首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Virus mutants (NDV(pi)) recovered from L cells persistently infected with Newcastle disease virus (NDV, Herts strain) are temperature-sensitive (ts) at 43 C, although the wild-type virus (NDV(o)) which initiated the persistent infection replicates normally at that temperature. To study the relationship between the ts marker of NDV(pi) and the other properties which distinguish this virus from NDV(o), NDV(pi) ts(+) revertants were selected at the nonpermissive temperature and NDV(o) ts mutants were generated by treating NDV(o) with nitrous acid. Spontaneously-occurring ts mutants in the Herts NDV population were also isolated. The different virus populations were characterized with regard to plaque size, virulence for eggs, and thermal stability of infectivity, hemagglutinin, and neuraminidase. The NDV(pi) ts(+) revertants, although no longer temperature-sensitive, retained NDV(pi) properties, whereas both spontaneously-occurring and mutagen-induced ts mutants remained wild-type in their other properties. These findings showed that the properties which characterized NDV(pi) were independent of the ts marker. However, the ts marker and the other markers of NDV(pi) were coselected during the persistent infection, and the combination of those markers appeared to be important in the outcome of NDV infection of L cells. NDV(pi) replicated productively in L cells, whereas NDV(o), the NDV(pi) ts(+) revertants, and the spontaneously-occurring ts mutants all yielded covert infections in L cells. The role of the selection of ts mutants in persistent infection was confirmed as follows: L cells were persistently infected with NDV(pi) ts(+) revertants and NDV(o) ts mutants. Virus recovered from the persistently infected cultures after eight cell passages was always temperature-sensitive and of smaller plaque size than the parental virus in chicken embryo cell cultures. Similar results were obtained with virus recovered from L-cell cultures persistently infected with two other velogenic strains of NDV, the Texas-GB and Kansas-Man strains. These results strongly suggest that selection of ts mutants during the persistent infection was not random and played a role in establishment or maintenance of the persistent infection, or both.  相似文献   

2.
Twelve G protein-coupled receptors, including chemokine receptors, act as coreceptors and determinants for the cell tropisms of human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus (SIV). We isolated HIV-1 variants from T-cell-line (T)- and macrophage (M)-tropic (i.e., dualtropic) (R5-R3-X4) HIV-1 strains and also produced six HIV-1 mutants carrying single-point amino acid substitutions at the tip of the V3 region of the Env protein of HIV-1. These variants and three mutants infected brain-derived CD4-positive cells that are resistant to M-, T-, or dualtropic (R5, X4, or R5-X4) HIV-1 strains. However, a factor that determines this cell tropism has not been identified. This study shows that primary brain-derived fibroblast-like cell strains, BT-3 and BT-20/N, as well as a CD4-transduced glioma cell line, U87/CD4, which were susceptible to these HIV-1 variants and mutants and the HIV-2ROD strain, expressed mRNA of an orphan G protein-coupled receptor (GPCR), GPR1. When a CD4-positive cell line which was strictly resistant to infection with diverse HIV-1 and HIV-2 strains was transduced with GPR1, the cell line became susceptible to these HIV-1 variants and mutants and to an HIV-2 strain but not to T- or dualtropic HIV-1 strains, and numerous syncytia formed after infection. These results indicate that GPR1 functions as a coreceptor for the HIV-1 variants and mutants and for the HIV-2ROD strain in vitro.  相似文献   

3.
The majority of humans infected with Helicobacter pylori maintain a lifelong infection with strains bearing the cag pathogenicity island (PAI). H. pylori inhibits T cell responses and evades immunity so the mechanism by which infection impairs responsiveness was investigated. H. pylori caused apoptotic T cell death, whereas Campylobacter jejuni did not. The induction of apoptosis by H. pylori was blocked by an anti-Fas Ab (ZB4) or a caspase 8 inhibitor. In addition, a T cell line with the Fas rendered nonfunctional by a frame shift mutation was resistant to H. pylori-induced death. H. pylori strains bearing the cag PAI preferentially induced the expression of Fas ligand (FasL) on T cells and T cell death, whereas isogenic mutants lacking these genes did not. Inhibiting protein synthesis blocked FasL expression and apoptosis of T cells. Preventing the cleavage of FasL with a metalloproteinase inhibitor increased H. pylori-mediated killing. Thus, H. pylori induced apoptosis in Fas-bearing T cells through the induction of FasL expression. Moreover, this effect was linked to bacterial products encoded by the cag PAI, suggesting that persistent infection with this strain may be favored through the negative selection of T cells encountering specific H. pylori Ags.  相似文献   

