首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have shown previously that the risk of tumor initiation, promotion, and progression in animals initiated with alkylating agents can be drastically altered by hyperthermia treatments. We show here that ionizing radiation can also alter the risk of tumor initiation by alkylating agents. Using a two-step skin tumorigenesis protocol in female SENCAR mice (initiation by MNNG, promotion with TPA), we exposed the dorsal skin of the mice to various doses of 90Sr/90Y beta radiation near the time of initiation. The radiation produced a dose-dependent reduction in the number of papillomas which appeared after TPA promotion, with about a 20% reduction in animals receiving 0.5 Gy surface dose just before initiation, about 50% reduction after 2.5 Gy, and greater than 80% at doses above 5 Gy. A dose of 2.5 Gy in animals initiated with DMBA produced no significant reduction. One skin hyperthermia treatment (44 degrees C, 30 min) along with radiation in MNNG-initiated animals partially blocked the protective effect of radiation and increased the papilloma frequency. Radiation (2.5 Gy) given either 6 days before or after MNNG initiation was less effective but still reduced papilloma frequency about 20%. In sharp contrast to the marked reduction in papilloma formation, these same animals showed no change in carcinoma frequency with any of the doses or schedules of beta radiation. MNNG initiation alone produced three types of initiated cells. One type, produced in low yield, was promotion-independent with a high probability of progression to a carcinoma and appeared unaffected by the radiation. A second type, produced in intermediate yield, was promotion-dependent and also had a high progression probability, but was likewise unaffected by the radiation. The third and most abundant type was promotion-dependent with a very low progression probability. Radiation exposure resulted in a decrease in the risk of an MNNG initiation event which led only to the third type of cell. The data therefore indicate that the risk of some, but not all, tumor-initiating events caused by alkylating agents can be reduced by an exposure to ionizing radiation.  相似文献   

2.
Given the associations between chronic inflammation and epithelial cancer, we studied susceptibility to skin carcinogenesis in mice deficient for the pro-inflammatory cytokine TNF-alpha (refs. 5,6). TNF-alpha(-/-) mice were resistant to development of benign and malignant skin tumors, whether induced by initiation with DMBA and promotion with TPA or by repeated dosing with DMBA. TNF-alpha(-/-) mice developed 5-10% the number of tumors developed by wild-type mice during initiation/promotion and 25% of those in wild-type mice after repeated carcinogen treatment. TNF-alpha could influence tumor and stromal cells during tumor development. The early stages of TPA promotion are characterized by keratinocyte hyperproliferation and inflammation. These were diminished in TNF-alpha(-/-) mice. TNF-alpha was extensively induced in the epidermis, but not the dermis, in TPA-treated wild-type skin, indicating that dermal inflammation is controlled by keratinocyte TNF-alpha production. Deletion of a TNF-alpha inducible chemokine also conferred some resistance to skin tumor development. TNF-alpha has little influence on later stages of carcinogenesis, as tumors in wild-type and TNF-alpha(-/-) mice had similar rates of malignant progression. These data provide evidence that a pro-inflammatory cytokine is required for de novo carcinogenesis and that TNF-alpha is important to the early stages of tumor promotion. Strategies that neutralize TNF-alpha production may be useful in cancer treatment and prevention.  相似文献   

3.
Oxidative stress and experimental carcinogenesis   总被引:6,自引:0,他引:6  
  相似文献   

4.
Several tumors can exist as multiple lesions within a tissue. The lesions may either arise independently, or they may be monoclonal. The importance of multiple lesions for tumor staging, progression, and treatment is subject to debate. Here we use mathematical models to analyze the emergence of multiple, clonally related lesions within a single tissue. We refer to them as multi-focal cancers. We find that multifocal cancers can arise through a dynamical interplay between tumor promoting and inhibiting factors. This requires that tumor promoters act locally, while tumor inhibitors act over a longer range. An example of such factors may be angiogenesis promoters and inhibitors. The model further suggests that multifocal cancers represent an intermediate stage in cancer progression as the tumor evolves away from inhibition and towards promotion. Different patterns of progression can be distinguished: (i) If tumor inhibition is strong, the initial growth occurs as a unifocal and self contained lesion; progression occurs through bifurcation of the lesion and this gives rise to multiple lesions. As the tumor continues to evolve and pushes the balance between inhibition and promotion further towards promotion, the multiple lesions eventually give rise to a single large mass which can invade the entire tissue. (ii) If tumor inhibition is weaker upon initiation, growth can occur as a single lesion without the occurrence of multiple lesions, until the entire tissue is invaded. The model suggests that the sum of the tumor sizes across all lesions is the best characteristic which correlates with the stage and metastatic potential of the tumor.  相似文献   

