首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Normal mode analysis offers an efficient way of modeling the conformational flexibility of protein structures. We use anisotropic displacement parameters from crystallography to test the quality of prediction of both the magnitude and directionality of conformational flexibility. Normal modes from four simple elastic network model potentials and from the CHARMM force field are calculated for a data set of 83 diverse, ultrahigh-resolution crystal structures. While all five potentials provide good predictions of the magnitude of flexibility, all-atom potentials have a clear edge at prediction of directionality, and the CHARMM potential has the highest prediction quality. The low-frequency modes from different potentials are similar, but those computed from the CHARMM potential show the greatest difference from the elastic network models. The comprehensive evaluation demonstrates the costs and benefits of using normal mode potentials of varying complexity.  相似文献   

2.
Conformations of globular proteins in the denatured state were studied using a high-resolution lattice model of proteins and Monte Carlo dynamics. The model assumes a united-atom and high-coordination lattice representation of the polypeptide conformational space. The force field of the model mimics the short-range protein-like conformational stiffness, hydrophobic interactions of the side chains and the main-chain hydrogen bonds. Two types of approximations for the short-range interactions were compared: simple statistical potentials and knowledge-based protein-specific potentials derived from the sequence-structure compatibility of short fragments of protein chains. Model proteins in the denatured state are relatively compact, although the majority of the sampled conformations are globally different from the native fold. At the same time short protein fragments are mostly native-like. Thus, the denatured state of the model proteins has several features of the molten globule state observed experimentally. Statistical potentials induce native-like conformational propensities in the denatured state, especially for the fragments located in the core of folded proteins. Knowledge-based protein-specific potentials increase only slightly the level of similarity to the native conformations, in spite of their qualitatively higher specificity in the native structures. For a few cases, where fairly accurate experimental data exist, the simulation results are in semiquantitative agreement with the physical picture revealed by the experiments. This shows that the model studied in this work could be used efficiently in computational studies of protein dynamics in the denatured state, and consequently for studies of protein folding pathways, i.e. not only for the modeling of folded structures, as it was shown in previous studies. The results of the present studies also provide a new insight into the explanation of the Levinthal's paradox.  相似文献   

3.
A new method for the homology-based modeling of protein three-dimensional structures is proposed and evaluated. The alignment of a query sequence to a structural template produced by threading algorithms usually produces low-resolution molecular models. The proposed method attempts to improve these models. In the first stage, a high-coordination lattice approximation of the query protein fold is built by suitable tracking of the incomplete alignment of the structural template and connection of the alignment gaps. These initial lattice folds are very similar to the structures resulting from standard molecular modeling protocols. Then, a Monte Carlo simulated annealing procedure is used to refine the initial structure. The process is controlled by the model's internal force field and a set of loosely defined restraints that keep the lattice chain in the vicinity of the template conformation. The internal force field consists of several knowledge-based statistical potentials that are enhanced by a proper analysis of multiple sequence alignments. The template restraints are implemented such that the model chain can slide along the template structure or even ignore a substantial fraction of the initial alignment. The resulting lattice models are, in most cases, closer (sometimes much closer) to the target structure than the initial threading-based models. All atom models could easily be built from the lattice chains. The method is illustrated on 12 examples of target/template pairs whose initial threading alignments are of varying quality. Possible applications of the proposed method for use in protein function annotation are briefly discussed.  相似文献   

