys-Lys-Arg) was characterized by low recovery from the resin and the concomitant appearance of four impurities. FAB-MS revealed molecular weights for two of these impurities that corresponded to the desired peptide plus Tos or Bzl. The other two were justified by invoking a CO2 elimination of the Clz protecting group to yield: 1) peptide plus 2-chlorobenzyl (ClBzl) and 2) peptide plus ClBzl and Tos. A CF-FAB analysis of carboxypeptidase digestions allowed observation of peptide cleavage down to an ion corresponding to lysine, Fmoc, and the corresponding protecting group(s). These data revealed that the impurities were not the result of incomplete deprotection but the result of migration of the protecting groups to the N-terminal end of the peptide. NMR experiments were subsequently performed and revealed the exact site of substitution: the meta positions of the N-terminal Fmoc. These impurities are presumed to arise by electrophilic aromatic substitution of the fluorene group during HF treatment. The desired Fmoc analog served as a convenient, albeit low-yielding, intermediate for purification of the highly charged PKCS by preparative self-displacement HPLC.  相似文献   

17.
One of the critical intracellular signaling pathways involves specific interactions between growth factor receptors and the adaptor protein Grb2. These interactions normally involve specific tyrosine phosphorylated regions in receptors and other cognate proteins. Following the lead of our recent findings that a phage library based non-phosphorylated disulfide linked 11-mer peptide inhibited such interactions, we report here the synthesis of novel redox-stable cyclic peptide analogs. These include thioether cyclized and backbone cyclized structures. The thioether analog was prepared under mild conditions from an N-terminally chloroacetylated and C-terminally cysteine extended peptide precursor. The thioether peptide showed equipotent binding affinity for the Grb2-SH2 domain (IC50 = 10–15 M) when compared to the disulfide cyclized lead-peptide. The bioactive thioether linked peptide was demonstrated to offer advantages to the disulfide cyclized peptides under physiological conditions.  相似文献   

18.
A method was developed for the synthesis of oligonucleotide-cationic peptide conjugates in solution phase by disulfide bond formation. Precipitation was avoided by the easily removable triethylammonium trifluoroacetate (TEATFAc) salt which served at the same time as a buffer of the reaction mixture. The fast and high yielding disulfide bond formation was due to the Npys thio protecting and activating group of Cys. A solution of the free 5′-thiol modified oligonucleotide obtained from Poly-Pak? purification was used for conjugation.  相似文献   

19.
New segment synthesis of alpha-inhibin-92 by the acyl disulfide method   总被引:3,自引:0,他引:3  
The thiocarboxyl group reacts with diaryl disulfides to give an unsymmetrical acyl disulfide in dimethylformamide (DMF) and a symmetrical diacyl disulfide in aqueous DMF. Both acyl disulfides react with the alpha-amino group to form the peptide bond. The method was used in a new segment synthesis of alpha-inhibin-92 (alpha-IB-92) with use of 2,2'-dipyridyl disulfide as activator. Thiocarboxyl peptides were synthesized by the solid-phase method on 4-[alpha-(Boc-Gly-S)benzyl]phenoxyacetamidomethyl-resin. The segments alpha-IB-92-(1-34)SH (I), Msc-alpha-IB-92-(35-65)SH (II), Msc-alpha-IB-92(66-92)OH (III), and Msc-alpha-IB-92-(35-92)OH (VI) were prepared in yields of 33, 36, 41, and 25%, respectively, with use of crystalline symmetrical anhydrides in double and triple coupling protocols. Segments I, II, and III were used in a 3-segment synthesis of alpha-IB-92 with an overall yield based on starting resin of about 8% while a 2-segment synthesis using I and IV gave 11%. An all stepwise synthesis of alpha-IB-92 gave 4.5%.  相似文献   

20.
A large and steadily growing subfamily of antimicrobially active peptides of animals and plants is formed by the defensins, which are highly disulfide-bonded, cationic peptides with a molecular mass of about 4 kDa. The synthesis of the human beta-defensins 1 and 2 (hBD-1, hBD-2) as well as of the novel murine beta-defensins 7 and 8 (mBD-7 and mBD-8) is reported. The peptides were synthesized by solid-phase peptide synthesis using fluorenylmethoxycarbonyl chemistry. The linear products were oxidized in the presence of the cysteine/cystine redox system to the biologically active molecules. The correct disulfide connectivity of the resulting cyclic products was partly verified by mass spectrometry and sequence analysis of the fragments obtained after tryptic cleavage. In addition, the recently discovered antimicrobially active human peptide LEAP-1/hepcidin, which contains four disulfide bonds, was successfully synthesized and subsequently oxidized. For Liver-expressed anti microbial peptide (LEAP)-1/hepcidin and hBD-1, the identity of native and synthetic peptides was demonstrated by high-pressure liquid chromatography and capillary electrophoretic analysis. The general synthetic procedure is suitable to rapidly perform the total chemical synthesis of novel fully bioactive defensins, which are expected to be identified soon, as well as of structurally modified analogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号