首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Induction of anti-tumor immune responses by dendritic cells (DCs) transduced with a recombinant adeno-associated virus type 2 (rAAV2) encoding tumor antigens is considered a promising approach for cancer vaccine development. CML28, a novel antigen with the properties of cancer/testis (CT) antigens, is an attractive target for antigen-specific immunotherapy. Here we investigated the feasibility of inducing CML28-specific cytotoxic T lymphocyte (CTL) responses using DCs transduced with the rAAV2 vectors containing the CML28 gene (rAAV/CML28). Using an adenovirus-free packaging system, rAAV/CML28 was generated. The transduction efficiency of rAAV/CML28 in DCs increased in a multiplicity of infection (MOI)-dependent manner. The rAAV/CML28 transduction did not impair DC maturation, but even enhanced the CD80 expression. The rAAV/CML28-transduced DCs induced CML28-specific CTLs which exhibited a MHC class I-mediated antigen-specific lytic activity against CML28-bearing tumor cell lines (HepG2 and MCF-7) as well as the primary leukemia blasts. These findings suggest that rAAV/CML28-transduced DCs vaccine may serve as a feasible approach for the treatment of CML28-associated cancers.  相似文献   

3.
Wu C  Guo H  Wang Y  Gao Y  Zhu Z  Du Z 《Cellular immunology》2011,(1):118-123
Interaction of costimulatory molecules and their receptors is crucial for tumor lysate-pulsed dendritic cells (sensitized DC, sDC) to promote T cell activation, clonal expansion and its antitumor immunity. To augment the costimulatory signal may regulate the interaction between DC and cytotoxic T lymphocyte (CTL) and consequently enhance the antitumor response. The costimulatory ligand and receptor pair of 4-1BB/4-1BBL is one of the main factors in the costimulation of CTL. We explored the adjuvant role of a recombinant human 4-1BBL extracellular domain (ex4-1BBL) in modulating CTL activation induced by HepG2 antigen-loaded DC (sDC). The augment effects of sDC in combination with ex4-1BBL on the proliferation, activation, cell survival and cytotoxicity against HepG2 cells of CTL were examined. In the presence of ex4-1BBL, sDC exhibited markedly augmented effects on the above four functions of CTL. These results demonstrate that ex4-1BBL plays an important role in the costimulation pathway for DC-mediated CTL’s activation, which might be a useful adjuvant factor for DC-based cancer biotherapy.  相似文献   

4.
Renal cell carcinoma (RCC) has been shown to be susceptible to immunotherapeutic treatment strategies. In the present study, patient-derived tumor cells were fused with allogeneic dendritic cells (DC) to elicit anti-tumor activity against RCC. DC from HLA-A2+ healthy donors were fused with primary RCC cells from ten patients. Phenotype of fusion cells were characterized by flow cytometer and confocal microscopy. In vitro, T cell proliferation, IFN-γ secretion and cytotocic T lymphocytes (CTL) activity elicited by allogeneic DC/RCC fusion cells were assessed. Clinically, ten patients were vaccinated with allogeneic DC/RCC fusion vaccine. The adverse effects and toxicity were observed. The clinical response was evaluated by CT scans. After fusion, the created hybrids expressed both tumor associated antigen and DC-derived molecules and could stimulate the proliferation and IFN-γ secretion of T cells as well as elicit strong CTL activity against RCC cells in vitro. In vivo, no serious adverse effects, toxicity, or signs of autoimmune disease were observed after vaccination therapy. Percentage of T lymphocyte subsets in peripheral blood of patients was increased significantly. One of ten patients exhibited a partial response with regression of lung metastases. Six patients showed stable disease with stabilization of previously progressive disease (follow up 1.5 years). The PR and SD responses, exhibited by 7/10 patients who received the allogeneic DC/RCC fusion vaccine treatment, suggest that this approach is safe and can elicit immunological responses in a significant portion of patients with RCC. J. Zhou and D. Weng contributed equally.  相似文献   

