首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A method for the direct determination of ascorbic acid (AA) in individual rat hepatocyte based on capillary electrophoresis (CE) coupled with electrochemical detection (ECD) using a new kind of homemade carbon fiber micro-disk bundle electrode has been described. Individual rat hepatocytes were injected into a fused-silica capillary with an inner diameter of 25 microm, and lysed by 0.1% sodium dodecylsulfate (SDS) as cell lysis solution. The following conditions were suitable for the determination of AA: running buffer, 1.83 x 10(-2) mol/l Na2HPO4-1.70 x 10(-3) mol/l NaH2PO4 (pH 7.8); separation voltage, 20.0 kV; detection potential, 0.80 V (vs. saturated calomel electrode (SCE)). The concentration limit of detection (LOD) of the method was 1.7 x 10(-6) mol/l at a signal-to-noise (S/N) ratio of 3, and the mass LOD was 3.0 fmol. The linear dynamic range was from 5.0 x 10(-6) to 5.0 x 10(-4) mol/l with a correlation coefficient of 0.9962 for the injection voltage of 5.0 kV and injection time of 10s. The relative standard deviation (R.S.D.) was 0.85% for the migration time and 1.8% for the peak current. This method was successfully applied to AA determination in rat hepatocyte. The recovery was between 91% and 97%, and the amount of AA in single rat hepatocyte ranged from 28 to 63 fmol.  相似文献   

2.
The promising advantages of Prussian Blue (PB) as catalyst and of the thick film screen printing technology have been combined to assemble sensors with improved characteristics for the amperometric determination of H(2)O(2). PB-modified screen printed electrodes were applied to detect H(2)O(2) at an applied potential of -0.05 V versus the internal screen printed Ag pseudoreference electrode, showing a detection limit of 10(-7) mol l(-1), a linearity range from 10(-7) to 5x10(-5) mol l(-1), a sensitivity of 234 microA mmol l(-1) cm(-2), and a high selectivity. Improved stability at alkaline pH values was also observed, which made possible their use with enzymes having an optimum basic pH. Then, the immobilisation of a single enzyme (glucose oxidase (GOD) or choline oxidase (ChOX)) or of two enzymes, acetylcholinesterase (AchE) coimmobilised with ChOX, has been performed on the surface of PB modified screen-printed electrodes (SPEs) using glutaraldehyde and Nafion. ChOX has been selected as an example of enzyme working at alkaline pH. The choline biosensors showed a detection limit of 5x10(-7) mol l(-1), a wide linearity range (5x10(-7)-10(-4) mol l(-1)), a high selectivity and a remarkable long term stability of 9 months at 4 degrees C, and at least 4 weeks at room temperature. Similar analytical characteristics and stability were observed with the acetylcholine biosensors.  相似文献   

3.
A simple method for determination of perphenazine by capillary zone electrophoresis with amperometric detection is described. The optimum conditions of separation and detection are 1.50 x 10(-3) mol/l Na(2)B(4)O(7)-1.0 x 10(-3) mol/l NaOH (pH 9.9) for the buffer solution, 18 kV for the separation voltage, 5 kV and 5 s for the injection voltage and the injection time, and 0.80 V versus saturated calomel electrode for the detection potential, respectively. The limit of detection is 5.0 x 10(-8) mol/l or 44 amol (S/N=3). The linear range of the calibration curve is 1.00 x 10(-7) to 1.00 x 10(-4) mol/l. The relative standard deviation is 1.5% for the migration time and 2.9% for the electrophoretic current at peak maximum. The method is applied to the determination of perphenazine in human urine.  相似文献   

4.
Capillary zone electrophoresis was employed for the determination of lactate using end-column amperometric detection at a carbon fiber bundle microdisk electrode. The optimum conditions of separation and detection are 3.6 x 10(-3) mol/l Na(2)HPO(4)-1.4 x 10(-3) mol/l NaH(2)PO (pH 7.2) for the buffer solution, 18 kV for the separation voltage and 1.60 V versus the saturated calomel electrode for the detection potential. The limit of detection is 7.6 x 10(-7) mol/l or 1.7 fmol (S/N=3) and the linear range is 1.7 x 10(-6)-8.2 x 10(-4) mol/l for the injection voltage of 6 kV and injection time of 5 s. The RSD is 1.8% for the migration time and 3.3% for the electrophoretic peak current. The method was applied to the determination of lactate in human saliva. The recovery of the method is between 95 and 109%.  相似文献   