5.
We have tested chronic exposure to 90Y beta radiation for its action as a complete tumor promoter, a stage I tumor promoter, or a stage II tumor promoter in SENCAR mouse skin. In skin initiated with a single application of 7,12,dimethylbenz[a]anthracene (DMBA, 10 nmol), chronic exposure to beta radiation as a complete promoter (0.5 Gy, twice/week, 13 weeks) produced no tumors and, when added to a complete chemical promoter (TPA), reduced tumor frequency about 30%. A similar result was observed when beta radiation was tested as a stage II promoter. DMBA-initiated mice that received chemical (12-O-tetradecanoylphorbol-13-acetate, TPA) stage I promotion followed by 13 weeks of beta-radiation exposure (0.5 Gy, twice/week) as stage II promotion produced essentially no tumors, and combining the same chronic beta-radiation exposure with chemical (mezerein) stage II promotion reduced tumor frequency about 20% when compared to a similar group that was not irradiated. Chronic beta-radiation exposure was tested two ways as a stage I tumor promoter in initiated skin that was subsequently treated with mezerein as a stage II promoter. Stage I promotion was shown to proceed with the passage of time, indicating this process occurs naturally in the absence of chemical or physical stimulation. Hyperthermia, previously shown to be a potent inhibitor of chemically stimulated stage I promotion, had no effect on the natural process, indicating at least some differences in mechanism between the two processes. The natural process was, in fact, inhibited by chemical tumor promoters, but not by radiation. In addition to the increase resulting from this natural process, tumor frequency was further increased slightly but significantly (12-15%, P less than or equal to 0.05) when chronic radiation exposure was given as a stage I promoter (0.5 Gy, twice/week, 13 weeks) subsequent to initiation, in spite of the expected 20% reduction resulting from this dose. Exposure of initiated animals to radiation (0.5 or 1.0 Gy, twice/week, 2 weeks) in addition to TPA as stage I promotion produced a similar increase in tumor frequency (P less than 0.02). At higher radiation doses, however, tumor frequency was reduced compared to unirradiated controls. In a third test as a stage I promoter, beta radiation (0.5 Gy twice/week, 4 weeks) was given prior to initiation with N-methyl-N'-nitro-N-nitrosoguanidine in animals subsequently promoted by TPA (twice/week, 13 weeks), and again the radiation slightly but significantly (P less than 0.03) increased tumor frequency compared to the unirradiated control group.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Biological and molecular aspects of radiation carcinogenesis in mouse skin   总被引:1,自引:0,他引:1  
The process of mouse skin carcinogenesis can be operationally subdivided into at least three stages which have been termed initiation, promotion, and progression. Ionizing radiation has been found to be a weak initiator of malignant squamous cell carcinomas (SCCs) when radiation was followed by repeated treatments of the skin with the tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA). Besides SCCs, ionizing radiation was found to induce, independent of tumor promoters, basal cell carcinomas (BCCs), a tumor histology not normally seen with chemical carcinogens and mouse skin. Fractionated doses of 1 MeV electrons were found to enhance the conversion of chemically induced benign papillomas to malignant SCCs. In addition to the biological studies, questions related to dominant transforming genes and differential gene expression in the radiation-initiated mouse skin tumors have been explored. Distinct non-ras dominant transforming gene(s) have been detected in radiation-initiated, TPA-promoted SCCs. Differences in the expression pattern of tumor-associated genes were seen in comparing chemically to radiation-induced benign and malignant skin tumors. Therefore, ionizing radiation has been shown to be active in the initiation of malignant skin tumors and progression of benign to malignant tumors in the mouse skin. The ability to divide the process of carcinogenesis into multiple stages in the mouse skin model has facilitated mechanistic studies that may elucidate the molecular pathways involved in radiation-versus chemically induced tumor development.  相似文献   

