首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypoosmotic stress is a potent inducer of ornithine decarboxylase (ODC) activity in a variety of mammalian cells, but the physiological relevance of this response has not been determined. To test whether an increased putrescine content confers a growth advantage at lower osmolarities, we compared the ability of L1210 mouse leukemia cells and of ODC-overproducing variants obtained from this cell line (D-R cells) to proliferate after a hypotonic shock (325----130 mosmol/kg). The growth rate of D-R cells at 130 mosmol/kg was greater than or equal to 5-fold higher than in L1210 cells; and unlike the ODC-overproducing strain, L1210 cells underwent up to a 90% loss of viability over time as seen after restoration of normosmotic growth conditions and by trypan blue exclusion tests. The addition of putrescine or L-ornithine stimulated the proliferation of both cell sublines up to 5-fold in a concentration-dependent manner, with a maximal effect observed at about 10 and 100 microM, respectively. Putrescine restored virtually normal growth rates in both sublines at osmolarities as low as 190 mosmol/kg. No other alpha,omega-diamine was active in that respect whereas spermidine was markedly inhibitory. Furthermore, D-R cells incubated at 130 mosmol/kg showed a marked growth inhibition by 1-aminooxy-3-aminopropane (potent ODC inhibitor to which they are resistant in isotonic media) as a result of putrescine but not spermidine depletion. Whereas ODC was strongly and rapidly induced by hypotonic shock there was a precipitous decline in S-adenosylmethionine decarboxylase activity. Putrescine synthesis and accumulation were nevertheless reduced in D-R cells incubated at 130 mosmol/kg because of a decreased availability of L-ornithine. When either putrescine or L-ornithine was added to hypotonic media, D-R cells accumulated putrescine massively for extended periods together with a reduction in spermidine and spermine contents. Putrescine transport patterns were altered by hypotonic shock, net excretion of the diamine being reduced by about 80%, with a concurrent enlargement of the intracellular pool. Finally, parental L1210 cells incubated with an irreversible inhibitor of S-adenosylmethionine decarboxylase for 24 h until hypotonic shock and supplemented with putrescine in the presence of the drug thereafter exhibited a greatly exaggerated growth stimulation by the diamine. These results demonstrate an essential role for an early increase in putrescine content in the growth adaptation of a mammalian cell line to a lower osmolarity.  相似文献   

2.
Treatment of Ehrlich ascites-tumour cells with 1-amino-oxy-3-aminopropane (AOAP), a potent inhibitor of ornithine decarboxylase, resulted in a marked decrease in cellular contents of putrescine and spermidine, concomitant with an arrest of cell growth. The activity of S-adenosylmethionine decarboxylase (AdoMetDC) was greatly increased in cells treated with AOAP. This increase in AdoMetDC activity was shown to be, at least partly, caused by enhanced synthesis of the enzyme, which most likely was induced by the change in cellular polyamine content.  相似文献   

3.
Polyamine-biosynthesis activity is known to be negatively regulated by intracellular polyamine pools. Accordingly, treatment of cultured L1210 cells with 10 microM-spermine rapidly and significantly lowered ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (AdoMetDC) activities in a sequential manner. By contrast, treatment for 48 h with 10 microM of the unsaturated spermine analogue 6-spermyne lowered AdoMetDC activity, but not ODC activity. An initial decrease in ODC activity at 2 h was attributed to a transient increase in free intracellular spermidine and spermine brought about through their displacement by the analogue. Thereafter, ODC activity recovered steadily to control values as 6-spermyne pools increased and spermidine and spermine pools decreased owing to analogue suppression of AdoMetDC activity. The apparent ability of 6-spermyne to regulate AdoMetDC, but not ODC, activity suggests an interesting structure-function correlation and demonstrates that the typical co-regulation of these enzyme activities can be dissociated. This, in turn, may reflect the existence of independent regulatory binding sites for the two enzymes.  相似文献   