4.
A novel approach to hierarchical peptide-protein and protein-protein docking is described and evaluated. Modeling procedure starts from a reduced space representation of proteins and peptides. Polypeptide chains are represented by strings of alpha-carbon beads restricted to a fine-mesh cubic lattice. Side chains are represented by up to two centers of interactions, corresponding to beta-carbons and the centers of mass of the remaining portions of the side groups, respectively. Additional pseudoatoms are located in the centers of the virtual bonds connecting consecutive alpha carbons. These pseudoatoms support a model of main-chain hydrogen bonds. Docking starts from a collection of random configurations of modeled molecules. Interacting molecules are flexible; however, higher accuracy models are obtained when the conformational freedom of one (the larger one) of the assembling molecules is limited by a set of weak distance restraints extracted from the experimental (or theoretically predicted) structures. Sampling is done by means of Replica Exchange Monte Carlo method. Afterwards, the set of obtained structures is subject to a hierarchical clustering. Then, the centroids of the resulting clusters are used as scaffolds for the reconstruction of the atomic details. Finally, the all-atom models are energy minimized and scored using classical tools of molecular mechanics. The method is tested on a set of macromolecular assemblies consisting of proteins and peptides. It is demonstrated that the proposed approach to the flexible docking could be successfully applied to prediction of protein-peptide and protein-protein interactions. The obtained models are almost always qualitatively correct, although usually of relatively low (or moderate) resolution. In spite of this limitation, the proposed method opens new possibilities of computational studies of macromolecular recognition and mechanisms of assembly of macromolecular complexes.  相似文献   

5.
Olson MA  Yeh IC  Lee MS 《Biopolymers》2008,89(2):153-159
Many realistic protein-engineering design problems extend beyond the computational limits of what is considered practical when applying all-atom molecular-dynamics simulation methods. Lattice models provide computationally robust alternatives, yet most are regarded as too simplistic to accurately capture the details of complex designs. We revisit a coarse-grained lattice simulation model and demonstrate that a multiresolution modeling approach of reconstructing all-atom structures from lattice chains is of sufficient accuracy to resolve the comparability of sequence-structure modifications of the ricin A-chain (RTA) protein fold. For a modeled structure, the unfolding-folding transition temperature was calculated from the heat capacity using either the potential energy from the lattice model or the all-atom CHARMM19 force-field plus a generalized Born solvent approximation. We found, that despite the low-resolution modeling of conformational states, the potential energy functions were capable of detecting the relative change in the thermodynamic transition temperature that distinguishes between a protein design and the native RTA fold in excellent accord with reported experimental studies of thermal denaturation. A discussion is provided of different sequences fitted to the RTA fold and a possible unfolding model.  相似文献   

6.
We developed a series of statistical potentials to recognize the native protein from decoys, particularly when using only a reduced representation in which each side chain is treated as a single C(beta) atom. Beginning with a highly successful all-atom statistical potential, the Discrete Optimized Protein Energy function (DOPE), we considered the implications of including additional information in the all-atom statistical potential and subsequently reducing to the C(beta) representation. One of the potentials includes interaction energies conditional on backbone geometries. A second potential separates sequence local from sequence nonlocal interactions and introduces a novel reference state for the sequence local interactions. The resultant potentials perform better than the original DOPE statistical potential in decoy identification. Moreover, even upon passing to a reduced C(beta) representation, these statistical potentials outscore the original (all-atom) DOPE potential in identifying native states for sets of decoys. Interestingly, the backbone-dependent statistical potential is shown to retain nearly all of the information content of the all-atom representation in the C(beta) representation. In addition, these new statistical potentials are combined with existing potentials to model hydrogen bonding, torsion energies, and solvation energies to produce even better performing potentials. The ability of the C(beta) statistical potentials to accurately represent protein interactions bodes well for computational efficiency in protein folding calculations using reduced backbone representations, while the extensions to DOPE illustrate general principles for improving knowledge-based potentials.  相似文献   

7.
Ab initio folding of proteins with all-atom discrete molecular dynamics   总被引:3,自引:0,他引:3  
Discrete molecular dynamics (DMD) is a rapid sampling method used in protein folding and aggregation studies. Until now, DMD was used to perform simulations of simplified protein models in conjunction with structure-based force fields. Here, we develop an all-atom protein model and a transferable force field featuring packing, solvation, and environment-dependent hydrogen bond interactions. We performed folding simulations of six small proteins (20-60 residues) with distinct native structures by the replica exchange method. In all cases, native or near-native states were reached in simulations. For three small proteins, multiple folding transitions are observed, and the computationally characterized thermodynamics are in qualitative agreement with experiments. The predictive power of all-atom DMD highlights the importance of environment-dependent hydrogen bond interactions in modeling protein folding. The developed approach can be used for accurate and rapid sampling of conformational spaces of proteins and protein-protein complexes and applied to protein engineering and design of protein-protein interactions.  相似文献   

8.