7.
The p38 mitogen-activated protein kinase (MAPK) pathway has been implicated in both suppression and promotion of tumorigenesis. It remains unclear how these 2 opposite functions of p38 operate in vivo to impact cancer development. We previously reported that a p38 downstream kinase, p38-regulated/activated kinase (PRAK), suppresses tumor initiation and promotion by mediating oncogene-induced senescence in a murine skin carcinogenesis model. Here, using the same model, we show that once the tumors are formed, PRAK promotes the growth and progression of skin tumors. Further studies identify PRAK as a novel host factor essential for tumor angiogenesis. In response to tumor-secreted proangiogenic factors, PRAK is activated by p38 via a vascular endothelial growth factor receptor 2 (VEGFR2)-dependent mechanism in host endothelial cells, where it mediates cell migration toward tumors and incorporation of these cells into tumor vasculature, at least partly by regulating the phosphorylation and activation of focal adhesion kinase (FAK) and cytoskeletal reorganization. These findings have uncovered a novel signaling circuit essential for endothelial cell motility and tumor angiogenesis. Moreover, we demonstrate that the tumor-suppressing and tumor-promoting functions of the p38-PRAK pathway are temporally and spatially separated during cancer development in vivo, relying on the stimulus, and the tissue type and the stage of cancer development in which it is activated.  相似文献   

8.
Facts and theories concerning the mechanisms of carcinogenesis   总被引:14,自引:0,他引:14  
H C Pitot  Y P Dragan 《FASEB journal》1991,5(9):2280-2286
Carcinogenesis can be induced experimentally by exposure to exogenous agents or it can occur spontaneously without intentional or active intervention. Carcinogenesis can be actively induced by chemicals, radiation, infectious biological agents, transgenesis, or selective breeding. In the human and occasionally when testing potential carcinogens in animals, cancer may result from passive exposure to carcinogens encountered in the ambient environment or from changes in the internal milieu of the animal. Many carcinogens alter the structure of DNA resulting in carcinogenesis, but a significant number of carcinogens do not appear to act through this mechanism. When the action of specific carcinogenic agents is considered in relation to the stages of cancer development, initiation, promotion, and progression, the mechanism of the induction of carcinogenesis by DNA-reactive agents that alter genomic structure can be reconciled with those agents that do not act in this manner. As some cells are fortuitously initiated by uncontrolled variables such as irradiation and through changes in normal processes, the stimulation of growth and altered genetic expression by nongenotoxic agents may result indirectly in cancer development. The final stage of carcinogenesis, progression, can occur spontaneously, enhanced by formation and propagation of genetic errors due to increased cellular proliferation associated with the promotion stage. In addition, chemical and viral agents that lack the capacity for initiation and promotion may actively convert cells in the stage of promotion to the stage of progression. Therefore, the diverse mechanisms of action of carcinogenic agents in relation to their effects on specific stages in the natural history of cancer development allow for greater congruence of many of the theories of carcinogenesis. The influence of the roles of nongenotoxic carcinogenic agents and the potential role of progressor agents on the carcinogenesis process allow a more accurate identification of the potential risk that specific carcinogenic agents pose for increasing human cancer.  相似文献   

9.
A perspective on keratinocyte stem cells as targets for skin carcinogenesis   总被引:2,自引:0,他引:2  
Skin cancers as seen in the clinic are the result of a long history of events of which only the final stages are easily observed. As normal cells progress to the neoplastic and later metastatic stages, multiple changes in gene expression and cellular phenotypes occur. Nevertheless, the early events in the pathway leading from the first exposure to carcinogenic or mutagenic agents to a frank tumor are thought to involve a two-step process of tumor initiation and tumor promotion. In experimental two-stage skin carcinogenesis in mice, benign and malignant neoplasms can be induced on the backs of mice following a low, or sub-threshold, exposure to a carcinogen (initiation) and subsequent chronic regenerative epidermal hyperplasia caused by a variety of physical, chemical, or biological agents (promotion). Tumor initiation is thought to involve conversion of some of the epidermal cells into latent neoplastic cells, whereas promotion elicits expression of the neoplastic change. Many questions remain about this process, in particular the identity and biological properties of the cells that are specifically the targets of tumor initiation and promotion. Conceivably, any proliferative cell could become and remain initiated; however, these rare cells in the cutaneous epithelium able to become neoplastic cells after exposure to carcinogens and tumor promoters have many of the properties of stem cells. Although this concept that stem cells are the target cells in the development of cancer is not new, I will consider here the evidence that the target cells are indeed stem cells in the cutaneous epithelium.  相似文献   