5.
To induce cytolytic immunity, dendritic cells (DCs) need to release bioactive interleukin-12 (IL-12) p70 heterodimeric molecules. To study the role of IL-12 for the generation of an anti-tumor immune response, we generated two classes of DCs. (1) DCs were initiated to secrete IL-12 by exposure to LPS/IFN- for 2 h resulting, as demonstrated in vitro, in continued IL-12 release for another 24 h (termed active DCs). (2) DCs were exposed to LPS/IFN- for 24 h and injected into mice at a time point when IL-12 production had ceased (termed exhausted DCs). These two classes of DCs were probed for their capacity to induce a cytolytic anti-tumor immune response in vivo in a syngeneic mouse tumor model. The mouse tumor cell line K-Balb was engineered to express neomycin phosphotransferase (NPT) as a model tumor antigen. DCs were charged with various NPT-derived antigens, including recombinant NPT protein, whole tumor cell lysate and NPT-derived synthetic peptides, and the induction of in vivo anti-tumor immunity was determined by measuring tumor growth. Only the injection of active DCs, i.e., cells that maintained the capacity to secrete IL-12, but not exhausted DCs that had lost the ability to produce IL-12, resulted in a measurable deceleration of growth of K-Balb-NPT tumors. This anti-tumor immune response was most pronounced when using recombinant protein as an antigen source, which was evident in a prophylactic as well as in a therapeutic setting. The absence of a response to parental K-Balb tumors confirmed the antigen specificity of the anti-tumor immune response. Together these data provide evidence for the unique capacity of actively IL-12 secreting DCs to trigger effective anti-tumor immunity using exogenous tumor antigens.  相似文献   

6.
Summary Peripheral blood lymphocytes were cultured for 5 days with allogeneic tumor cells (allogeneic mixed lymphocyte/tumor cell culture), and subsequently cultured with recombinant interleukin-2 for 12 days. These cultured cells were found to be cytotoxic to autologous tumor cells. Results of two-color analysis using monoclonal antibodies to cell markers showed that more than 80% of their cultured cells were CD3+ cells, and CD4+ cells showed a higher distribution than CD8+ cells. However, CD8+ cells had a much higher killing activity with autologous tumor than did CD4+ cells, when estimated by an elimination study using monoclonal antibodies to T cell phenotypes and complement. The cold-target inhibition test showed that the cytotoxicity of these cells for autologous tumor cells was inhibited by unlabeled autologous tumor cells but not by unlabeled stimulator cells. Furthermore, about 40% of the cytotoxicity was suppressed by blocking of HLA class I antigen with a monoclonal antibody on autologous tumor cells. Thus, cytotoxic activity of lymphocytes to autologous tumor restricted by target cell HLA class I antigen is possibly induced by allogeneic tumor-stimulation.  相似文献   

7.
Xing W  Wu S  Yuan X  Chen Q  Shen X  He F  Bian J  Lei P  Zhu H  Wang S  Shen G 《Cellular immunology》2009,254(2):135-141
Herpes simplex virus thymidine kinase (HSV-TK) gene and dendritic cells (DC) have been used as the pioneering in cancer therapy. HSV-TK gene can induce apoptosis and necrosis in tumor cells in the presence of the non-toxic prodrug ganciclovir (GCV). We investigated the anti-tumor effect of DC vaccination by introducing dying cells from HSV-TK gene treatment as an adjuvant. HepG2-TK cell line was established by transfecting human hepatoma cell line HepG2 (HLA-A2 positive) with HSV-TK gene. Dying tumor cells were generated by culturing HepG2-TK cells with GCV. After engulfed dying cells efficiently, immature DCs (imDC) derived from human monocytes were fully matured and elicited marked proliferation and cytotoxicity against HLA matched HepG2 cells in autologous peripheral blood mononuclear cells (PBMC). It also implied that HepG2 specific CTLs played an important role in the cytotoxicity which was primarily depended on Th1 responses. Given the feasibility of inducing dying cells by HSV-TK/GCV in vivo, our results suggest an effective method in clinical human hepatocellular carcinoma (HCC) treatment by an in vitro model of applying HSV-TK gene modified human tumor cells integrated with DC vaccination.  相似文献   