5.
Capillary electrophoresis (CE) was employed to analyze lactate dehydrogenase (LDH) in human erythrocytes using an amperometric detector with a carbon fiber micro-disk bundle electrode. LDH activity was measured by determining the amount of NADH generated by LDH through a enzyme-catalyzed reaction between NAD(+) and lithium lactate. The factors influencing the enzyme-catalyzed reaction, separation and detection were examined and optimized. The following conditions were suitable for the determination of LDH: running buffer, 5.0 x 10(-2)mol/l Tris-HCl (pH 7.5); separation voltage, 20.0 kV; detection potential, 1.00 V (versus saturated calomel electrode (SCE)). The conditions of enzyme-catalyzed reaction were: reaction buffer, 5.0 x 10(-2)mol/l Tris-HCl (pH 9.3); substrates, 5.0 x 10(-2)mol/l lithium lactate and 5.0 x 10(-3)mol/l NAD(+); reaction time, 10 min. The concentration limit of detection (LOD) of the method was 0.017 U/ml at a signal-to-noise (S/N) ratio of 3, which corresponded to 1.10 x 10(-10)mol/l, and the mass LOD was 2 x 10(-20)mol. The linear dynamic range was 0.039-4.65 U/ml for the injection voltage of 5.0 kV and injection time of 10s. The relative standard deviation (R.S.D.) was 0.85% for the migration time and 1.8% for the electrophoretic peak area. The method was applied to determine LDH in human erythrocytes. The recovery of the method was between 98 and 101%.  相似文献   

6.
Capillary zone electrophoresis was employed for the determination of midecamycin using an end-column amperometric detection with a carbon fiber micro-disk bundle electrode at a constant potential of +1.15 V vs. saturated calomel electrode. The optimum conditions of separation and detection are 1.00x10(-3) mol l(-1) Na(2)HPO(4)-3.49x10(-4) mol l(-1) NaOH (pH 11.4) for the buffer solution, 20 kV for the separation voltage, 5 kV and 5 s for the injection voltage and the injection time, respectively. The limit of detection is 5.0x10(-7) mol l(-1) or 0.41 fmol (S/N=3). The linear range of the calibration curve is 1.00x10(-6)-1.00x10(-3) mol l(-1). The relative standard deviation is 1.4% for the migration time and 4.9% for the electrophoretic peak current. The method could be applied to the determination of midecamycin in human urine. In this case, a separation voltage of 14 kV was used.  相似文献   

7.
Concentrations of inorganic anions, both as individual species and biotransformation products, in physiological fluids are of strong concern in clinical studies. To date, analytical methodologies have either required different analytical procedures to determine these analytes in plasma and urine, or extensive sample preparation, or unconventional and often expensive detection schemes, or both. A simple and sensitive capillary electrophoresis (CE) method with direct UV detection was developed for the simultaneous determination of iodide, bromide and nitrate in human plasma and urine, with a special focus on reliable quantification of the trace serum iodide. With the latter objective, the method incorporates a transient isotachophoresis (tITP) procedure enabling an efficient on-line preconcentration of iodide (limit of detection, 1.4 microg l(-1)) as well as other moderately mobile analytes that fall into the tITP range. The analyses of both types of biofluids were performed using an acidic electrolyte system composed of 0.25 mol l(-1) sodium chloride and 7.5 mmol l(-1) cetyltrimethylammonium chloride at pH 2.2 and 0.5 mol l(-1) 2-(N-morpholino)ethanesulfonate (pH 6.0) as terminating electrolyte. Relative standard deviations (R.S.D.) below 3.0% and 9.2% were obtained for within-day and between-day precision, respectively. Resolution and quantification of oxalic acid was also feasible under optimized tITP-CE conditions. Sample preparation required only ultrafiltration (serum) and dilution (urine). A number of plasma and urine samples were evaluated with this assay and the iodide, bromide and nitrate concentrations were in the expected clinical concentration ranges.  相似文献   

8.
The fabrication and application of a novel electrochemical detection (ED) method with the functionalized multi-wall carbon nanotubes (MWNTs) chemically modified electrode (CME) for liquid chromatography (LC) were described. The electrochemical behaviors of dopamine (DA) and other monoamine neurotransmitters at the CME were investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The results indicated that the CME exhibited efficient electrocatalytic effects on the current responses of monoamine neurotransmitters and their metabolites with high sensitivity, high stability and long-life activity. In LC-ED, DA, norepinephrine (NE), 3-methoxy-4-hydroxyphenylglycol (MHPG), 3,4-dihydroxyphenylacetic acid (DOPAC), 5-hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA) had good and stable current responses at the CME. The linear ranges of seven analytes were over four orders of magnitude and the detection limits were 2.5 x 10(-10) mol/l for DA, 2.5 x 10(-10) mol/l for NE, 5.0 x 10(-10) mol/l for MHPG, 3.0 x 10(-10) mol/l for DOPAC, 3.5 x 10(-10) mol/l for 5-HT, 6.0 x 10(-10) mol/l for 5-HIAA, 1.25 x 10(-9) mol/l for HVA. The application of this method coupled with microdialysis sampling for the determination of monoamine neurotransmitters and their metabolites in Parkinsonian patients' cerebrospinal fluid was satisfactory.  相似文献   