4.
Treatment of L1210 cells with either of two inhibitors of S-adenosylmethionine decarboxylase (AdoMetDC), namely 5'-deoxy-5'-[N-methyl-N-[2-(amino-oxy)ethyl])aminoadenosine or 5'-deoxy-5'-[N-methyl-N-(3-hydrazinopropyl)]aminoadenosine, produced a large increase in the amount of ornithine decarboxylase (ODC) protein. The increased enzyme content was due to a decreased rate of degradation of the protein and to an increased rate of synthesis, but there was no change in its mRNA content. The inhibitors led to a substantial decline in the amounts of intracellular spermidine and spermine, but to a big increase in the amount of putrescine. These results indicate that the content of ODC is negatively regulated by spermidine and spermine at the levels of protein translation and turnover, but that putrescine is much less effective in bringing about this repression. Addition of either spermidine or spermine to the cells treated with the AdoMetDC inhibitors led to a decrease in ODC activity, indicating that either polyamine can bring about this effect, but spermidine produced effects at concentrations similar to those found in the control cells and appears to be the physiologically important regulator. The content of AdoMetDC protein (measured by radioimmunoassay) was also increased by these inhibitors, and a small increase in its mRNA content was observed, but this was insufficient to account for the increase in protein. A substantial stabilization of AdoMetDC occurred in these cells, contributing to the increased enzyme content, but an increase in the rate of translation cannot be ruled out.  相似文献   

5.
Ornithine decarboxylase (ODC) is subject to feedback regulation by the polyamines. Thus, addition of putrescine, spermidine or spermine to cells causes inhibition of ODC mRNA translation. Putrescine and spermine are readily converted into spermidine. Therefore, it is conceivable that the inhibition of ODC synthesis observed in putrescine- and spermine-supplemented cells is instead an effect of spermidine. To examine this possibility we have used two analogs of putrescine and spermine, namely 1,4-dimethylputrescine and 5,8-dimethylspermine, which cannot be converted into spermidine. Both analogs were found to inhibit the incorporation of [35S]methionine into ODC protein to approximately the same extent, suggesting that putrescine as well as spermine exert a negative feedback control of ODC mRNA translation in the cell. In addition to suppressing ODC synthesis, both analogs were found to increase the turnover rate of the enzyme. 5,8-Dimethylspermine caused a marked decrease in the activity of S-adenosylmethionine decarboxylase (AdoMetDC). This effect was not obtained with 1,4-dimethylputrescine, indicating that spermine, but not putrescine, exerts a negative control of AdoMetDC. Treatment with 1,4-dimethylputrescine caused extensive depletion of the cellular putrescine and spermidine content, but accumulation of spermine. 5,8-Dimethylspermine treatment, on the other hand, effectively depleted the spermine content and had less effect on the putrescine and spermidine content, at least initially. Nevertheless, the total polyamine content was more extensively reduced by treatment with 5,8-dimethylspermine than with 1,4-dimethylputrescine. Accordingly, only 5,8-dimethylspermine treatment exerted a significant inhibitory effect on Ehrlich ascites tumor cell growth.  相似文献   

6.
The effects of CGP 48664 and DFMO, selective inhibitors of the key enzymes of polyamine biosynthesis, namely, ofS-adenosylmethionine decarboxylase (AdoMetDC) and ornithine decarboxylase (ODC), were investigated on growth, polyamine metabolism, and DNA methylation in the Caco-2 cell line. Both inhibitors caused growth inhibition and affected similarly the initial expression of the differentiation marker sucrase. In the presence of the AdoMetDC inhibitor, ODC activity and the intracellular pool of putrescine were enhanced, whereas the spermidine and spermine pools were decreased. In the presence of the ODC inhibitor, the AdoMetDC activity was enhanced and the intracellular pools of putrescine and spermidine were decreased. With both compounds, the degree of global DNA methylation was increased. Spermine and spermidine (but not putrescine) selectively inhibited cytosine–DNA methyltransferase activity. Our observations suggest that spermidine (and to a lesser extent spermine) controls DNA methylation and may represent a crucial step in the regulation of Caco-2 cell growth and differentiation.  相似文献   