4.
Summary We have isolated mutants of Escherichia coli B (called TabR) that restrict the growth of bacteriophage T4 rII mutants at high temperature. TabR strains lysed very rapidly after infection with rII mutants, and no progeny phage were produced. T4+-infected TabR cells also lysed quickly, but the cells remained intact long enough to give a small burst. We have selected pseudorevertants of rII deletion mutants that grow on TabR at high temperature; tk (thymidine kinase) is a component of one class of these pseudorevertants.T4 strains harboring mutations in genes 12, 16, 25, 34, 36, 45 and 63 were also specifically restricted on TabR strains at high temperature. Bacteriophages T2, T4, T5, T6, and T7 grew normally on TabR, while , 80, and P1 failed to grow at any temperature. The most restrictive TabR strains were auxotrophic for methionine at high temperature, and most spontaneous Met+ revertants had also lost the ability to restrict rII mutants, suggesting that the TabR phenotype and methionine auxotrophy result from the same mutation.Although the mechanism by which TabR strains exert their restriction has not been determined, one model is described. The potential uses of these and similar strains is discussed.  相似文献   

5.
Dendritic cells (DCs), which are critical components of adaptive immunity, are highly susceptible to infection with the intracellular bacteria Brucella. Infection with living Brucella prevents infected human DCs from engaging in maturation processes, thus impairing their capacity to present antigens to na?ve T cells and to secrete IL-12. Recently, we have established that several attenuated mutants of Brucella (rough, omp25, bvrR) are unable to control DCs maturation and thus effectively stimulate na?ve T cells, which could be the origin of the protective immunity elicited by these mutants in vivo. In this study, we investigate the interactions of a VirB-defective Brucella mutant with human DCs to determine whether its attenuation could be attributed to the induction of an adaptive immune response. We show here that in contrast to previously studied strains and similar to wild-type strains, this virB mutant was unable to trigger significant DC maturation. Together with recently published data describing infection with virB mutants in vivo, these results suggest that Brucella T4SS VirB is not involved in the control of DC maturation and does not interfere with the establishment of a T-helper type 1 adaptive immune response.  相似文献   

6.
The shutoff of host DNA synthesis is delayed until about 8 to 10 min after infection when Escherichia coli B/5 cells were infected with bacteriophage T4 mutants deficient in the ability to induce nuclear disruption (ndd mutants). The host DNA synthesized after infection with ndd mutants is stable in the absence of T4 endonucleases II and IV, but is unstable in the presence of these nucleases. Host protein synthesis, as indicated by the inducibility of beta-galactosidase and sodium dodecyl sulfate-polyacrylamide gel patterns of isoptopically labeled proteins synthesize after infection, is shut off normally in ndd-infected cells, even in the absence of host DNA degradation. The Cal Tech wild-type strain of E. coli CT447 was found to restrict growth of the ndd mutants. Since T4D+ also has a very low efficiency of plating on CT447, we have isolated a nitrosoguanidine-induced derivative of CT447 which yields a high T4D+ efficiency of plating while still restricting the ndd mutants. Using this derivative, CT447 T4 plq+ (for T4 plaque+), we have shown that hos DNA degradation and shutoff of host DNA synthesis occur after infection with either ndd98 X 5 (shutoff delayed) or T4D+ (shutoff normal) with approximately the same kinetics as in E. coli strain B/5. Nuclear disruption occurs after infection of CT447 with ndd+ phage, but not after infection with ndd- phage. The rate of DNA synthesis after infection of CT447 T4 plq+ with ndd98 X 5 is about 75% of the rate observed after infection with T4D+ while the burst size of ndd98 X 5 is only 3.5% of that of T4D+. The results of gene dosage experiments using the ndd restrictive host C5447 suggest that the ndd gene product is required in stoichiometric amounts. The observation by thin-section electron microscopy of two distinct pools of DNA, one apparently phage DNA and the other host DNA, in cells infected with nuclear disruption may be a compartmentalization mechanism which separates the pathways of host DNA degradation and phage DNA biosynthesis.  相似文献   