10.
Outbred carcinogenesis-resistant (Car-R) and carcinogenesis-susceptible (Car-S) mouse lines were generated by phenotypic selection for resistance or susceptibility to two-stage skin carcinogenesis. These two Car mouse lines differ by >100-fold in susceptibility. In the present study, we tested the hypothesis that a subset of genetic loci responsible for susceptibility or resistance to chemical skin tumorigenesis may also be involved in radiation-induced skin tumorigenesis. Skin tumorigenesis was tested in groups of Car-S/R mice after X-ray initiation and 12-O-tetradecanoylphorbol-13-acetate (TPA) promotion. We found that ionizing radiation can initiate skin tumors in Car-S mice but not in Car-R mice. In Car-S mice, the most effective radiation doses (6 and 10 Gy given in four fractions) gave a threefold increase in tumor multiplicity and a twofold increase in tumor incidence compared to a TPA-only control group. We performed a molecular analysis of Hras gene mutations in skin tumors of Car-S mice induced by X-ray initiation/TPA promotion or by TPA promotion alone. The most notable difference emerging from the comparison of these mutation patterns is the high incidence ( approximately 50%) of papillomas lacking Hras gene mutations in X-ray-initiated/TPA-promoted papillomas compared to 13% in papillomas induced by TPA alone, suggesting that lack of Hras gene mutations is a consistent feature of radiation-induced papillomas.  相似文献   

11.
Skin tumors can be effectively induced in mice by the repetitive application of a carcinogen. The relative order of sensitivity to complete carcinogenesis is Sencar > CD-1 > C57BL/6 ≥ BALB/c ≥ ICR/Ha Swiss > C3H. Skin tumors in mice can also be induced by the sequential application of a sub-threshold dose of a carcinogen (initiation phase) followed by repetitive treatment with a weak or noncarcinogenic tumor promoter (promotion phase). The relative order of sensitivity to initiation-promotion is Sencar > > CD-1 > ICR/Ha Swiss ≥ Balb/c > C57BL/6 ≥ C3H ≥ DBA/2. The initiation phase requires only a single application of a carcinogen and is essentially an irreversible step, which probably involves a somatic cell mutation as is evidenced by a good correlation between the carcinogenicity of many chemical carcinogens and their mutagenic activities; the promotion stage, however, is initially reversible, later becoming irreversible. For strains and stocks of mice which respond to initiation-promotion, there is a good correlation between the tumor-initiating activities of polycyclic aromatic hydrocarbons (PAH) and their abilities to bind covalently to DNA. Potent inhibitors and stimulators of PAH tumor initiation appear to effect the level of the PAH diol epoxide bound to specific DNA adducts. However, when the binding of a given PAH to DNA is compared in various stocks and strains of mice, there is no correlation, since in those mice which are able to metabolize PAH, the amounts of carcinogen bound to DNA are similar. The phorbol ester tumor promoters have been shown to have several cellular and biochemical effects on the skin. Of all the observed phorbol ester related effects on the skin, the induction of epidermal cell proliferation, polyamines, prostagladins, and dark basal keratinocytes as well as other embryonic conditions appear to correlate the best with promotion. Mezerein, a weak promoter, was found to induce many cellular and biochemical changes similar to 12-O-tetradecanoylphorbol-13 acetate (TPA), especially epidermal hyperplasia and polyamines; however, it was not a potent inducer of dark cells. We recently found that promotion could be divided into at least two stages. The first stage (I) can be accomplished by limited treatment with TPA or the nonpromoting agents, 4-O-methyl TPA and the calcium ionophore A23187, and the second stage (II) by repetitive applications of mezerein. The dark basal cells appear to be important in the first stage of promotion, since TPA, 4-0-methyl TPA, and A23187 are potent inducers of dark cells. Fluocinolone acetonide (FA) was found to be a potent inhibitor of stage I and II. Retinoic acid (RA) was ineffective in Stage I but was a potent inhibitor of Stage II promotion, whereas tosyl phenylalanine chloromethylketone (TPCK) specifically inhibited Stage I. In addition, FA and TPCK effectively counteracted the appearance of dark basal keratinocytes but had very little effect on polyamines, whereas RA had no effect on dark cells but is a potent inhibitor of TPA-induced ornithine decarboxylase activity and subsequent putrescine formation. These results provide additional evidence for the importance of dark basal keratinocytes (primitive stem cells) in Stage I of promotion and indicate that most of the other cellular and biochemical responses normally associated with promotion (such as polyamines) are actually associated with Stage II of promotion. Although C57BL/6 mice are relatively resistant to initiation-promotion by PAH initiation and phorbol ester promotion, they are fairly sensitive to complete carcinogenesis by PAH. This suggests that the C57BL/6 mice are resistant to phorbol ester tumor promotion. Preliminary experiments suggest that C57BL/6 and Sencar mice respond qualitatively but not quantitatively to a single treatment with TPA.  相似文献   