7.
Ornithine decarboxylase (ODC) is subject to feedback regulation by the polyamines. Thus, addition of putrescine, spermidine or spermine to cells causes inhibition of ODC mRNA translation. Putrescine and spermine are readily converted into spermidine. Therefore, it is conceivable that the inhibition of ODC synthesis observed in putrescine- and spermine-supplemented cells is instead an effect of spermidine. To examine this possibility we have used two analogs of putrescine and spermine, namely 1,4-dimethylputrescine and 5,8-dimethylspermine, which cannot be converted into spermidine. Both analogs were found to inhibit the incorporation of [35S]methionine into ODC protein to approximately the same extent, suggesting that putrescine as well as spermine exert a negative feedback control of ODC mRNA translation in the cell. In addition to suppressing ODC synthesis, both analogs were found to increase the turnover rate of the enzyme. 5,8-Dimethylspermine caused a marked decrease in the activity of S-adenosylmethionine decarboxylase (AdoMetDC). This effect was not obtained with 1,4-dimethylputrescine, indicating that spermine, but not putrescien, exerts a negative control of AdoMetDC. Treatment with 1,4-dimethylputrescine caused extensive depletion of the cellular putrescine and spermidine content, but accumulation of spermine. 5,8-Dimethylspermine treatment, on the other hand, effectively depleted the spermine content and had less effect on the putrescine and spermidine content, at least initially. Nevertheless, the total polyamine content was more extensively reduced by treatment with 5,8-dimethylspermine than with 1,4-dimethylputrescine. Accordingly, only 5,8-dimethylspermine treatment exerted a significant inhibitory effect on Ehrlich ascites tumor cell growth.  相似文献   

8.
The regulation of ornithine decarboxylase (ODC) activity by the polyamine derivatives N1,N8-bis(ethyl)-spermidine and N1,N12-bis(ethyl)spermine was studied using a line of L1210 cells resistant to alpha-difluoromethylornithine (D-R cells), which contain very high levels of ODC, and a synthetic mRNA prepared from a plasmid containing an insert corresponding to ODC mRNA adjacent to an SP6 RNA polymerase promoter. Studies in which ODC protein was labeled in the D-R cells by exposure to [35S]methionine indicated that the polyamine derivatives and their physiological counterparts led to an increased rate of degradation of ODC and to a rapid reduction in ODC synthesis without affecting the content of ODC mRNA. Direct evidence that the polyamine derivatives act by inhibiting the translation of the ODC mRNA was obtained by studying their effects on the translation of ODC mRNA in reticulocyte lysates. This translation was strongly inhibited by the addition of N1,N8-bis(ethyl)spermidine, spermidine, N1,N12-bis(ethyl)spermine, or spermine but was not affected much by putrescine. The inhibition of the translation of ODC mRNA by either of the bis(ethyl) polyamine derivatives occurred at concentrations which stimulated total protein synthesis showing the selectivity of the reduction in ODC. The effects of polyamine derivatives and polyamines on translation of the plasmid-derived ODC mRNA were identical with those found with the D-R L1210 cell mRNA. This synthetic ODC mRNA lacks 261 bases of the 5'-leader sequences and 200 bases plus the poly(A) section from the 3'-nontranslated sequence. Therefore, these regions appear not to influence sensitivity of the ODC mRNA to inhibition of translation by polyamine derivatives.  相似文献   