Background

Protein structures are critical for understanding the mechanisms of biological systems and, subsequently, for drug and vaccine design. Unfortunately, protein sequence data exceed structural data by a factor of more than 200 to 1. This gap can be partially filled by using computational protein structure prediction. While structure prediction Web servers are a notable option, they often restrict the number of sequence queries and/or provide a limited set of prediction methodologies. Therefore, we present a standalone protein structure prediction software package suitable for high-throughput structural genomic applications that performs all three classes of prediction methodologies: comparative modeling, fold recognition, and ab initio. This software can be deployed on a user''s own high-performance computing cluster.

Methodology/Principal Findings

The pipeline consists of a Perl core that integrates more than 20 individual software packages and databases, most of which are freely available from other research laboratories. The query protein sequences are first divided into domains either by domain boundary recognition or Bayesian statistics. The structures of the individual domains are then predicted using template-based modeling or ab initio modeling. The predicted models are scored with a statistical potential and an all-atom force field. The top-scoring ab initio models are annotated by structural comparison against the Structural Classification of Proteins (SCOP) fold database. Furthermore, secondary structure, solvent accessibility, transmembrane helices, and structural disorder are predicted. The results are generated in text, tab-delimited, and hypertext markup language (HTML) formats. So far, the pipeline has been used to study viral and bacterial proteomes.

Conclusions

The standalone pipeline that we introduce here, unlike protein structure prediction Web servers, allows users to devote their own computing assets to process a potentially unlimited number of queries as well as perform resource-intensive ab initio structure prediction.  相似文献   

9.
Protein decoy data sets provide a benchmark for testing scoring functions designed for fold recognition and protein homology modeling problems. It is commonly believed that statistical potentials based on reduced atomic models are better able to discriminate native-like from misfolded decoys than scoring functions based on more detailed molecular mechanics models. Recent benchmark tests on small data sets, however, suggest otherwise. In this work, we report the results of extensive decoy detection tests using an effective free energy function based on the OPLS all-atom (OPLS-AA) force field and the Surface Generalized Born (SGB) model for the solvent electrostatic effects. The OPLS-AA/SGB effective free energy is used as a scoring function to detect native protein folds among a total of 48,832 decoys for 32 different proteins from Park and Levitt's 4-state-reduced, Levitt's local-minima, Baker's ROSETTA all-atom, and Skolnick's decoy sets. Solvent electrostatic effects are included through the Surface Generalized Born (SGB) model. All structures are locally minimized without restraints. From an analysis of the individual energy components of the OPLS-AA/SGB energy function for the native and the best-ranked decoy, it is determined that a balance of the terms of the potential is responsible for the minimized energies that most successfully distinguish the native from the misfolded conformations. Different combinations of individual energy terms provide less discrimination than the total energy. The results are consistent with observations that all-atom molecular potentials coupled with intermediate level solvent dielectric models are competitive with knowledge-based potentials for decoy detection and protein modeling problems such as fold recognition and homology modeling.  相似文献   