7.
HIV-1 entry requires the cell surface expression of CD4 and either the CCR5 or CXCR4 coreceptors on host cells. Individuals homozygous for the ccr5Δ32 polymorphism do not express CCR5 and are protected from infection by CCR5-tropic (R5) virus strains. As an approach to inactivating CCR5, we introduced CCR5-specific zinc-finger nucleases into human CD4+ T cells prior to adoptive transfer, but the need to protect cells from virus strains that use CXCR4 (X4) in place of or in addition to CCR5 (R5X4) remains. Here we describe engineering a pair of zinc finger nucleases that, when introduced into human T cells, efficiently disrupt cxcr4 by cleavage and error-prone non-homologous DNA end-joining. The resulting cells proliferated normally and were resistant to infection by X4-tropic HIV-1 strains. CXCR4 could also be inactivated in ccr5Δ32 CD4+ T cells, and we show that such cells were resistant to all strains of HIV-1 tested. Loss of CXCR4 also provided protection from X4 HIV-1 in a humanized mouse model, though this protection was lost over time due to the emergence of R5-tropic viral mutants. These data suggest that CXCR4-specific ZFNs may prove useful in establishing resistance to CXCR4-tropic HIV for autologous transplant in HIV-infected individuals.  相似文献   

8.
The outcome of Salmonella infection in the mammalian host favors whoever succeeds best in disturbing the equilibrium between coordinate expression of bacterial (virulence) genes and host defense mechanisms. Intracellular persistence in host cells is critical for pathogenesis and disease, because Salmonella typhimurium strains defective in this property are avirulent. We examined whether similar host defense mechanisms are required for growth control of two S. typhimurium mutant strains. Salmonella pathogenicity island 2 (SPI2) and virulence plasmid-cured Salmonella mutants display similar virulence phenotypes in immunocompetent mice, yet their gene loci participate in independent virulence strategies. We determined the role of TNF-alpha and IFN-gamma as well as different T cell populations in infection with these Salmonella strains. After systemic infection, IFN-gamma was essential for growth restriction of plasmid-cured S. typhimurium, while SPI2 mutant infections were controlled in the absence of IFN-gamma. TNFRp55-deficiency restored systemic virulence to both Salmonella mutants. After oral inoculation, control of plasmid-cured bacteria substantially relied on both IFN-gamma and TNF-alpha signaling while control of SPI2 mutants did not. However, for both mutants, ultimate clearance of bacteria from infected mice depended on alphabeta T cells.  相似文献   

9.
T and NK cells play a key role in resistance to Trypanosoma cruzi infections, mainly through IFN-gamma production. The expression of T and NK cells surface markers was studied in NWNA spleen cells of resistant C3H and susceptible BALB/c mice that release IFN-gamma in the early and late acute infection, respectively. In the progressively enlarged spleens, we found: (a) an increased percentage and number of NK blast cells as early as at 2 days post-infection (pi), (b) an enrichment of T and NK cells, in both the total and blast populations, during the late acute phase. At 17 days pi, there was also an accumulation of TCR- alphabeta+DX5+, NKT cells, mainly in resistant mice. At 21 days pi, the enrichment of NK cells ceased, while spleen cells and the T cell compartment continued their expansion. In the chronic stage, TCR-alphabeta+ blasts were expanded in both mouse strains, but NK blasts increased only in BALB/c that, unlike C3H mice, release IFN-gamma. As T and NK cell proliferation is not always associated to IFN-gamma release the experimental downregulation of their expansion to avoid tissue damage could be explored.  相似文献   

10.
Bacteriophage T4-Directed DNA Synthesis in Toluene-Treated Cells   总被引:10,自引:7,他引:3       下载免费PDF全文
DNA synthesis has been studied in T4-infected Escherichia coli cells made permeable to nucleotides by treatment with toluene. The rate of incorporation of labeled deoxyribonucleoside triphosphates into DNA at various times after infection is proportional to the in vivo rate. This in vitro incorporation is dependent on all four deoxyribonucleoside triphosphates (5-hydroxymethyldeoxy-cytidine triphosphate can substitute for dCTP) and Mg(2+). It is stimulated by rATP, partially inhibited by pancreatic DNase, and abolished by N-ethylmalei-mide and 1-beta-d-arabinofuranosylcytosine triphosphate. T4 amber DO (DNA negative) and temperature-sensitive DO mutants under nonpermissive conditions of infection fail to induce DNA synthesis in vitro. The synthesizing activity is intracellular and the DNA product is exclusively T4 DNA. The in vitro synthesis proceeds in a discontinuous manner involving synthesis and subsequent joining of small DNA fragments (about 10S in alkaline sucrose gradients) into larger molecules predominantly one-half the length of mature T4 DNA. No restriction of C-containing or nonglucosylated HMC-containing T4 DNA product is observed in this system.  相似文献   

