首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Gamma linolenic acid (GLA) is a polyunsaturated fatty acid, which induces cytotoxicity and regulates cell adhesion in cancer cells. The molecular mechanism of these actions is not clear. We have shown that GLA acts via peroxisome proliferator activated receptors (PPARs), by stimulating their phosphorylation and translocation to the nucleus. Removing PPAR gamma with antisense oligos abolished the effect of GLA on the expression of adhesion molecules and tumour suppressor genes, whereas removal of PPAR alpha had no effect. Tissues from patients with breast cancer showed a reduction of expression of both PPARs in cancer tissues, as compared with normal. Thus, PPAR gamma serves as the receptor for GLA in the regulation of gene expression in breast cancer cells.  相似文献   

2.
3.
G J Wu  M W Wu  S W Wang  Z Liu  P Qu  Q Peng  H Yang  V A Varma  Q C Sun  J A Petros  S D Lim  M B Amin 《Gene》2001,279(1):17-31
Ectopical expression of huMUC18, a cell adhesion molecule in the immunoglobulin gene superfamily, causes a non-metastatic human melanoma cell line to become metastatic in a nude mouse system. To determine if MUC18 expression correlates with the development and malignant progression of prostate cancer, we investigated differential expression of human MUC18 (huMUC18) in normal prostate epithelial cells, prostate cancer cell lines, and prostatic normal and cancer tissues. We cloned and characterized the human MUC18 (huMUC18) cDNA gene from three human prostate cancer cell lines and three human melanoma cell lines. The cDNA sequences from the six human cancer cell lines were identical except differences in one to five nucleotides. The deduced amino acid sequences of the longest ORF were 646 amino acids that were identical in these cDNAs except for one to three amino acid residues. The amino acid sequences of all our huMUC18 cDNA genes are similar to that cloned by other group (GenBank access #M28882) except differences in the same seven amino acids. We conclude that huMUC18 cDNA gene reported here represents the gene product from a major allele. The MUC18 mRNA and protein was expressed in three metastatic prostate cancer cell lines (TSU-PR1, DU145, and PC-3), but not in one non-metastatic prostate cancer cell line (LNCaP.FGC). The expression of huMUC18 in these four cell lines is positively related to their extent of in vitro motility and invasiveness and in vivo metastasis in nude mice. HuMUC18 protein was also expressed at high levels in extracts prepared from tissue sample sections containing high grade prostatic intraepithelial neoplasia (PIN), but weakly expressed in extracts prepared from cultured primary normal prostatic epithelial cells and the normal prostate gland. Immunohistochemical analysis showed that huMUC18 was expressed at higher levels in the epithelial cells of high-grade PIN and prostatic carcinomas, and in cells of a perineural invasion, a lymph node, and a lung metastases compared to that in normal or benign hyperplastic epithelium (BPH). We therefore conclude that MUC18 expression is increased during prostate cancer initiation (high grade PIN) and progression to carcinoma, and in metastatic cell lines and metastatic carcinoma. Increased expression of MUC18 is implicated to play an important role in developing and malignant progression of human prostate cancer. Furthermore, the lacking of predominant cytoplasmic membrane expression of MUC18 appeared to correlate with malignant progression of prostate cancer.  相似文献   