12.
Henry C. Pitot   《Mutation research》1995,333(1-2):3-14
The principal characteristic of neoplasia is its inherited alteration of genetic expression. The regulation of gene expression may be altered both by mutational events and by environmental mediators. During carcinogenesis the permanent alterations in genetic expression resulting from mutations occur primarily during the final stage of progression when biological malignancy becomes evident. During the preceding reversible stage of promotion, alteration and genetic expression are the result of the chronic stimulation of an altered (initiated) cell responding to the environmental mediator or promoting agent. A major mechanism of this effect occurs by receptors exhibiting specificity for the mediator and for their interaction with the genome. Withdrawal of the promoting agent prior to the genetic alterations characteristic of the stage of progression leads to a reversal of the effects of the promoting agent and the death by apoptosis of most cells in the stage of promotion. Carcinogenesis mediated by the chronic ligand (promoting agent)-receptor interaction increases the probability of the development of the stage of progression; thus alteration or prevention of the stage of promotion by removal of the promoting agent or inhibition of its action remains the best opportunity for cancer prevention. Application of the reversible promoting agent-receptor interaction to specific environmental circumstances where such plays a major role can lead to a more rational risk estimation of promoting agents for the human population.  相似文献   

13.
The systematic identification of genetic events driving cellular transformation and tumor progression in the absence of a highly recurrent oncogenic driver mutation is a challenge in cutaneous oncology. In cutaneous squamous cell carcinoma (cuSCC), the high UV-induced mutational burden poses a hurdle to achieve a complete molecular landscape of this disease. Here, we utilized the Sleeping Beauty transposon mutagenesis system to statistically define drivers of keratinocyte transformation and cuSCC progression in vivo in the absence of UV-IR, and identified both known tumor suppressor genes and novel oncogenic drivers of cuSCC. Functional analysis confirms an oncogenic role for the ZMIZ genes, and tumor suppressive roles for KMT2C, CREBBP and NCOA2, in the initiation or progression of human cuSCC. Taken together, our in vivo screen demonstrates an extremely heterogeneous genetic landscape of cuSCC initiation and progression, which can be harnessed to better understand skin oncogenic etiology and prioritize therapeutic candidates.  相似文献   