11.
We have constructed derivatives of plasmid pMB9 carrying EcoRI digestion fragments of bacteriophage T4 DNA that code for late gene functions. When Escherichia coli strains carrying these plasmids are infected with T4 amber mutants, burst sizes up to 30% of the wild-type level are obtained. Single burst experiments imply that the phage progeny result from complementation and do not depend on marker rescue. By electrophoretic and immunological techniques, we have established that the cloned T4 late genes are transcribed and translated in uninfected cells. A serum blocking assay has been used to quantitate the levels of one of the T4 gene products, gp11, before and after T4 infection. Uninfected cells containing the cloned T4 gene 11 DNA have 0.1% and mini cells have 1% of the gp11 levels per unit protein found in cells late after T4 wild-type infection. There is little or no additional gp10 and gp11 formed from the cloned genes after T4 infection.  相似文献   

12.
Pentachlorophenol (PCP)-sensitive incorporation of (32)P-labeled orthophosphate ((32)P(i)) into nucleotides and nucleic acids by disrupted spheroplasts of Escherichia coli was inhibited by addition of colicin K. Incorporation by intact cells was also inhibited by a similar concentration of colicin K. Various colicin K-resistant mutants were isolated, and their ability to incorporate (32)P(i) was tested. When T6(r)-colK(r) mutants (T6 phage-resistant) and tol I mutants (T6-sensitive, colicin E-sensitive) were converted to disrupted spheroplasts, their (32)P(i)-incorporation became sensitive to colicin K. On the contrary, incorporation by disrupted spheroplasts from tol II mutants (T6-sensitive, colicin E-resistant) was fairly resistant to colicin K like that of intact cells. A modification of the cell surface of T6(r)-colK(r) mutants, caused by mutation to novobiocin-permeable, T4 phage-resistant cells, restored the sensitivity of the cells to colicin K. The modified T6(r)-colK(r) cells did not adsorb T6 phage or colicin K, indicating that the receptors for T6 phage or colicin K are not reactivated by this modification. Similar treatment of tol I mutants did not have this effect. These observations strongly suggest that colicin K can act on its target on the cell membrane if it can penetrate the cell surface to reach this target. The receptor for colicin K on the cell surface, which may be part of the T6 phage-receptor, may have some unknown function in relation to the action of colicin K in normal cells, but tends to become dispensable if the cells become permeable to colicin K.  相似文献   

13.
Summary Plasmolysed cells of Escherichia coli N212 (uvrA recA) acquired ultraviolet resistance when the cells were exposed to high concentrations of T4 endonuclease V. With increasing concentrations of T4 enzyme, survivals of plasmolysed cells after ultraviolet irradiation increased while colony-forming ability of unirradiated plasmolysed cells was not significantly affected by the enzyme treatment. Under appropriate conditions more than 200 fold increase in survivals was observed. When plasmolysed cells were treated with a pre-heated enzyme preparation or enzyme fractions derived from T4v 1(endonuclease V-deficient mutant)-infected cells, only little or no reactivation took place.Permeabilization of cells prior to the enzyme treatment was essential for the effective reactivation. Treatment of intact cells with the T4 enzyme did not cause any reactivation. Cells treated with 20 mM EGTA or 50 mM CaCl2 in cold were reactivated to certain extents by the enzyme, but the extents of the reactivation were far less compared to those of plasmolysed cells.Plasmolysed cells of strains carrying a mutation in one of uvrA, uvrB and uvrC genes were reactivated by introduction of T4 endonuclease V, as was the uvrA recA double mutant. UvrD mutants were also reactivated, but rather slightly. However, wild type strain as well as strains having a mutation in recA or polA gene were not reactivated. From these results it was suggested that T4 endonuclease V, taken up into permeable cells, can function in vivo to replace defective functions, which are controlled by the uvr genes. The conditions established in the present study may be used for introduction of other proteins into viable bacterial cells.  相似文献   