4.
5.
BACKGROUND: We sought to identify genes with altered expression during human breast cancer progression by applying mRNA comparisons of normal and tumor mammary cell lines with increasingly malignant phenotypes. The gene encoding a new sialyltransferase (STM) was found to be down-regulated in tumor cells. Abnormal expression and enzymatic activities of sialyltransferases in tumor cells result in the formation of tumor-associated carbohydrate antigens that can be used for the better understanding of the disease process and are applied for tumor diagnosis and immunotherapy. Altered glycosylation patterns of the MUC1 mucin, in particular, is a target antigen for immunotherapy of breast and other cancers. MATERIALS AND METHODS: Total RNAs from multiple normal mammary epithelial cell strains and tumor cell lines were compared by differential display and the differential expression of selected cDNAs was confirmed by Northern analyses. Recombinant STM was expressed in COS-7 cells. The substrate and linkage specificity of STM was examined using various oligosaccharides and O-glycosylated proteins as acceptor substrates. The chromosomal localization of the SIATL1 gene was assigned by somatic cell hybrid analysis. RESULTS: A human sialyltransferase gene was identified by differential display as being down-regulated in breast tumor cell lines as compared to normal mammary epithelial cell strains, and the corresponding full-length cDNA (stm) was cloned. The encoded protein of 374 amino acid residues contained the L- and S-sialylmotifs, two catalytic regions conserved in all functional sialyltransferases. Recombinant STM is an active GalNAc alpha2,6-sialyltransferase with Gal beta 1,3 GalNAc-O-Ser/Thr and (+/- Neu5Ac alpha 2,3) Gal beta 1,3GalNAc-O-Ser/Thr acceptor specificity. The SIATL1 gene, encoding STM, was mapped to the long arm of human chromosome 17 at q23-qter, a region that is nonrandomly deleted in human breast cancers. However, Southern analyses indicated that SIATL1 is usually not grossly rearranged in breast tumors. Northern analyses showed that the gene was widely expressed in normal human tissues, as well as in normal breast and prostate epithelial cell lines, but significantly down-regulated or absent in corresponding tumor cell lines. CONCLUSIONS: Our findings suggest that aberrant expression of STM sialyltransferase in tumors could be a feature of the malignant phenotype. In breast cancers, the MUC1 mucin is overexpressed and contains shorter O-glycans as compared to the normal mucin. Because STM catalyzes the synthesis of O-glycans, cloning and characterization of its substrate specificity will contribute to the understanding of the molecular mechanisms underlying the aberrant glycosylation patterns of O-glycans and the formation of mucin-related antigens in human breast cancers.  相似文献   

6.
Paracellular permeability (PCP) is governed by tight junctions (TJs) in epithelial cells, acting as cell-cell adhesion structures, the aberration of which is known to be linked to the dissociation and metastasis of breast cancer cells. This study hypothesized that the function of TJs in human breast cancer cells can be augmented by gamma linolenic acid (GLA), selenium (Se), and iodine (I) in the presence of 17-beta-estradiol, as these molecules are known to increase TJ functions in endothelial cells, using assays of trans-epithelial resistance (TER), PCP, immunofluorescence, and in vitro invasion and motility models. GLA, I, and Se individually increased TER of MDA-MB-231 and MCF-7 human breast cancer cells. The combination of all three agents also had a significant increase in TER. Addition of GLA/Se/I reduced PCP of both breast cancer cell lines. GLA/Se/I reversed the effect of 17-beta-estradiol (reduced TER, increased PCP). Immunofluorescence revealed that after treatment with Se/I/GLA over 24 h, there was increasing relocation to breast cancer cell-cell junctions of occludin and ZO-1 in MCF-7 cells. Moreover, treatment with GLA/Se/I, alone or in combination, significantly reduced in vitro invasion of MDA-MB-231 cells through an endothelial cell barrier (P < 0.0001) and reduced 17-beta-estradiol induced breast cancer cell motility (P < 0.0001). Our previous work has demonstrated that GLA, I, and Se alone, or in combination are able to strengthen the function of TJs in human endothelial cells; this has now proved to be true of human breast cancer cells. This combination also completely reversed the effect of 17-beta-estradiol in these cells.  相似文献   

7.
Down-regulation of laminin-5 in breast carcinoma cells.   总被引:5,自引:0,他引:5       下载免费PDF全文
BACKGROUND: Laminin-5 (ln-5), a large heterotrimeric glycoprotein consisting of an alpha 3, beta 3, and gamma 2 chain, is a component of epithelial cell basement membranes that functions as a ligand of the alpha 3 beta 1 and alpha 6 beta 4 integrins to regulate cell adhesion, migration, and morphogenesis. The ln-5 chains show tissue-specific patterns of regulation in tumors derived from different tissues. For example, ln-5 is often up-regulated in gliomas, gastric carcinomas, and squamous carcinomas and down-regulated in prostate and basal cell carcinomas. Ln-5 expression patterns may represent useful tumor markers and help to elucidate the role of ln-5 in tumor progression in different tissue types. MATERIALS AND METHODS: We have studied ln-5 expression patterns in the breast. mRNA levels were examined in tumor and normal breast epithelial cell lines, tissue samples, and immunomagnetically sorted primary cultures using differential display, Northern blotting, and hybridization arrays. Protein levels were examined by immunoprecipitation. Gene integrity was assessed by Southern blotting of representative cell types. RESULTS: Ln-5 alpha 3, beta 3, and gamma 2 mRNA expression was found to be markedly down-regulated in a panel of breast tumor cell lines when compared with normal breast epithelial cells. Ln-5 mRNA was expressed at relatively high levels in MCF-10A immortal normal breast epithelial cells, long-term cultures of normal breast cells, and sorted primary cultures of normal breast luminal epithelial and myoepithelial cells. Reduced, but detectable, levels of ln-5 tended to be expressed in cell lines derived from early-stage breast tumors, whereas expression was generally not detected in cell lines derived from later-stage tumors. In breast tumor tissue specimens, expression of ln alpha 3 and beta 3 mRNAs tended to be reduced relative to levels observed in adjacent nontumor tissue, whereas in gamma 2 levels were elevated in specimens with increased amounts of myoepithelial cells. These ln-5 expression changes could not be attributed to large-scale mutations or gene rearrangements. Ln-5 protein levels were found to reflect mRNA levels in representative cell lines. At senescence, a growth state believed to suppress tumorigenesis, expression of all three ln-5 mRNAs was up-regulated. CONCLUSION: The down-regulation of ln-5 mRNA expression in breast tumors cells provides a new molecular marker and suggests that ln-5 functions to control tumor progression in the breast.  相似文献   