8.
Aim: The aim of this study was to develop an immunotherapy specific to a malignant glioma by examining the efficacy of glioma tumor-specific cytotoxic T lymphocytes (CTL) as well as the anti-tumor immunity by vaccination with dendritic cells (DC) engineered to express murine IL-12 using adenovirus-mediated gene transfer and pulsed with a GL26 glioma cell lysate (AdVIL-12/DC+GL26) was investigated. Experimentl: For measuring CTL activity, splenocytes were harvested from the mice immunized with AdVIL-12/DC+GL26 and restimulated with syngeneic GL26 for 7 days. The frequencies of antigen-specific cytokine-secreting T cell were determined with mIFN-γ ELISPOT. The cytotoxicity of CTL was assessed in a standard 51Cr-release assay. For the protective study in the subcutaneous tumor model, the mice were vaccinated subcutaneously (s.c) with 1×106 AdVIL-12/DC+GL26 in the right flanks on day −21, −14 and −7. On day 7, the mice were challenged with 1×106 GL26 tumor cells in the shaved left flank. For a protective study in the intracranial tumor model, the mice were vaccinated with 1×106 AdVIL-12/DC+GL26 s.c in the right flanks on days −21, −14 and −7. Fresh 1×104 GL26 cells were inoculated into the brain on day 0. To prove a therapeutic benefit in established tumors, subcutaneous or intracranial GL26 tumor-bearing mice were vaccinated s.c with 1×106 AdVIL-12/DC+GL26 on day 5, 12 and 19 after tumor cell inoculation. Results: Splenocytes from the mice vaccinated with the AdVIL-12/DC+GL26 showed enhanced induction of tumor-specific CTL and increased numbers of IFN-γ: secreting T cells by ELISPOT. Moreover, vaccination of AdVIL-12/DC+GL26 enhanced the induction of anti-tumor immunity in both the subcutaneous and intracranial tumor models. Conclusions: These preclinical model results suggest that DC engineered to express IL-12 and pulsed with a tumor lysate could be used in a possible immunotherapeutic strategy for malignant glioma.Korea Research Foundation Grant (KRF-2004-005-E00001).  相似文献   

9.
Recombinant adenoviral vectors (AdV) are potent vehicles for antigen engineering of dendritic cells (DC). DC engineered with AdV to express full length tumor antigens are capable stimulators of antigen-specific polyclonal CD8+ and CD4+ T cells. To determine the impact of AdV on the HLA class I antigen presentation pathway, we investigated the effects of AdV transduction on antigen processing machinery (APM) components in human DC. Interactions among AdV transduction, maturation, APM regulation and T cell activation were investigated. The phenotype and cytokine profile of DC transduced with AdV was intermediate, between immature (iDC) and matured DC (mDC). Statistically significant increases in expression were observed for peptide transporters TAP-1 and TAP-2, and HLA class I peptide-loading chaperone ERp57, as well as co-stimulatory surface molecule CD86 due to AdV transduction. AdV transduction enhanced the expression of APM components and surface markers on mDC, and these changes were further modulated by the timing of DC maturation. Engineering of matured DC to express a tumor-associated antigen stimulated a broader repertoire of CD8+ T cells, capable of recognizing immunodominant and subdominant epitopes. These data identify molecular changes in AdV-transduced DC (AdV/DC) that could influence T cell priming and should be considered in design of cancer vaccines.  相似文献   

10.
Pancreatic cancer (PC) is a deadly human malignancy. Dendritic cell (DC)-based immunotherapy with whole tumor antigens demonstrates potential efficiency in cancer treatment. Tumor RNA and tumor fusion hybrid cells are sources of whole tumor antigens for preparing DC tumor vaccines. However, the efficacy of these sources in eliciting immune responses against PC has not yet to be directly compared. In the present study, patient-derived PC cells and DCs were fused (DC–tumor hybrids) and primary cultured PC cell-derived total RNA was electroporated into autologous DCs (DC–tumor RNA). The antitumor immune responses induced by DC–tumor hybrids and DC–tumor RNA were compared directly. The results showed that both RNA and hybrid methodologies could induce tumor-specific cytotoxic T lymphocyte (CTL) responses, but pulsing DCs with total tumor RNA could induce a higher frequency of activated CTLs and T-helper cells than fusing DCs with autologous tumor cells. In addition, DC–tumor RNA triggered stronger autologous tumor cell lysis than DC–tumor hybrids. It could be concluded that DCs pulsed with whole tumor RNA are superior to those fused with tumor cells in priming anti-PC CTL responses. Electroporation with total tumor RNA may be more suitable for DC-based PC vaccination.  相似文献   