10.
Conformational sampling is one of the bottlenecks in fragment-based protein structure prediction approaches. They generally start with a coarse-grained optimization where mainchain atoms and centroids of side chains are considered, followed by a fine-grained optimization with an all-atom representation of proteins. It is during this coarse-grained phase that fragment-based methods sample intensely the conformational space. If the native-like region is sampled more, the accuracy of the final all-atom predictions may be improved accordingly. In this work we present EdaFold, a new method for fragment-based protein structure prediction based on an Estimation of Distribution Algorithm. Fragment-based approaches build protein models by assembling short fragments from known protein structures. Whereas the probability mass functions over the fragment libraries are uniform in the usual case, we propose an algorithm that learns from previously generated decoys and steers the search toward native-like regions. A comparison with Rosetta AbInitio protocol shows that EdaFold is able to generate models with lower energies and to enhance the percentage of near-native coarse-grained decoys on a benchmark of [Formula: see text] proteins. The best coarse-grained models produced by both methods were refined into all-atom models and used in molecular replacement. All atom decoys produced out of EdaFold's decoy set reach high enough accuracy to solve the crystallographic phase problem by molecular replacement for some test proteins. EdaFold showed a higher success rate in molecular replacement when compared to Rosetta. Our study suggests that improving low resolution coarse-grained decoys allows computational methods to avoid subsequent sampling issues during all-atom refinement and to produce better all-atom models. EdaFold can be downloaded from http://www.riken.jp/zhangiru/software/.  相似文献   

11.
Nanda V  DeGrado WF 《Proteins》2005,59(3):454-466
In the absence of experimental structural determination, numerous methods are available to indirectly predict or probe the structure of a target molecule. Genetic modification of a protein sequence is a powerful tool for identifying key residues involved in binding reactions or protein stability. Mutagenesis data is usually incorporated into the modeling process either through manual inspection of model compatibility with empirical data, or through the generation of geometric constraints linking sensitive residues to a binding interface. We present an approach derived from statistical studies of lattice models for introducing mutation information directly into the fitness score. The approach takes into account the phenotype of mutation (neutral or disruptive) and calculates the energy for a given structure over an ensemble of sequences. The structure prediction procedure searches for the optimal conformation where neutral sequences either have no impact or improve stability and disruptive sequences reduce stability relative to wild type. We examine three types of sequence ensembles: information from saturation mutagenesis, scanning mutagenesis, and homologous proteins. Incorporating multiple sequences into a statistical ensemble serves to energetically separate the native state and misfolded structures. As a result, the prediction of structure with a poor force field is sufficiently enhanced by mutational information to improve accuracy. Furthermore, by separating misfolded conformations from the target score, the ensemble energy serves to speed up conformational search algorithms such as Monte Carlo-based methods.  相似文献   

12.
13.
Yang Q  Sharp KA 《Proteins》2009,74(3):682-700
We describe a method for efficiently generating ensembles of alternate, all-atom protein structures that (a) differ significantly from the starting structure, (b) have good stereochemistry (bonded geometry), and (c) have good steric properties (absence of atomic overlap). The method uses reconstruction from a series of backbone framework structures that are obtained from a modified elastic network model (ENM) by perturbation along low-frequency normal modes. To ensure good quality backbone frameworks, the single force parameter ENM is modified by introducing two more force parameters to characterize the interaction between the consecutive carbon alphas and those within the same secondary structure domain. The relative stiffness of the three parameters is parameterized to reproduce B-factors, while maintaining good bonded geometry. After parameterization, violations of experimental Calpha-Calpha distances and Calpha-Calpha-Calpha pseudo angles along the backbone are reduced to less than 1%. Simultaneously, the average B-factor correlation coefficient improves to R = 0.77. Two applications illustrate the potential of the approach. (1) 102,051 protein backbones spanning a conformational space of 15 A root mean square deviation were generated from 148 nonredundant proteins in the PDB database, and all-atom models with minimal bonded and nonbonded violations were produced from this ensemble of backbone structures using the SCWRL side chain building program. (2) Improved backbone templates for homology modeling. Fifteen query sequences were each modeled on two targets. For each of the 30 target frameworks, dozens of improved templates could be produced In all cases, improved full atom homology models resulted, of which 50% could be identified blind using the D-Fire statistical potential.  相似文献   

