首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Eukaryotic vesicular transport requires the recognition of membranes through specific protein complexes. The heterotetrameric adaptor protein complexes 1, 2, and 3 (AP1/2/3) are composed of two large, one small, and one medium adaptin subunit. We isolated and characterized the cDNA for Arabidopsisγ-adaptin and performed a phylogenetic analysis of all adaptin subunits (proteins) in the context of all known homologous proteins. This analysis revealed (i) that the large subunits of AP1/2/3 are homologous and (ii) two subunits of the heptameric coatomer I (COPI) complex belong to this gene family. In addition, all small subunits and the aminoterminal domain of the medium subunits of the heterotetramers are homologous to each other; this also holds for two corresponding subunits of the COPI complex. AP1/2/3 and a substructure (heterotetrameric, F-COPI subcomplex) of the heptameric COPI had a common ancestral complex (called pre-F-COPI). Since all large and all small/medium subunits share sequence similarity, the ancestor of this complex is inferred to have been a heterodimer composed of one large and one small subunit. The situation encountered today is the result of successive rounds of coordinated gene duplications of both the large and the small/medium subunits, with F-COPI being the first that separated from the ancestral pre-F-COPI. Received: 1 October 1998 / Accepted: 4 January 1999  相似文献   

2.
Austin C  Boehm M  Tooze SA 《Biochemistry》2002,41(14):4669-4677
We have used a site-specific photo-cross-linking approach to identify direct interactions between clathrin adaptor protein (AP)1 complexes and small GTPases of the ADP-ribosylation factor (ARF) family and to explore the specificity of this interaction on immature secretory granule (ISG) membranes. ISG membranes are a well-characterized, highly enriched preparation of membranes that has previously been shown to have the membrane-associated factors for ARF1 recruitment that are not present on artificial liposomes. All three classes of ARF proteins could be recruited to ISG membranes, displaying differential requirements for GTPgammaS. We found that ARF1, ARF5, and ARF6 interacted directly with the beta1-adaptin subunit of AP-1 in the presence of GTPgammaS. Furthermore, we observed a direct interaction between the switch 1 region of ARF1 and the N-terminal trunk domains of gamma- and beta1-adaptin. In addition, both ARF1 and ARF6 but not ARF5 interacted directly with the beta3- and delta-adaptin subunits of AP-3. No interaction was observed between AP-2 and any of the ARF proteins. Our results delineate the specificity and provide evidence of a direct interaction between different ARF proteins and the AP complexes AP-1 and AP-3 on natural ISG membranes and show that residues in the switch 1 region of ARF proteins can selectively bind to the trunk domains of these complexes.  相似文献   

3.
The sorting of transmembrane proteins to endosomes and lysosomes is mediated by signals present in the cytosolic tails of the proteins. A subset of these signals conform to the [DE]XXXL[LI] consensus motif and mediate sorting via interactions with heterotetrameric adaptor protein (AP) complexes. However, the identity of the AP subunits that recognize these signals remains controversial. We have used a yeast three-hybrid assay to demonstrate that [DE]XXXL[LI]-type signals from the human immunodeficiency virus negative factor protein and the lysosomal integral membrane protein II interact with combinations of the gamma and sigma1 subunits of AP-1 and the delta and sigma3 subunits of AP-3, but not the analogous combinations of AP-2 and AP-4 subunits. The sequence requirements for these interactions are similar to those for binding to the whole AP complexes in vitro and for function of the signals in vivo. These observations reveal a novel mode of recognition of sorting signals involving the gamma/delta and sigma subunits of AP-1 and AP-3.  相似文献   

4.
Transforming growth factor-beta (TGF-beta) superfamily members regulate a wide range of biological processes by binding to two transmembrane serine/threonine kinase receptors, type I and type II. We have previously shown that the internalization of these receptors is inhibited by K(+) depletion, cytosol acidification, or hypertonic medium, suggesting the involvement of clathrin-coated pits. However, the involvement of the clathrin-associated adaptor complex AP2 and the identity of the AP2 subunit that binds the receptors were not known. Herein, we have studied these issues by combining studies on intact cells with in vitro assays. Using fluorescence photobleaching recovery to measure the lateral mobility of the receptors on live cells (untreated or treated to alter their coated pit structure), we demonstrated that their mobility is restricted by interactions with coated pits. These interactions were transient and mediated through the receptors' cytoplasmic tails. To measure direct binding of the receptors to specific AP2 subunits, we used yeast two-hybrid screens and in vitro biochemical assays. In contrast to most other plasma membrane receptors that bind to AP2 via the mu2 subunit, AP2/TGF-beta receptor binding was mediated by a direct interaction between the beta2-adaptin N-terminal trunk domain and the cytoplasmic tails of the receptors; no binding was observed to the mu2, alpha, or sigma2 subunits of AP2 or to mu1 of AP1. The data uniquely demonstrate both in vivo and in vitro the ability of beta2-adaptin to directly couple TGF-beta receptors to AP2 and to clathrin-coated pits, providing the first in vivo evidence for interactions of a transmembrane receptor with beta2-adaptin.  相似文献   