11.
 Dendritic cells (DC) purified from murine spleen or generated in vitro from bone marrow precursors were compared for their respective abilities to stimulate T cell responses and provide tumor protection in vivo. In vitro incubation with synthetic tumor peptide conferred on both DC populations the ability to induce proliferation of tumor-peptide-specific T cells in vitro. Spleen DC were reproducibly about twofold more effective than bone-marrow-derived DC in this assay. Both DC populations could also induce cytotoxic activity in vivo. In vitro cytoxicity assays showed that, while cytotoxic activity induced by immunization with spleen DC was clearly peptide-specific, a high non-specific cytotoxic activity was consistently observed after immunization with bone-marrow-derived DC, whether peptide-pulsed or not. Regardless of such high non-specific activity in vitro, only tumor-peptide-pulsed DC could provide protection against subsequent inoculation of tumor cells. DC not pulsed with tumor peptide were ineffective. We conclude that DC isolated from spleen or generated in vitro from bone marrow precursors are suitable reagents for use in tumor vaccination studies. Received: 13 March 1997 / Accepted: 25 May 1997  相似文献   

12.
Dendritic cells (DCs) are highly specialized antigen-presenting cells endowed with the unique ability to not only present exogenous antigens upon exposure to MHC II, but also to cross-present these upon exposure to MHC I. This property was exploited to generate the tumor-specific CD8 cytotoxic lymphocyte (CTL) response in DCs-based cancer vaccine protocols. In this context, the source of tumor antigens remains a critical challenge. A crude tumor in the context of danger signals is believed to represent an efficient source of tumor antigens (TAs) for DCs loading. In our previous work, increased DCs cross-presentation of antigens from necrotic gastric carcinoma cells paralleled up-regulation of the heat shock protein hsp70. We studied the expression of hsp70 on primary colon carcinoma cells and its relevance in the cross-priming of anti-tumor CTL by tumor-loaded DCs. Hsp70 was expressed on all three of the tumors studied, but was never detected in the peritumoral normal mucosa (NM). The uptake of the tumor induced a trend towards down-modulation of the monocyte-specific marker CD14, but had no effect on the chemokine receptors CCR4 and CCR7. The IFN-γ enzyme-linked immunospot assay (ELIspot) showed cross-priming of CTL by tumor-loaded but not NM-loaded DCs in four of the six cases studied. The CTL response generated in DC+tumor cultures was directed towards the tumor, but not towards NM, and it was characterized by refractoriness to polyclonal (Ca ionophores, PKC activators) stimuli. Of the three CTL-generating tumors, only one expressed hsp70. This data indicates a tumor-specific expression of hsp70, but does not support its relevance in the DC cross-presentation of TAs.  相似文献   

13.
To elicit a therapeutic antitumor immune response, dendritic cells (DCs) have been employed as a cellular adjuvant. Among various DC-based approaches, fusion of DCs and tumor cells potentially confers not only DC functionality, but also a continuous source of unaltered tumor antigens. We have recently demonstrated successful generation of fusion hybrids by a large-scale electrofusion technique. The immunogenicity and therapeutic potential of fusion hybrids were further analyzed in a model system of a murine melanoma cell line expressing beta-galactosidase (beta-gal) as a surrogate tumor antigen. A single vaccination with fusion hybrids plus IL-12 induced a therapeutic immune response against 3-day established pulmonary metastases. This immunotherapy was beta-gal specific and involved both CD4 and CD8 T cells. In vitro, fusion hybrids stimulated specific IFN-gamma secretion from both CD4 and CD8 immune T cells. They also nonspecifically induced IL-10 secretion from CD4 but not CD8 T cells. Compared to other DC loadings, our results demonstrate the superior immunogenicity of fusion. The current technique of electrofusion is adequately developed for clinical use in cancer immunotherapy.  相似文献   