8.
Ultraviolet B radiation (UVB) is a pro-oxidative stressor with profound effects on skin in part through its ability to stimulate cytokine production. Peroxisome proliferator-activated receptor gamma (PPAR gamma) has been shown to regulate inflammatory processes and cytokine release in various cell types. Since the oxidized glycerophospholipid 1-hexadecyl-2-azelaoyl glycerophosphocholine (azPC) has been shown to be a potent PPAR gamma agonist, this study was designed to assess whether the PPAR gamma system is a target for UVB irradiation and involved in UVB-induced inflammation in epidermal cells. The present studies demonstrated the presence of PPAR gamma mRNA and functional protein in human keratinocytes and epithelial cell lines HaCaT, KB, and A431. The treatment of epidermal cells with the PPAR gamma-specific agonist ciglitazone or azPC augmented cyclooxygenase-2 expression and enzyme activity induced by phorbol 12-myristate-13-acetate or interleukin-1 beta. Lipid extracts from the cell homogenate of UVB-irradiated, but not control, cells contained a PPAR gamma-agonistic activity identified by reporter assay, and this activity up-regulated cyclooxygenase-2 expression induced by phorbol 12-myristate-13-acetate. Subjecting purified 1-hexadecyl-2-arachidonoyl-glycerophosphocholine to UVB irradiation generated a PPAR gamma-agonistic activity, among which the specific PPAR gamma agonist azPC was identified by mass spectrometry. These findings suggested that UVB-generated PPAR gamma-agonistic activity was due to the free radical mediated non-enzymatic cleavage of endogenous glycerophosphocholines. Treatment with the specific PPAR gamma antagonist GW9662 or expression of a dominant-negative PPAR gamma mutant in KB cells inhibited UVB-induced epidermal cell prostaglandin E(2) production. These findings suggested that UVB-generated PPAR gamma activity is necessary for the optimal production of epidermal prostaglandins. These studies demonstrated that epithelial cells contain a functional PPAR gamma system, and this system is a target for UVB through the production of novel oxidatively modified endogenous phospholipids.  相似文献   

9.
Angiogenesis, the formation of new blood vessels, is an essential feature of malignant tumour development. Gamma linolenic acid (GLA), a n-6 polyunsaturated fatty acid (PUFA), inhibits the growth and metastasis of a variety of tumour cells, including breast, prostate, pancreatic cancer and hepatoma cells and also has anti-metastatic effects on endothelial cells. In the current study, we tested whether GLA inhibited angiogenesis induced by tumour cells. A rat aortic ring assay and in vitro tube formation of human vascular endothelial cells were used to determine angiogenesis (spontaneous, angiogenic factor- and tumour cells-induced). Inclusion of GLA in this 3-D matrix culture system significantly inhibited angiogenesis from aortic rings in a concentration-dependent manner. The results from tube formation of vascular endothelial cell further confirmed that GLA suppressed angiogenesis. Furthermore, in the cell motility assay (phagokinetic assay and endothelial wounding assay), a significant reduction of the motility of vascular endothelial cells by GLA was seen. It is concluded that gamma linolenic acid inhibits angiogenic factor and tumour-induced angiogenesis in vitro at least in part via its inhibitory effect on the motility of vascular endothelial cells.  相似文献   