9.
The rate-limiting enzymes in polyamine biosynthesis, ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (AdoMetDC), are negatively regulated by the polyamines spermidine and spermine. In the present work the spermidine synthase inhibitor S-adenosyl-1,8-diamino-3-thio-octane (AdoDATO) and the spermine synthase inhibitor S-methyl-5'-methylthioadenosine (MMTA) were used to evaluate the regulatory role of the individual polyamines. Treatment of Ehrlich ascites-tumour cells with AdoDATO caused a marked decrease in spermidine content together with an accumulation of putrescine and spermine. Treatment with MMTA, on the other hand, gave rise to a marked decrease in spermine, with a simultaneous accumulation of spermidine. A dramatic increase in the activity of AdoMetDC, but not of ODC, was observed in MMTA-treated cells. This increase appears to be unrelated to the decrease in spermine content, because a similar rise in AdoMetDC activity was obtained when AdoDATO was given in addition to MMTA, in which case the spermine content remained largely unchanged. Instead, we show that the increase in AdoMetDC activity is mainly due to stabilization of the enzyme, probably by binding of MMTA. Treatment with AdoDATO had no effects on the activities of ODC and AdoMetDC, even though it caused a precipitous decrease in spermidine content. The expected decrease in spermidine-mediated suppression of ODC and AdoMetDC was most probably counteracted by the simultaneous increase in spermine. The combination of AdoDATO and MMTA caused a transient rise in ODC activity. Concomitant with this rise, the putrescine and spermidine contents increased, whereas that of spermine remained virtually unchanged. The increase in ODC activity was due to increased synthesis of the enzyme. There were no major effects on the amount of AdoMetDC mRNA by treatment with the inhibitors, alone or in combination. However, the synthesis of AdoMetDC was slightly stimulated in cells treated with MMTA or AdoDATO plus MMTA. The present study demonstrates that regulation of neither ODC nor AdoMetDC is a direct function of the polyamine structure. Instead, it appears that the biosynthesis of the polyamines is feedback-regulated by the various polyamines at many different levels.  相似文献   

10.
1. The content of decarboxylated S-adenosylmethionine (AdoMet) in transformed mouse fibroblasts (SV-3T3 cells) was increased 500-fold to about 0.4fmol/cell when ornithine decarboxylase was inhibited by α-difluoromethylornithine. This increase was due to the absence of putrescine and spermidine, which serve as substrates for aminopropyltransferases with decarboxylated AdoMet as an aminopropyl donor, and to the enhanced activity of AdoMet decarboxylase brought about by depletion of spermidine. The increase in decarboxylated AdoMet content was abolished by addition of putrescine, but not by 1,3-diaminopropane. 2. 5′-Methylthiotubercidin also increased decarboxylated AdoMet content, presumably by direct inhibition of aminopropyl-transferase activities, but the increase in its content and the decline in spermidine content were much less than those produced by α-difluoromethylornithine. 3. Decarboxylated AdoMet content of regenerating rat liver was measured in rats treated with inhibitors of ornithine decarboxylase. The content was increased by 60% 32h after partial hepatectomy in control rats, by 90% when α-difluoromethylornithine was given to the partially hepatectomized rats, and by 330% when 1,3-diaminopropane was used to inhibit putrescine and spermidine synthesis. After 48h of exposure to 1,3-diaminopropane, which completely prevented the increase in spermidine after partial hepatectomy, there was a 5-fold rise in hepatic decarboxylated AdoMet concentration. These increases were prevented by treatment with putrescine or with methylglyoxal bis(guanylhydrazone), an inhibitor of AdoMet decarboxylase. 4. These results show that changes in AdoMet metabolism result from the administration of specific inhibitors of polyamine synthesis. The possible consequences of the accumulation of decarboxylated AdoMet, which could, for example, interfere with normal cellular methylation or lead to depletion of cellular adenine nucleotides, should be considered in the interpretation of results obtained with such inhibitors.  相似文献   

11.
Polyamines (PAs) are essential metabolites in eukaryotes, participating in a variety of proliferative processes, and in trypanosomatid protozoa play an additional role in the synthesis of the critical thiol trypanothione. The PAs are synthesized by a metabolic process which involves arginase (ARG), which catalyzes the enzymatic hydrolysis of l-arginine (l-Arg) to l-ornithine and urea, and ornithine decarboxylase (ODC), which catalyzes the enzymatic decarboxylation of l-ornithine in putrescine. The S-adenosylmethionine decarboxylase (AdoMetDC) catalyzes the irreversible decarboxylation of S-adenosylmethionine (AdoMet), generating the decarboxylated S-adenosylmethionine (dAdoMet), which is a substrate, together with putrescine, for spermidine synthase (SpdS). Leishmania parasites and all the other members of the trypanosomatid family depend on spermidine for growth and survival. They can synthesize PAs and polyamine precursors, and also scavenge them from the microenvironment, using specific transporters. In addition, Trypanosomatids have a unique thiol-based metabolism, in which trypanothione (N1-N8-bis(glutathionyl)spermidine, T(SH)2) and trypanothione reductase (TR) replace many of the antioxidant and metabolic functions of the glutathione/glutathione reductase (GR) and thioredoxin/thioredoxin reductase (TrxR) systems present in the host. Trypanothione synthetase (TryS) and TR are necessary for the protozoa survival. Consequently, enzymes involved in spermidine synthesis and its utilization, i.e. ARG, ODC, AdoMetDC, SpdS and, in particular, TryS and TR, are promising targets for drug development.  相似文献   