14.
The molecular events that lead to the cancer-initiating cell involve critical mutations in genes regulating normal cell growth and differentiation. Cancer stem cells, or cancer initiating cells have been described in the context of acute myeloid leukemia, breast, brain, bone, lung, melanoma and prostate. These cells have been shown to be critical in tumor development and should harbor the mutations needed to initiate a tumor. The origin of the cancer stem cells is not clear. They may be derived from stem cell pools, progenitor cells or differentiated cells that undergo trans-differentiation processes. It has been suggested that cell fusion and/or horizontal gene transfer events, which may occur in tissue repair processes, also might play an important role in tumor initiation and progression. Fusion between somatic cells that have undergone a set of specific mutations and normal stem cells might explain the extensive chromosomal derangements seen in early tumors. Centrosome deregulation can be an integrating factor in many of the mechanisms involved in tumor development. The regulation of the balance between cell renewal and cell death is critical in cancer. Increased knowledge of developmental aspects in relation to self-renewal and differentiation, both under normal and deregulated conditions, will probably shed more light on the mechanisms that lead to tumor initiation and progression.  相似文献   

15.
Non-melanoma skin cancers (NMSC) are the most common malignant tumors in white population and their incidence has been increasing worldwide. Molecular events regulating cell survival, apoptosis, growth arrest as well as cell differentiation, are important contributors to the overall kinetics of benign and malignant cell growth and play a role in their development, progression and regression. Failure of these pathways can result in the loss of control over proliferation and lead to tumor development through the inactivation of tumor suppressor genes or the activation of oncogenes. Also, immunological mechanisms have been implicated in a phenomenon of tumor progression as well as spontaneous tumor regression. We have tried to summarize the main events in etiopatogenesis, development, progression and in some cases skin cancer regression. Further studies are needed to elucidate completely the details of apoptotic control in normal skin and determine factors resulting in apoptotic disbalance and disease.  相似文献   

16.
In the two-stage mouse model for skin tumorigenesis with phorbol-12-myristate-13-acetate (PMA) as promoter, topical application of 40 microliters of toluene 2X/week at the initiation/promotion site (the back) reduced the average number of tumors/mouse (ANT/M) to approximately one-fourth that of controls. Control procedure involved initiation of C3H mice with benzo[a]pyrene (BaP) and CD-1 mice with 7,12-dimethylbenz[a]anthracene (DMBA) followed by promotion with from 1 to 5 micrograms PMA in 40 microliters acetone 2X/week. Forty microliters of toluene 2X/week per se was a weak promoter (6-13% of control ANT/M), and produced mild skin irritation at the application site but behavior and body weights were normal. The toluene inhibition of tumorigenesis was not a direct chemical action on PMA since similar effects occurred whether toluene was the vehicle for PMA or whether it was applied up to 1 day before PMA (i.e., prepromotion). Prepromotion with acetone had no effect on tumorigenesis, substantiating its use as control vehicle and suggesting that the toluene inhibition was a specific tissue reaction. The inhibitory effect appeared to be on PMA promotion rather than on initiation since toluene and acetone produced similar numbers of tumors when used as the vehicle for BaP or DMBA in two-stage or BaP in single-stage trials. The inhibition was not permanent since tumorigenesis returned to control rates 2-3 weeks after prepromotion with toluene ceased but promotion with PMA in acetone continued. Toluene may be unique among reported promotion inhibitors in that it is a widely used commercial chemical which sometimes serves as a vehicle in cancer-screening trials. Since its metabolism is reasonably well defined, it may be of value in exploring further the process of tumor promotion.  相似文献   

17.
Reactive oxygen species (ROS) from both endogenous and exogenous sources can cause oxidative DNA damage and dysregulated cell signaling, which are involved in the multistage process of carcinogenesis such as tumor initiation, promotion and progression. A number of structurally different anticarcinogenic agents inhibit inflammation and tumor promotion as they reduce ROS production and oxidative DNA damage. Evidence suggests that porphyrins can interfere with the actions of various carcinogens and mutagens by forming face-to-face complexes and their antimutagenic or antigenotoxic effects may also be attributed to their antioxidant activities. However, little is known regarding the anti-tumor promoting potential and mechanism of the porphyrin compounds. Based on our previous results on the inhibitory effects of chlorophyllin (CHL), hemin and tetrakis(4-benzoic acid)porphyrin (TBAP) against two-stage mouse skin carcinogenesis, we have investigated their anti-tumor promoting mechanisms. In the present work, CHL, hemin and TBAP reduced superoxide anion generation by 12-O-tetradecanoylphorbol-13-acetate (TPA) in differentiated HL-60 cells and the production of hydroxyl radicals by Fenton reaction. Porphyrins exert a dose-related inhibition of his(+) reversion in Salmonella typhimurium TA102 induced by tert-butylhydroperoxide (t-BOOH). DNA strand breaks by ROS derived from H(2)O(2)/Cu(II) and the formation of 8-hydroxydeoxyguanosine (8-OH-dG) in calf thymus DNA treated with H(2)O(2)/UV also were inhibited markedly by porphyrins in a concentration-dependent manner. Furthermore, CHL, hemin and TBAP decreased myeloperoxidase (MPO) activity and H(2)O(2) formation as well as epidermal ornithine decarboxylase (ODC) activity in mouse skin treated with TPA. These results demonstrate that the antioxidative properties of porphyrins are important for inhibiting TPA-induced tumor promotion.  相似文献   