10.
11.
17β-Hydroxysteroid dehydrogenases (17HSDs) catalyze the interconversions between active 17β-hydroxysteroids and less-active 17-ketosteroids thereby affecting the availability of biologically active estrogens and androgens in a variety of tissues. The enzymes have different enzymatic properties and characteristic cell-specific expression patterns, suggesting differential physiological functions for the enzymes. Epidemiological and endocrine evidence indicate that estrogens play a key role in the etiology of breast cancer while androgens are involved in mechanisms controlling the growth of prostatic cells, both normal and malignant. Recently, we have developed, using LNCaP prostate cancer cell lines, a cell model to study the progression of prostate cancer. In the model LNCaP cells are transformed in culture condition to more aggressive cells, able to grow in suspension cultures. Our results suggest that substantial changes in androgen and estrogen metabolism occur in the cells during the process. These changes lead to increased production of active estrogens during transformation of the cells. Data from studies of breast cell lines and tissues suggest that the oxidative 17HSD type 2 may predominate in human non-malignant breast epithelial cells, while the reductive 17HSD type 1 activity prevails in malignant cells. Deprivation of an estrogen response by using specific 17HSD type 1 inhibitors is a tempting approach to treat estrogen-dependent breast cancer. Our recent studies demonstrate that in addition to sex hormone target tissues, estrogens may be important in the development of cancer in some other tissues previously not considered as estrogen target tissues such as colon. Our data show that the abundant expression of 17HSD type 2 present in normal colonic mucosa is significantly decreased during colon cancer development.  相似文献   

12.
13.
14.
Geminin is a potent inhibitor of origin assembly and re-replication in multicellular eukaryotes and is a negative regulator of DNA replication during the cell cycle. Thus, it was proposed as an inhibitor of cell proliferation and as a potential tumor suppressor gene. However, the protein was found specifically expressed in proliferating lymphocytes and epithelial cells and up-regulated in several malignancies. Therefore, geminin is now regarded as an oncogene but its role in tumor development remains unknown. In this study, we evaluated by Western blot analysis the expression of geminin in a series of human cancer cell lines of various histogenetic origin and in a series of human primary colon, rectal, and breast cancers. Expression of geminin was variable in different cell lines and not related to the expression level of the corresponding mRNA. Moreover, geminin was expressed at higher level in 56% and 58% of colon and rectal cancers, respectively, compared with the corresponding adjacent normal mucosa. A high expression of geminin was also detected by immunohistochemistry in 60% of human primary breast cancers. We also transfected a full-length geminin cDNA in a human non-tumorigenic and a cancer breast cell lines and obtained derivatives expressing high levels of the protein. Geminin overexpression stimulated cell cycle progression and proliferation in both normal and cancer cells and increased the anchorage--independent growth of breast cancer cells. These results demonstrate that expression of geminin is frequently deregulated in tumor cells and might play an important role in the regulation of cell growth in both normal and malignant cells.  相似文献   

15.
Heat shock proteins (HSPs) are thought to play a role in the development of cancer and to modulate tumor response to cytotoxic therapy. In this study, we have examined the expression of hsf and HSP genes in normal human prostate epithelial cells and a range of prostate carcinoma cell lines derived from human tumors. We have observed elevated expressions of HSF1, HSP60, and HSP70 in the aggressively malignant cell lines PC-3, DU-145, and CA-HPV-10. Elevated HSP expression in cancer cell lines appeared to be regulated at the post-messenger ribonucleic acid (mRNA) levels, as indicated by gene chip microarray studies, which indicated little difference in heat shock factor (HSF) or HSP mRNA expression between the normal and malignant prostate cell lines. When we compared the expression patterns of constitutive HSP genes between PC-3 prostate carcinoma cells growing as monolayers in vitro and as tumor xenografts growing in nude mice in vivo, we found a marked reduction in expression of a wide spectrum of the HSPs in PC-3 tumors. This decreased HSP expression pattern in tumors may underlie the increased sensitivity to heat shock of PC-3 tumors. However, the induction by heat shock of HSP genes was not markedly altered by growth in the tumor microenvironment, and HSP40, HSP70, and HSP110 were expressed abundantly after stress in each growth condition. Our experiments indicate therefore that HSF and HSP levels are elevated in the more highly malignant prostate carcinoma cells and also show the dominant nature of the heat shock-induced gene expression, leading to abundant HSP induction in vitro or in vivo.  相似文献   