14.
Distance-dependent statistical potentials are an important class of energy functions extensively used in modeling protein structures and energetics. These potentials are obtained by statistically analyzing the proximity of atoms in all combinatorial amino-acid pairs in proteins with known structures. In model evaluation, the statistical potential is usually subtracted by the value of a reference state for better selectivity. An ideal reference state should include the general chemical properties of polypeptide chains so that only the unique factors stabilizing the native structures are retained after calibrating on reference state. However, reference states available as of this writing rarely model specific chemical constraints of peptide bonds and therefore poorly reflect the behavior of polypeptide chains. In this work, we proposed a statistical potential based on unfolded state ensemble (SPOUSE), where the reference state is summarized from the unfolded state ensembles of proteins produced according to the statistical coil model. Due to its better representation of the features of polypeptides, SPOUSE outperforms three of the most widely used distance-dependent potentials not only in native conformation identification, but also in the selection of close-to-native models and correlation coefficients between energy and model error. Furthermore, SPOUSE shows promising possibility of further improvement by integration with the orientation-dependent side-chain potentials.  相似文献   

15.
Consistently predicting biopolymer structure at atomic resolution from sequence alone remains a difficult problem, even for small sub-segments of large proteins. Such loop prediction challenges, which arise frequently in comparative modeling and protein design, can become intractable as loop lengths exceed 10 residues and if surrounding side-chain conformations are erased. Current approaches, such as the protein local optimization protocol or kinematic inversion closure (KIC) Monte Carlo, involve stages that coarse-grain proteins, simplifying modeling but precluding a systematic search of all-atom configurations. This article introduces an alternative modeling strategy based on a ‘stepwise ansatz’, recently developed for RNA modeling, which posits that any realistic all-atom molecular conformation can be built up by residue-by-residue stepwise enumeration. When harnessed to a dynamic-programming-like recursion in the Rosetta framework, the resulting stepwise assembly (SWA) protocol enables enumerative sampling of a 12 residue loop at a significant but achievable cost of thousands of CPU-hours. In a previously established benchmark, SWA recovers crystallographic conformations with sub-Angstrom accuracy for 19 of 20 loops, compared to 14 of 20 by KIC modeling with a comparable expenditure of computational power. Furthermore, SWA gives high accuracy results on an additional set of 15 loops highlighted in the biological literature for their irregularity or unusual length. Successes include cis-Pro touch turns, loops that pass through tunnels of other side-chains, and loops of lengths up to 24 residues. Remaining problem cases are traced to inaccuracies in the Rosetta all-atom energy function. In five additional blind tests, SWA achieves sub-Angstrom accuracy models, including the first such success in a protein/RNA binding interface, the YbxF/kink-turn interaction in the fourth ‘RNA-puzzle’ competition. These results establish all-atom enumeration as an unusually systematic approach to ab initio protein structure modeling that can leverage high performance computing and physically realistic energy functions to more consistently achieve atomic accuracy.  相似文献   

16.
Soto CS  Fasnacht M  Zhu J  Forrest L  Honig B 《Proteins》2008,70(3):834-843
We describe a fast and accurate protocol, LoopBuilder, for the prediction of loop conformations in proteins. The procedure includes extensive sampling of backbone conformations, side chain addition, the use of a statistical potential to select a subset of these conformations, and, finally, an energy minimization and ranking with an all-atom force field. We find that the Direct Tweak algorithm used in the previously developed LOOPY program is successful in generating an ensemble of conformations that on average are closer to the native conformation than those generated by other methods. An important feature of Direct Tweak is that it checks for interactions between the loop and the rest of the protein during the loop closure process. DFIRE is found to be a particularly effective statistical potential that can bias conformation space toward conformations that are close to the native structure. Its application as a filter prior to a full molecular mechanics energy minimization both improves prediction accuracy and offers a significant savings in computer time. Final scoring is based on the OPLS/SBG-NP force field implemented in the PLOP program. The approach is also shown to be quite successful in predicting loop conformations for cases where the native side chain conformations are assumed to be unknown, suggesting that it will prove effective in real homology modeling applications.  相似文献   