12.
A potent irreversible inhibitor of S-adenosylmethionine (AdoMet) decarboxylase, S-(5'-adenosyl)-methylthio-2-aminooxyethane (AdoMeSaoe), was used to study the regulatory control of this key enzyme in the polyamine biosynthetic pathway. Treatment of L1210 cells with the inhibitor completely eradicated the growth-induced rise in AdoMet decarboxylase activity, resulting in a marked decrease in cellular content of spermidine and spermine. The putrescine content, on the other hand, was greatly elevated. Although no detectable AdoMet decarboxylase activity was found in the L1210 cells after treatment with AdoMeSaoe, the cells contained 50-fold higher amounts of AdoMet decarboxylase protein, compared to untreated cells during exponential growth. Part of this increase was shown to be due to elevated synthesis of the enzyme. This stimulation appeared to be related to the decrease in cellular spermidine and spermine content, since addition of either one of the polyamines counteracted the rise in AdoMet decarboxylase synthesis. The synthesis rate was determined by immunoprecipitation of labeled enzyme after a short pulse with [35S]methionine. In addition to a protein that co-migrated with pure rat AdoMet decarboxylase (Mr approximately 32,000), the antibody precipitated a somewhat larger labeled protein (Mr approximately 37,000) that most likely represents the proenzyme form. Treatment of the L1210 cells with AdoMetSaoe also gave rise to a marked stabilization of the decarboxylase which contributed to the increase in its cellular protein content. Addition of spermidine did not significantly affect this stabilization, whereas the addition of spermine reduced the half-life of the enzyme to almost that of the control cells.  相似文献   

13.
Treatment of the first leaves of barley (Hordeum vulgare L. cv. Golden Promise) seedlings with methyl jasmonate (MJ) led to small, but significant increases in levels of free putrescine and spermine 1 d later and to significant increases in levels of free putrescine, spermidine and spermine by 4 d following treatment. MJ-treated first leaves also exhibited significant increases in the amounts of soluble conjugates of putrescine and spermidine 1, 2 and 4 d after treatment. In second leaves of plants where the first leaves had been treated with MJ, no significant changes in levels of free polyamines were observed, but significant increases in levels of soluble conjugates of putrescine and spermidine were detected. These changes were accompanied by increased activities of soluble ornithine decarboxylase (ODC), soluble and particulate arginine decarboxylase (ADC), and S-adenosylmethionine decarboxylase (AdoMetDC), in first and second leaves following treatment of the first leaves with MJ. Activities of soluble and particulate diamine oxidase (DAO) were also higher in first and second leaves following treatment of the first leaves with MJ. Treatment of the first leaves with MJ led to a significant reduction in powdery mildew (Blumeria graminis f. sp. hordei) infection on the second leaves and also resulted in significant increases in activities of the plant defence-related enzymes, phenylalanine ammonia lyase (PAL) and peroxidase.  相似文献   

14.
15.
The expression of mammalian AdoMet decarboxylase, a key enzyme in polyamine synthesis, was shown to be regulated by polyamines at two different levels. Polyamine depletion of Ehrlich ascites tumor cells induced a marked compensatory increase in the synthesis of the enzyme, as measured by 35S-methionine pulse-labeling and immuno-precipitation. This increase in synthesis rate was counteracted by provision of spermidine, which reduced the synthesis of AdoMet decarboxylase to an undetectable level. Northern analysis revealed a nearly 2-fold increase in the amount of AdoMet decarboxylase mRNA when the putrescine and spermidine content was depleted. This increase in AdoMet decarboxylase mRNA content cannot account for the more than 5-fold increase in synthesis rate, indicating a feedback regulation also at the level of mRNA translation.  相似文献   