14.
Understanding the mechanism of infection control in elite controllers (EC) may shed light on the correlates of control of disease progression in HIV infection. However, limitations have prevented a clear understanding of the mechanisms of elite controlled infection, as these studies can only be performed at randomly selected late time points in infection, after control is achieved, and the access to tissues is limited. We report that SIVagm infection is elite-controlled in rhesus macaques (RMs) and therefore can be used as an animal model for EC HIV infection. A robust acute infection, with high levels of viral replication and dramatic mucosal CD4(+) T cell depletion, similar to pathogenic HIV-1/SIV infections of humans and RMs, was followed by complete and durable control of SIVagm replication, defined as: undetectable VLs in blood and tissues beginning 72 to 90 days postinoculation (pi) and continuing at least 4 years; seroreversion; progressive recovery of mucosal CD4(+) T cells, with complete recovery by 4 years pi; normal levels of T cell immune activation, proliferation, and apoptosis; and no disease progression. This "functional cure" of SIVagm infection in RMs could be reverted after 4 years of control of infection by depleting CD8 cells, which resulted in transient rebounds of VLs, thus suggesting that control may be at least in part immune mediated. Viral control was independent of MHC, partial APOBEC restriction was not involved in SIVagm control in RMs and Trim5 genotypes did not impact viral replication. This new animal model of EC lentiviral infection, in which complete control can be predicted in all cases, permits research on the early events of infection in blood and tissues, before the defining characteristics of EC are evident and when host factors are actively driving the infection towards the EC status.  相似文献   

15.
A new spin label - broadening agent system for measuring trapped volumes of vesicles or cells is described. The method seems to be more advantageous than existing procedures when volumes of highly negatively charged vesicles are to be determined. The membrane permeable spin label is TEMPONE (2,2,6,6-tetramethyl piperidone-N-oxyl), and the nonpermeable broadening agent is chromium oxalate (K3Cr(C2O4)3). Absolute values for the trapped volumes down to 0.1% in 0.1 ml can be measured with an accuracy of about +/- (1-10%). The method is used to study the final volume of fused phosphatidylserine vesicles as a function of the temperature at which the Ca-induced fusion takes place.  相似文献   

16.
Wild-type bacteriophage T7 is not subject to restriction by the Escherichia coli B and K restriction systems, but T7 mutants that are susceptible to such restriction have been isolated. These mutants are all defective in gene 0.3, the first T7 gene to be expressed after infection. The gene 0.3 protein apparently acts to prevent modification as well as restriction, suggesting that it may interact with a component of the host restriction-modification system that is required for both processes. Mutants in which gene 0.3 is completely deleted are only partially modified by growth on hosts with an active restriction-modification system, presumably because the conditions of T7 infection overload the modifying capacity of the cells. This is in contrast to phages such as lambda that are completely modified during growth. Since gene 0.3 is not essential for growth in non-restricting hosts, it has been possible to isolate deletions which extend to the left of gene 0.3 into the region where E. coli RNA polymerase initiates the synthesis of T7 early RNA. Two of the three strong initiators from which E. coli RNA polymerase transcribes the early region can be deleted.In the course of searching for T7 mutants that are unable to overcome restriction, it was discovered that mutants defective in gene 2 are able to plate on E. coli C with essentially normal efficiency, and most gene 7 mutants are able to plate on both C and K strains. It has not been determined why genes 2 and 7 seem to be needed for growth in some E. coli strains but not in others.  相似文献   

17.
After infection of Escherichia coli with T4 phage, phospholipid synthesis continued but at a reduced rate. The same phospholipid components were synthesized as in uninfected cells; however, the relative rates of (32)P(i) incorporation into phosphatidylglycerol (PG) and phosphatidylethanolamine (PE) were altered. This alteration was most pronounced during the first 10 min after infection. Under these conditions, the isotope incorporated into PG equaled or exceeded that found in PG from uninfected cells. Chloramphenicol (CM) added before, but not 5 min after, infection inhibited the relative increase in PG synthesis, and CM added at different times after infection indicated that a protein synthesized between 3 and 6 min was required for this change to occur. Supplies of exogenous l-serine or l-alpha-glycerol-P failed to affect the relative rates of (32)P(i) incorporation into PG and PE by infected or uninfected cells. Phospholipid synthesis was somewhat higher after infection with T4rII mutants than after infection with wild-type phage. After infection with these mutants or several amber mutants, the relative synthesis of PG and PE was characteristic of T4r(+)-infected cells. The phospholipid synthesized after infection did not rapidly turn over, but infection accelerated the loss of PG synthesized prior to infection.  相似文献   