14.
Dendritic cells (DCs) play a predominant role in initiating cell immune responses. Here we generated a DC-targeting lentiviral vector (LVDC-UbHBcAg-LIGHT) and evaluated its capacity to elicit HBV-specific cytotoxic T lymphocyte (CTL) responses. DC-SIGN-mediated specific transduction using this construct was confirmed in DC-SIGN-expressing 293T cells and ex vivo-cultured bone marrow cells. LVDC-UbHBcAg-LIGHT-loaded DCs were highly effective in inducing HBV-specific CTLs. Mechanistic studies demonstrated autophagy blocking led to a significant increase in apoptosis and obvious inhibition of CD8 + T cells entry into S-phase, correspondingly attenuated LVDC-UbHBcAg-LIGHT-loaded DC-induced T cell responses. This observation was supported by accumulation of pro-apoptotic proteins and the main negative cell cycle regulator-CDKN1B that otherwise would be degraded in activated T cells where autophagy preferentially occured. Our findings revealed an important role of autophagy in the activation of T cells and suggested LVDC-UbHBcAg-LIGHT may potentially be used as a therapeutic strategy to combat persistent HBV infection with higher security.  相似文献   

15.
Background  Alloreaction is known to accumulate several theoretical advantages that can improve dendritic cell (DC)-based anti-infective or antitumour strategies. Allogeneic DC have already been tested in experimental and clinical studies, but their efficacy compared with their autologous counterparts was rarely investigated and conclusions diverge. Objective  This study compared antigen-specific T cell responses following priming with autologous versus allogeneic DC and examined the possibility of screening these responses in order to select allogeneic DC that lead to a great amplification. Results  Allogeneic DC obtained from donors matched with the single HLA-A2 allele were efficient in generating in vitro peptide-specific T cell responses. When randomly chosen, allogeneic DC generated a broad range of antigen-specific T cell responses in comparison with autologous DC. When screened and selected, allogeneic DC markedly enhanced peptide-specific T cell priming and allowed a more efficient boosting of resulting T cells. These selected allogeneic DC provided a favourable cytokinic and cellular environment that can help concurrent antigen-specific responses. Conclusion  Ex vivo selected allogeneic DC provide adjuvant effects that lead to amplification of concomitant antigen-specific T cell responses. A. Gervais and J.-C. Eymard contributed equally to this work.  相似文献   

16.
Dendritic cells (DC), as professional antigen presenting cells, play the central role in the process of body initiating the anti-tumor immunity, and the study on DC anti-tumor vaccine has become heated in recent years. In this study, we used polyethylene glycol (PEG) to induce renal cell carcinoma (RCC) 786-O cell line fused with peripheral blood DC of healthy volunteers, and discuss the biological characteristics of fusion vaccine and its anti-tumor effects in vitro and in human immune reconstituted SCID mice model of RCC. The study found that PEG could effectively induce cell fusion, and the expressions of CD86 and HLA-DR in fusion vaccine group were significantly up-regulated compared with the DC control group; the secretion of IL-12 was much higher and longer than that of the control; the functions of dendritic cell-tumor fusion vaccine to stimulate the proliferation of allogenic T lymphocytes and to kill RCC786-O cells in vitro were significantly higher than those of the control group, and after the killing, apoptosis body was observed in the target cells; after the injection of fusion vaccine into human immune reconstituted SCID mice model of RCC786-O via vena caudalis, the volume of mice tumor was reduced significantly, proliferation index of tumor cells decreased obviously compared with that of the control group, and more hemorrhage and putrescence focuses presented, accompanying large quantity of lymphocytes soakage. The results of this experimental study shows that fusion vaccine of RCC786-O cell line and DC can significantly stimulate the proliferation of allogenic T cells and specifically inhibit and kill RCC cells in vitro and in vivo, which makes the DC-RCC786-O fusion vaccine a possible new way of effective RCC immunotherapy.  相似文献   