18.
Vitamin E (alpha-tocopherol) is a promising chemopreventive and pharmacologically safe agent, which can be exploited or tested against skin cancer. It is an established antioxidant with an ability to ameliorate the UV-induced skin damage and chemically induced inflammation in lungs. However, there are some conflicting reports about its role as a modulator of chemically induced promotion. We evaluated its efficacy in preventing the inflammatory and oxidative stress responses in a double 12-O-tetradecanoylphorbol-13-acetate (TPA) application tumor skin promotion protocol. Double application of TPA was undertaken to produce massive inflammatory and oxidative stress responses. Topical TPA treatment adversely altered many of the marker responses of stage I skin tumor promotion. Vitamin E application 30 min prior to TPA treatment (10 nmol) inhibited induction of hydrogen peroxide, myeloperoxidase (MPO) activity, xanthine oxidase (XO) activity and lipid peroxidation (LPO). Vitamin E also positively modulated altered antioxidants of mouse skin. Histological examination also revealed marked improvement. These results confirm the efficacy of vitamin E against early inflammatory and oxidative stress responses, which are hallmark of tumor promotion and provide rational basis for chemopreventive action of vitamin E in skin cancer.  相似文献   

19.
Xia D  Wang D  Kim SH  Katoh H  DuBois RN 《Nature medicine》2012,18(2):224-226
Although aberrant DNA methylation is considered to be one of the key ways by which tumor-suppressor and DNA-repair genes are silenced during tumor initiation and progression, the mechanisms underlying DNA methylation alterations in cancer remain unclear. Here we show that prostaglandin E(2) (PGE(2)) silences certain tumor-suppressor and DNA-repair genes through DNA methylation to promote tumor growth. These findings uncover a previously unrecognized role for PGE(2) in the promotion of tumor progression.  相似文献   

20.
Significance of eIF4E expression in skin squamous cell carcinoma   总被引:1,自引:0,他引:1  
Cutaneous squamous cell carcinoma (SCC) is a malignant tumour of keratinising epidermal cells. This type of skin cancer is the second leading cause of death after melanoma, and it is the second most common type of non-melanoma skin cancer after basal cell carcinoma. The cellular and molecular events involved in the progression of skin cancers are largely unknown. Increased protein synthesis is necessary for the transition of cells from quiescence to proliferation. Translational control is critical for the proper regulation of the cell cycle, tissue induction and growth. Eukaryotic initiation factor eIF4E, an important regulator of translation, plays critical roles in neo-plastic transformation and cancer progression. We investigated eIF4E expression in 49 skin samples (six normal tissues, eight Bowen diseases, seven stage I, 10 stage II, 13 stage III and five stage IV SCCs). Results obtained demonstrated that all SCC samples, evaluated by SDS-PAGE, Western blotting and cap-affinity chromatography using m7GTP-sepharose, presented eIF4E expression (13.6+/-1.2), whereas, starting from stage 0 (4.1+/-0.9) to stage I (7.4+/-1.4), stage II (12.1+/-2.4), stage III (18.1+/-3.0) and stage IV (26.2+/-3.8) SCCs, a constant and significant increase of protein over expression (P<0.001) was observed. A high expression of eIF4E is correlated with advanced stages. The results presented in this study demonstrate a possible role of eIF4E in SCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号