9.
A biosensor based on the enzyme-catalysed dissolution of biodegradable polymer films has been developed. Three polymer-enzyme systems were investigated for use in the sensor: a poly(ester amide), which is degraded by the proteolytic enzyme alpha-chymotrypsin; a dextran hydrogel, which is degraded by dextranase; and poly(trimethylene) succinate, which is degraded by a lipase. Dissolution of the polymer films was monitored by Surface Plasmon Resonance (SPR). The rate of degradation was directly related to enzyme concentration for each polymer/enzyme couple. The poly(ester amide)/alpha-chymotrypsin couple proved to be the most sensitive over a concentration range from 4 x 10(-11) to 4 x 10(-7) mol l(-1) of enzyme. The rate of degradation was shown to be independent of the thickness of the poly(ester amide) films. The dextran hydrogel/dextranase couple was less sensitive than the poly(ester amide)/alpha-chymotrypsin couple but showed greater degradation rates at low enzyme concentrations. Enzyme concentrations as low as 2 x 10(-11) mol l(-1) were detected in less than 20 min. Potential fields of application of such a sensor system are the detection of enzyme concentrations and the construction of disposable enzyme based immunosensors, which employ the polymer-degrading enzyme as an enzyme label.  相似文献   

10.
The following general characteristics of 21-hydroxylase activity were determined using pooled microsomes obtained from three glands. Enzyme activity exhibited a broad pH dependence, being optimal between pH 7.4-pH 7.8, and was maximal with NADPH in the range 2 to 4.75 X 10(-4)mol/l. No microsomal 21-hydroxylase activity was detected in the absence of NADPH or substrate and when heat denatured microsomes were employed. Enzyme activity was depressed by greater than 75% in the presence of 100% oxygen or nitrogen. In a second set of experiments, microsomal fractions were prepared individually from 7 glands. In the presence of 17 alpha-hydroxy progesterone (2.0 X 10(-7) and 2.0 X 10(-6)mol/l) product formation was linear with time for up to 90 s when the microsomal protein concentration was 5, 10 and 20 micrograms/ml. Between 5 and 30% of the substrate was converted during the first 60 s. In 5/7 of the glands the addition of the autologous cytosol (20 micrograms protein/ml) was without effect, and enzyme activity (using a 60 s reaction and either 2.0 X 10(-7) or 2 X 10(-6)mol/l 17 alpha-hydroxy progesterone was directly proportional to the microsomal protein concentration (range 0-20 micrograms/ml). With the other 2 adrenals 21-hydroxylation was not proportional to the same range of microsomal protein concentrations, although it became so upon the addition of cytosol, which significantly augmented activity. There was considerable variation in enzyme activity between glands from different individuals (Vmax ranging from 2.6 to 16.6 X 10(-9) mol/min/mg protein) and in the apparent Km's (from 0.22 to 1.1 X 10(-6)mol/l). In the two preparations sensitive to cytosol, the Vmax increased 2-fold, and the Km was 3 times lower. Cytosol was without effect upon the kinetic characteristics of the other 5 microsomal preparations. Ascorbic acid (1 X 10(-3) mol/l) depressed enzyme activity by 25-43% whereas oxidised and reduced glutathione (1 X 10(-3) mol/l) showed a slight and variable effect upon 21-hydroxylation.  相似文献   

11.
A novel tyrosinase biosensor based on Fe(3)O(4) nanoparticles-chitosan nanocomposite has been developed for the detection of phenolic compounds. The large surface area of Fe(3)O(4) nanoparticles and the porous morphology of chitosan led to a high loading of enzyme and the entrapped enzyme could retain its bioactivity. The tyrosinase-Fe(3)O(4) nanoparticle-chitosan bionanocomposite film was characterized with atomic force microscopy and AC impedance spectra. The prepared biosensor was used to determine phenolic compounds by amperometric detection of the biocatalytically liberated quinone at -0.2V vs. saturated calomel electrode (SCE). The different parameters, including working potential, pH of supporting electrolyte and temperature that governs the analytical performance of the biosensor have been studied in detail and optimized. The biosensor was applied to detect catechol with a linear range of 8.3 x 10(-8) to 7.0 x 10(-5)mol L(-1), and the detection limit of 2.5 x 10(-8)mol L(-1). The tyrosinase biosensor exhibits good repeatability and stability. Such new tyrosinase biosensor shows great promise for rapid, simple, and cost-effective analysis of phenolic contaminants in environmental samples. The proposed strategy can be extended for the development of other enzyme-based biosensors.  相似文献   