17.
The induction of cytotoxic T lymphocytes (CTL) from peripheral blood mononuclear cells (PBMC) using MAGE peptide has been investigated in order to use MAGE antigens immunotherapeutically. We therefore developed a simplified method for inducing peptide-specific CTL that kill tumor cells expressing MAGE from the PBMC of either healthy donors or even cancer patients. Since the spleen is a major lymphoid organ, we used a simple method to examine the capacity of spleen cells to generate MAGE-specific CTL by in vitro stimulation with MAGE peptide in gastric cancer patients. The CTL responses could thus be induced from unseparated spleen cells in HLA-A2 patients with gastric carcinoma expressing MAGE-3 by stimulating these cells with autologous spleen cells pulsed with HLA-A2-restricted MAGE-3 peptide as antigen-presenting cells and by using keyhole limpet hemocyanin and interleukin-7 for the primary culture. The induced CTL were thus able to lyse HLA-A2-positive carcinoma cells transfected with MAGE-3 and expressing MAGE-3, as well as the target cells pulsed with the peptide, in an HLA-class-I or -A2-restricted manner. Since MAGE-specific CTL could be induced from the spleen cells of gastric cancer patients, the spleen appears to play an important role in either clinical tumor vaccination or the treatment of cancer patients by adoptive immunotherapeutic approaches using the MAGE peptide. Received: 3 December 1998 / Accepted: 30 March 1999  相似文献   

18.
We have developed an individualized melanoma vaccine based on autologous dendritic cells (DCs) transfected with autologous tumor-mRNA. The vaccine targets the unique spectrum of tumor antigens in each patient and may recruit multiple T cell clones. In a recent phase I/II trial, we demonstrated T cell responses against vaccine antigens in 9/19 patients evaluable by T cell assays. Here, we report a follow-up study that was conducted to characterize interesting T cell responses and to investigate the effects of long-term booster vaccination. Two patients were selected for continued vaccine therapy. The clinical follow-up suggested a favorable clinical development in both patients. The immunological data (T cell proliferation/IFNgamma ELISPOT/Bioplex cytokine assays) indicated sustained T cell responses and suggested an enhancing effect of booster vaccinations. Both CD4(+) and CD8(+) T cell responses were demonstrated. From post-vaccination samples, we generated 39 T cell clones that responded specifically to stimulation by mRNA-transfected DCs and 12 clones that responded to mock-transfected DCs. These data clearly indicate a two-component vaccine response, against transfected and non-transfected antigens. T cell receptor (TCR) clonotype mapping, performed on 11 tDC-specific clones, demonstrated that 10/11 clones had different TCRs. The results thus indicate a broad spectrum T cell response against antigens encoded by the transfected tumor-mRNA. We generally observed mixed Th1/Th2 cytokine profiles, even in T cell clones that were confirmed to be derived from a single cell. This finding suggests that cytokine patterns after cancer vaccination may be more complex than indicated by the classic Th1/Th2 dichotomy.  相似文献   

19.
Cytotoxic T lymphocytes (CTLs) specific for the Epstein-Barr virus (EBV) latent membraneprotein 2 (LMP2) antigen are important reagents for the treatment of some EBV-associated malignancies,such as EBV-positive Hodgkin's disease and nasopharyngeal carcinoma.However,the therapeutic amount ofCTLs is often hampered by the limited supply of antigen-presenting cells.To address this issue,an artificialantigen-presenting cell (aAPC) was made by coating a human leukocyte antigen (HLA)-pLMP2 tetramericcomplex,anti-CD28 antibody and CD54 molecule to a cell-sized latex bead,which provided the dual signalsrequired for T cell activation.By co-culture of the HLA-A2-LMP2 bearing aAPC and peripheral bloodmononuclear cells from HLA-A2 positive healthy donors,LMP2 antigen-specific CTLs were induced andexpanded in vitro.The specificity of the aAPC-induced CTLs was demonstrated by both HLA-A2-LMP2tetramer staining and cytotoxicity against HLA-A2-LMP2 bearing T2 cell,the cytotoxicity was inhibited bythe anti-HLA class Ⅰ antibody (W6/32).These results showed that LMP2 antigen-specific CTLs could beinduced and expanded in vitro by the HLA-A2-LMP2-bearing aAPC.Thus,aAPCs coated with an HLA-pLMP2 complex,anti-CD28 and CD54 might be promising tools for the enrichment of LMP2-specificCTLs for adoptive immunotherapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号