18.
CD8+ T cell memory is critical for protection against many intracellular pathogens. However, it is not clear how pathogen virulence influences the development and function of CD8+ T cells. Salmonella typhimurium (ST) is an intracellular bacterium that causes rapid fatality in susceptible mice and chronic infection in resistant strains. We have constructed recombinant mutants of ST, expressing the same immunodominant Ag OVA, but defective in various key virulence genes. We show that the magnitude of CD8+ T cell response correlates directly to the intracellular proliferation of ST. Wild-type ST displayed efficient intracellular proliferation and induced increased numbers of OVA-specific CD8+ T cells upon infection in mice. In contrast, mutants with defective Salmonella pathogenicity island II genes displayed poor intracellular proliferation and induced reduced numbers of OVA-specific CD8+ T cells. However, when functionality of the CD8+ T cell response was measured, mutants of ST induced a more functional response compared with the wild-type ST. Infection with wild-type ST, in contrast to mutants defective in pathogenicity island II genes, induced the generation of mainly effector-memory CD8+ T cells that expressed little IL-2, failed to mediate efficient cytotoxicity, and proliferated poorly in response to Ag challenge in vivo. Taken together, these results indicate that pathogens that proliferate rapidly and chronically in vivo may evoke functionally inferior memory CD8+ T cells which may promote the survival of the pathogen.  相似文献   

19.
Herpesvirus saimiri L-DNA sequences between 0.0 and 4.0 map units (4.5 kilobase pairs) are required for oncogenicity; these sequences are not required for replication of the virus. To investigate the basis for the lack of oncogenicity of mutants with deletions in this region and to study the function of this region, we developed a reliable system for in vitro immortalization by herpesvirus saimiri. In contrast to peripheral blood lymphocytes from cotton-top tamarins (Saguinus oedipus) and owl monkeys (Aotus sp.), infection of peripheral blood lymphocytes from common marmosets (Callithrix jacchus) in vitro with herpesvirus saimiri consistently yielded continuously growing lymphoblastoid cell lines. Such cell lines were established using strains of herpesvirus saimiri from group A and group non-A, non-B; however, repeated attempts to immortalize common marmoset peripheral blood lymphocytes using strains from group B were not successful. Common marmoset cell lines immortalized by herpesvirus saimiri were T12+, T8+, T4-, and B1-, indicating that they were derived from suppressor/cytotoxic T lymphocytes. Cell lines could not be established using the nononcogenic mutants 11att and S4, both of which were derived from the group A strain 11 virus. Strain 11att has a spontaneous deletion and S4 has a constructed deletion in the 0.0 to 4.0 map unit region. Constructed strains which had these deleted sequences restored did immortalize common marmoset peripheral blood lymphocytes. Thus, the nononcogenic deletion mutants are defective for immortalization. This system should facilitate attempts to define the sequences responsible for immortalization and to determine their function.  相似文献   

20.
M Amitsur  I Morad    G Kaufmann 《The EMBO journal》1989,8(8):2411-2415
During phage T4 infection of Escherichia coli strains containing the prr locus the host tRNALys undergoes cleavage-ligation in reactions catalyzed by anticodon nuclease, polynucleotide kinase and RNA ligase. Known genetic determinants of anticodon nuclease are prr, which restricts T4 mutants lacking polynucleotide kinase or RNA ligase, and stp, the T4 suppressor of prr encoded restriction. The present communication describes an in vitro anticodon nuclease assay in which the specific cleavage of tRNALys is driven by an extract from E. coli prrr (restrictive) cells infected by phage T4. The in vitro anticodon nuclease reaction requires factor(s) encoded by prr, is stimulated by a synthetic Stp polypeptide and appears to require additional T4 induced factor(s) distinct from Stp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号