12.
Electropolymerization of Meldola Blue was carried out by cyclic voltammetry in the range from -0.6 to +1.4 V vs. Ag/AgCl, thus defining a new immobilization procedure of the phenoxazine mediator on screen-printed graphite electrodes. Evidence of polymer formation was provided by electrochemical and Fourier transform infrared spectroscopy (FTIR) data. Following polymerization, Meldola Blue preserved the ability to catalyze NADH oxidation allowing to achieve a detection limit of 2.5 x 10(-6) mol l(-1) and a sensitivity of 3713 microA l mol(-1) in amperometric determinations at 0 V vs. Ag/AgCl. In addition, the polymeric mediator was found to facilitate the reduction of hydrogen peroxide in the absence of peroxidase. Typical calibration at -0.1 V vs. Ag/AgCl shows a detection limit of 8.5 x 10(-5) mol l(-1), a sensitivity of 494 microA l mol(-1) and a linear range from 2.5 x 10(-4) to 5 x 10(-3) mol l(-1) hydrogen peroxide.  相似文献   

13.
A stable electroactive thin film of poly(caffeic acid) has been deposited on the surface of a glassy carbon electrode by potentiostatic technique in an aqueous solution containing caffeic acid. Poly(caffeic acid) was used as a modified electrode for the detection of ascorbic acid (AA), epinephrine (EP), uric acid (UA) and their mixture by cyclic voltammetry. This modified electrode exhibits potent and persistent electron-mediating behavior followed by well-separated oxidation peaks towards AA, EP and UA with activation overpotential. For the ternary mixture containing AA, EP and UA, the three compounds can well separate from each other at the scan rate of 20 mVs(-1) with a potential difference of 156, 132 and 288 mV between AA and EP, EP and UA and AA and UA, respectively, which was large enough to determine AA, EP and UA individually and simultaneously. The catalytic peak current obtained, was linearly dependent on the AA, EP and UA concentrations in the range of 2.0 x 10(-5) to 1.0 x 10(-3) mol l(-1), 2.0 x 10(-6) to 8.0 x 10(-5) mol l(-1) and 5.0 x 10(-6) to 3.0 x 10(-4) mol l(-1), and the detection limits for AA, EP and UA were 7.0 x 10(-6), 2.0 x 10(-7) and 6.0 x 10(-7) mol l(-1), respectively. The modified electrode shows good sensitivity, selectivity and stability, and has been applied to the determination of EP in practical injection samples and that of EP, UA and AA simultaneously with satisfactory results.  相似文献   

14.
We report a new method for studying the activity of hydrolytic enzymes. Fluorescence correlation spectroscopy was used to observe online the hydrolyzation of a rhodamine B-labeled substrate by ribonuclease T1. A gapped heteroduplex substrate - a hybrid of a ribooligonucleotide and two smaller complementary deoxyribooligonucleotides - was immobilized via biotin to a streptavidin-coated surface of a coverslip. The reported method opens the possibility to study the cleavage of small substrates differing only slightly in molecular weight from the enzyme reaction product. The use of fluorescence correlation spectroscopy allows the detection of very low enzyme concentrations (down to 10(-21) mol 0.05 fM of RNase T1, corresponding to about 600 RNase T1 molecules in 0.02 ml).  相似文献   

15.
A high-performance liquid chromatographic method with indirect fluorescence detection has been developed for quantification of dipicolinic acid, a major constituent of bacterial endospores. After separation on a reversed-phase column, a post-column reagent of sodium acetate at 1 mol l(-1) with 50 micromol l(-1) terbium chloride was added for complexation of dipicolinic acid. Terbium monodipicolinate complexes formed were quantified by measuring the fluorescence emission maximum at 548 nm after excitation with UV light at 270 nm wavelength. Parameters of post-column complexation were optimized to achieve a detection limit of 0.5 nmol DPA l(-1), corresponding to about 10(3) Desulfosporosinus orientis endospores per ml. The method was applied to the analysis of spore contamination in tuna and for estimating the endospore numbers in marine sediments.  相似文献   