16.
Oxytocin has been implicated in the regulation of prostate growth. However, the cellular localisation of oxytocin in the normal and diseased human prostate is not known. Oxytocin, oxytocin-associated neurophysin and oxytocin receptor were detected by immunohistochemistry in tissues from patients undergoing routine prostatectomy and in normal human prostate epithelial and stromal cell lines. Western blot analysis detected a single band at 14 kDa with neurophysin antiserum and a 66-kDa band with oxytocin receptor antiserum in epithelial and stromal cell lines. Similar sized bands were also detected in extracts of hyperplastic and adenocarcinomic prostate tissues. Oxytocin, oxytocin-associated neurophysin and oxytocin receptor were present in stromal and epithelial cell lines and in tissue from patients with benign prostatic hyperplasia. The peptides were localised predominantly to the epithelial cells, although discrete areas of stromal staining were also observed. There was a significant difference in the intensity of oxytocin-staining between tissue displaying benign prostatic hyperplasia and invasive carcinoma, with less immunoreactivity being present in the malignant epithelial cells. Thus, oxytocin and its neurophysin and receptor are present in epithelial and stromal cells of the human prostate. Oxytocin expression is reduced with tumour progression and may provide a marker for invasive disease.This work was supported by a Project Grant (007756) from the Wellcome Trust and from Lottery Health Research  相似文献   

17.
Peroxisome proliferator-activated receptor gamma (PPARγ) plays an important role in the differentiation of intestinal cells and tissues. Our previous reports indicate that PPARγ is expressed at considerable levels in human colon cancer cells. This suggests that PPARγ expression may be an important factor for cell growth regulation in colon cancer. In this study, we investigated PPARγ expression in 4 human colon cancer cell lines, HT-29, LOVO, DLD-1, and Caco-2. Real-time polymerase chain reaction (PCR) and Western blot analysis revealed that the relative levels of PPARγ mRNA and protein in these cells were in the order HT-29>LOVO>Caco-2>DLD-1. We also found that PPARγ overexpression promoted cell growth inhibition in PPARγ lower-expressing cell lines (Caco-2 and DLD-1), but not in higher-expressing cells (HT-29 and LOVO). We observed a correlation between the level of PPARγ expression and the cells' sensitivity for proliferation.  相似文献   

18.

Background  

Zinc plays important roles in maintaining normal function of the prostate and in development of prostate malignancy. It has been demonstrated that prostate malignant epithelial cells contain much less cellular zinc than the surrounding normal epithelial cells. However, the pathway(s) which leads to lower zinc accumulation in malignant prostate epithelial cells is poorly understood. In this study, the zinc homeostatic features of two human prostate epithelial cell lines (non-tumorigenic, RWPE1, and tumorigenic, RWPE2) were investigated. Effects of over-expression of ZIP1 in RWPE2 on cell proliferation and apoptosis were also studied.  相似文献   

19.
20.
Cholesterol-lowering treatment has been suggested to delay progression of prostate cancer by decreasing serum LDL. We studied in vitro the effect of extracellular LDL-cholesterol on the number of prostate epithelial cells and on the expression of key regulators of cholesterol metabolism. Two normal prostatic epithelial cell lines (P96E, P97E), two in vitro immortalized epithelial cell lines (PWR-1E, RWPE-1) and two cancer cell lines (LNCaP and VCaP) were grown in cholesterol-deficient conditions. Cells were treated with 1-50 μg/ml LDL-cholesterol and/or 100 nM simvastatin for seven days. Cell number relative to control was measured with crystal violet staining. Changes in mRNA and protein expression of key effectors in cholesterol metabolism (HMGCR, LDLR, SREBP2 and ABCA1) were measured with RT-PCR and immunoblotting, respectively. LDL increased the relative cell number of prostate cancer cell lines, but reduced the number of normal epithelial cells at high concentrations. Treatment with cholesterol-lowering simvastatin induced up to 90% reduction in relative cell number of normal cell lines but a 15-20% reduction in relative number of cancer cells, an effect accompanied by sharp upregulation of HMGCR and LDLR. These effects were prevented by LDL. Compared to the normal cells, prostate cancer cells showed high expression of cholesterol-producing HMGCR but failed to express the major cholesterol exporter ABCA1. LDL increased relative cell number of cancer cell lines, and these cells were less vulnerable than normal cells to cholesterol-lowering simvastatin treatment. Our study supports the importance of LDL for prostate cancer cells, and suggests that cholesterol metabolism in prostate cancer has been reprogrammed to increased production in order to support rapid cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号