16.
The polyamines are cell constituents essential for growth and differentiation. S-Adenosylmethionine decarboxylase (AdoMetDC) catalyzes a key step in the polyamine biosynthetic pathway. Methylglyoxal bis(guanylhydrazone) (MGBG) is an anti-leukemic agent with a strong inhibitory effect against AdoMetDC. However, the lack of specificity limits the usefulness of MGBG. In the present report we have used an analog of MGBG, diethylglyoxal bis(guanylhydrazone) (DEGBG), with a much greater specificity and potency against AdoMetDC, to investigate the effects of AdoMetDC inhibition on cell proliferation and polyamine metabolism in mouse L1210 leukemia cells. DEGBG was shown to effectively inhibit AdoMetDC activity in exponentially growing L1210 cells. The inhibition of AdoMetDC was reflected in a marked decrease in the cellular concentrations of spermidine and spermine. The concentration of putrescine, on the other hand, was greatly increased. Treatment with DEGBG resulted in a compensatory increase in the synthesis of AdoMetDC demonstrating an efficient feedback control. Cells seeded in the presece of DEGBG ceased to grow after a lag period of 1–2 days, indicating that the cells contained an excess of polyamines which were sufficient for one or two cell cycles in the absence of polyamine synthesis. The present results indicate that analogs of MGBG, having a greater specificity against AdoMetDC, might be valuable for studies concerning polyamines and cell proliferation.  相似文献   

17.
18.
Ornithine decarboxylase (ODC) is feedback regulated by polyamines. ODC antizyme mediates this process by forming a complex with ODC and enhancing its degradation. It has been reported that polyamines induce ODC antizyme and inhibit ODC activity. Since exogenous polyamines can be converted to each other after they are taken up into cells, we used an inhibitor of S-adenosylmethionine decarboxylase, diethylglyoxal bis(guanylhydrazone) (DEGBG), to block the synthesis of spermidine and spermine from putrescine and investigated the specific roles of individual polyamines in the regulation of ODC in intestinal epithelial crypt (IEC-6) cells. We found that putrescine, spermidine, and spermine inhibited ODC activity stimulated by serum to 85, 46, and 0% of control, respectively, in the presence of DEGBG. ODC activity increased in DEGBG-treated cells, despite high intracellular putrescine levels. Although exogenous spermidine and spermine reduced ODC activity of DEGBG-treated cells close to control levels, spermine was more effective than spermidine. Exogenous putrescine was much less effective in inducing antizyme than spermidine or spermine. High putrescine levels in DEGBG-treated cells did not induce ODC antizyme when intracellular spermidine and spermine levels were low. The decay of ODC activity and reduction of ODC protein levels were not accompanied by induction of antizyme in the presence of DEGBG. Our results indicate that spermine is the most, and putrescine the least, effective polyamine in regulating ODC activity, and upregulation of antizyme is not required for the degradation of ODC protein.  相似文献   

19.
Summary The effectiveness of inhibitors of polyamine biosynthesis in controlling plant pathogenic fungi is well established. The spermidine synthase inhibitor cyclohexylamine (CHA) and the spermidine analogue norspermidine were evaluated againstin vitro growth of the oat stripe pathogenPyrenophora avenae. Mycelial growth was reduced by 55% upon exposure to 2.0mM CHA while the same concentration of norspermidine reduced growth by 63%. Neither inhibitor had any effect on ODC or AdoMetDC activities, nor the flux of label from ornithine through to the polyamines. Levels of free polyamines in fungal tissue exposed to 0.01 mM norspermidine were unaltered, although 1.0mM CHA did produce a 75% increase in fungal putrescine content. These data suggest that CHA and norspermidine do not reduce fungal growth as a result of a perturbation in polyamine biosynthesis.Abbreviations ODC ornithine decarboxylase - ADC arginine decarboxylase - AdoMetDC S-adenosylmethionine decarboxylase - DFMO adifluoromethylornithine - CHA cyclohexylamine  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号