16.
The authors described a micromethod for measuring dipeptidyl peptidase IV activity in human serum with glycyl-L-proline-1-naphthylamide as substrate. The method requires less than 20 microliters of serum. The pH optimum for cleaving glycyl-L-proline-1-naphthylamine by the enzyme in human serum in Tris-HCl buffer was 8.0 and Km value was established as 7.2 X 10(-4) mol/l. The advantage of this substrate is the absence of spontaneous hydrolysis during the assay of enzyme activity in contrast to glycyl-L-proline-4-nitroanilide. The Km values of the latter substrates and glycyl-L-proline-2-naphthylamide in the same buffer were 1.0 X 10(-4) mol/l and 2.4 X 10(-4) mol/l, respectively. Glycyl-D-proline-4-nitroanilide was not hydrolyzed by the dipeptidyl peptidase IV present in human serum. The activities of dipeptidyl peptidase IV in the sera from 30 healthy human subjects with glycyl-L-proline-1-naphthylamide as substrate were 176.1 +/- 32.8 nkat/l (mean +/- standard deviation; range 100.2-264.1 nkat/l of serum). In this group men had significantly (P less than 0.01) higher activity of the enzyme than women. The cleaving of glycyl-L-proline-1-naphthylamide and glycyl-L-proline-4-nitro anilide by dipeptidyl peptidase IV in human sera was closely correlated (r = 0.86). During normal pregnancy the activity of dipeptidyl peptidase IV in human serum decreases markedly in the first half of pregnancy. After delivery, the serum enzyme activity returns progressively to initial levels.  相似文献   

17.
The highest productivity (20 IU l(-1) h(-1)) of beta-glucosidase by a mutant of Cellulomonas biazotea was 2.5-fold more than that of the parent organism. The enzyme had a lower activation energy (57 kJ mol(-1)) than the native enzyme (68 kJ mol(-1)). The enzyme from the mutant had enthalpy and entropy values for irreversible intactivation of 95.6 kJ mol(-1) and 60 J.mol(-1) K(-1) compared with 108 kJ mol(-1) and 86 J mol(-1) K(-1) for the native enzyme suggesting that the mutation had stabilized the enzyme.  相似文献   

18.
Calf intestinal alkaline phosphatase is inhibited by 8-anilinonaphthalene-1-sulphonate (ANS). The inhibition is uncompetitive but non-linear. Hill plots of the inhibition data have slopes of 1.4-1.8 suggestive of positive cooperativity. Fluorescence titration revealed that 2 molecules of ANS bind per molecule of enzyme with no evidence of cooperativity. The Kd for ANS obtained by fluorescence was 1.8 X 10(-6) mol/l but the approximate Ki for inhibition was 1 X 10(-3) mol/l. Thus, the fluorescence and kinetic experiments appear to monitor different events.  相似文献   

19.
A new type of sol-gel/organic hybrid composite material based on the cross-linking of natural polymer chitosan with (3-aoryloxypropyl) dimethoxymethylsilane was developed for the fabrication of an amperometric H(2)O(2) biosensor. The composite film was used to immobilize horseradish peroxidase (HRP) on a gold disk electrode. The properties of sol-gel/chitosan and sol-gel/chitosan-HRP films have been carefully characterized by atomic force microscopy and Fourier transform infrared. By using fluorescent label, a protein density on sol-gel/chitosan has been calculated to be 3.14 x 10(12) moleculescm(-2). With the aid of catechol mediator, the biosensor had a fast response of less than 2 s with linear range of 5.0 x 10(-9)-1.0 x 10(-7) mol l(-1) and a detection limit of 2 x 10(-9) mol l(-1). Its current response shows a typical Michaelis-Menten mechanism. The apparent Michaelis-Menten constant K(M)(app) is found to be 1.30 micromol l(-1). The activation energy for enzymatic reaction is calculated to be 8.22 kJ mol(-1). The biosensor retained approximately 75% of its original activity after about 60 days of storage in a phosphate buffer at 4 degrees C.  相似文献   

20.
A method of indirectly measuring pyruvic acid (PA) by capillary electrophoresis with amperometric detection is proposed for the first time. It is based on the oximation reaction between PA and hydroxylamine (NH(2)OH), and the quantification of PA was performed by direct and sensitive amperometric detection of excessive NH(2)OH after the oximation reaction. This method displayed a good sensitivity, and the detection limits of NH(2)OH and PA are 1.76 x 10(-7) and 3.88 x 10(-7)mol/L, respectively at S/N=3. The linear relationship between the peak current and PA concentration is exhibited over the range from 4 x 10(-6) to 1 x 10(-4)mol/L. This method has been applied to determine PA in rat plasma with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号