17.
Zhou Y  Linhananta A 《Proteins》2002,47(2):154-162
Predicting the folding mechanism of the second beta-hairpin fragment of the Ig-binding domain B of streptococcal protein G is unexpectedly challenging for simplified reduced models because the models developed so far indicated a different folding mechanism from what was suggested from high-temperature unfolding and equilibrium free-energy surface analysis based on established all-atom empirical force fields in explicit or implicit solvent. This happened despite the use of empirical residue-based interactions, multibody hydrophobic interactions, and inclusions of hydrogen bonding effects in the simplified models. This article employs a recently developed all-atom (except nonpolar hydrogens) model interacting with simple square-well potentials to fold the peptide fragment by molecular dynamics simulation methods. In this study, 193 out of 200 trajectories are folded at two reduced temperatures (3.5 and 3.7) close to the transition temperature T* approximately 4.0. Each simulation takes <7 h of CPU time on a Pentium 800-MHz PC. Folding of the new all-atom model is found to be initiated by collapse before the formation of main-chain hydrogen bonds. This verifies the mechanism proposed from previous all-atom unfolding and equilibrium simulations. The new model further predicts that the collapse is initiated by two nucleation contacts (a hydrophilic contact between D46 and T49 and a hydrophobic contact between Y45 and F52), in agreement with recent NMR measurements. The results suggest that atomic packing and native contact interactions play a dominant role in folding mechanism.  相似文献   

18.
Protein recognition is one of the most challenging and intriguing problems in structural biology. Despite all the available structural, sequence and biophysical information about protein-protein complexes, the physico-chemical patterns, if any, that make a protein surface likely to be involved in protein-protein interactions, remain elusive. Here, we apply protein docking simulations and analysis of the interaction energy landscapes to identify protein-protein interaction sites. The new protocol for global docking based on multi-start global energy optimization of an all-atom model of the ligand, with detailed receptor potentials and atomic solvation parameters optimized in a training set of 24 complexes, explores the conformational space around the whole receptor without restrictions. The ensembles of the rigid-body docking solutions generated by the simulations were subsequently used to project the docking energy landscapes onto the protein surfaces. We found that highly populated low-energy regions consistently corresponded to actual binding sites. The procedure was validated on a test set of 21 known protein-protein complexes not used in the training set. As much as 81% of the predicted high-propensity patch residues were located correctly in the native interfaces. This approach can guide the design of mutations on the surfaces of proteins, provide geometrical details of a possible interaction, and help to annotate protein surfaces in structural proteomics.  相似文献   

19.
Kellogg EH  Leaver-Fay A  Baker D 《Proteins》2011,79(3):830-838
The prediction of changes in protein stability and structure resulting from single amino acid substitutions is both a fundamental test of macromolecular modeling methodology and an important current problem as high throughput sequencing reveals sequence polymorphisms at an increasing rate. In principle, given the structure of a wild-type protein and a point mutation whose effects are to be predicted, an accurate method should recapitulate both the structural changes and the change in the folding-free energy. Here, we explore the performance of protocols which sample an increasing diversity of conformations. We find that surprisingly similar performances in predicting changes in stability are achieved using protocols that involve very different amounts of conformational sampling, provided that the resolution of the force field is matched to the resolution of the sampling method. Methods involving backbone sampling can in some cases closely recapitulate the structural changes accompanying mutations but not surprisingly tend to do more harm than good in cases where structural changes are negligible. Analysis of the outliers in the stability change calculations suggests areas needing particular improvement; these include the balance between desolvation and the formation of favorable buried polar interactions, and unfolded state modeling.  相似文献   

20.
Schug A  Herges T  Wenzel W 《Proteins》2004,57(4):792-798
All-atom protein structure prediction from the amino acid sequence alone remains an important goal of biophysical chemistry. Recent progress in force field development and validation suggests that the PFF01 free-energy force field correctly predicts the native conformation of various helical proteins as the global optimum of its free-energy surface. Reproducible protein structure prediction requires the availability of efficient optimization methods to locate the global minima of such complex potentials. Here we investigate an adapted version of the parallel tempering method as an efficient parallel stochastic optimization method for protein structure prediction. Using this approach we report the reproducible all-atom folding of the three-helix 40 amino acid HIV accessory protein from random conformations to within 2.4 A backbone RMS deviation from the experimental structure with modest computational resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号