5.
The adaptor AP2 is a heterotetrameric complex that associates with clathrin and regulatory proteins to mediate rapid endocytosis from the plasma membrane. Here, we report the identification of the mitotic checkpoint kinase BubR1 as a novel binding partner of beta2-adaptin, one of the AP2 large subunits. Using two-hybrid experiments and in vitro binding assays, we show that beta2-adaptin binds to BubR1 through its amino-terminal beta2-'trunk' domain, while the beta2-binding region of BubR1 maps to the carboxy-terminal kinase domain. Subcellular immunolocalization studies suggest that the interaction between BubR1 and beta2-adaptin could take place in the cytosol at any time during the cell cycle. In addition, we found that BubR1 and the BubR1-related kinase, Bub1, also bind to beta-adaptins of other AP complexes. Together, these results support a model in which the mitotic checkpoint kinases BubR1 and BuB1, by binding to beta-adaptins, may play novel roles in the regulation of vesicular intracellular traffic.  相似文献   

6.
AP-4 is a member of the family of heterotetrameric adaptor protein (AP) complexes that mediate the sorting of integral membrane proteins in post-Golgi compartments. This complex consists of four subunits (epsilon, beta4, mu4 and sigma4) and localizes to the cytoplasmic face of the trans-Golgi network (TGN). Here, we show that the recruitment of endogenous AP-4 to the TGN in vivo is regulated by the small GTP-binding protein ARF1. In addition, we demonstrate a direct interaction of the epsilon and mu4 subunits of AP-4 with ARF1. epsilon binds only to ARF1-GTP and requires residues in the switch I and switch II regions of ARF1. In contrast, mu4 binds equally well to the GTP- and GDP-bound forms of ARF1 and is less dependent on switch I and switch II residues. These observations establish AP-4 as an ARF1 effector and suggest a novel mode of interaction between ARF1 and an AP complex involving both constitutive and regulated interactions.  相似文献   

7.
Clathrin-associated adaptor protein (AP) complexes are major structural components of clathrin-coated vesicles, functioning in clathrin coat assembly and cargo selection. We have carried out a systematic biochemical and genetic characterization of AP complexes in Saccharomyces cerevisiae. Using coimmunoprecipitation, the subunit composition of two complexes, AP-1 and AP-2R, has been defined. These results allow assignment of the 13 potential AP subunits encoded in the yeast genome to three AP complexes. As assessed by in vitro binding assays and coimmunoprecipitation, only AP-1 interacts with clathrin. Individual or combined disruption of AP-1 subunit genes in cells expressing a temperature-sensitive clathrin heavy chain results in accentuated growth and alpha-factor pheromone maturation defects, providing further evidence that AP-1 is a clathrin adaptor complex. However, in cells expressing wild-type clathrin, the same AP subunit deletions have no effect on growth or alpha-factor maturation. Furthermore, gel filtration chromatography revealed normal elution patterns of clathrin-coated vesicles in cells lacking AP-1. Similarly, combined deletion of genes encoding the beta subunits of the three AP complexes did not produce defects in clathrin-dependent sorting in the endocytic and vacuolar pathways or alterations in gel filtration profiles of clathrin-coated vesicles. We conclude that AP complexes are dispensable for clathrin function in S. cerevisiae under normal conditions. Our results suggest that alternative factors assume key roles in stimulating clathrin coat assembly and cargo selection during clathrin-mediated vesicle formation in yeast.  相似文献   

8.
The beta 1 and beta 2 subunits are the closely-related large chains of the trans-Golgi network AP-1 and the plasma membrane AP-2 clathrin-associated protein complexes, respectively. Recombinant beta 1 and beta 2 subunits have been generated in Escherichia coli. It was found that, in the absence of all the other AP subunits, beta 1 and beta 2 interact with clathrin and drive the efficient assembly of clathrin coats. In addition, beta 2 subunits and AP complexes compete for the same clathrin binding site. The appearance of the clathrin/beta coats is the same as the barrel-shaped structures formed with native AP complexes. It is proposed that the principal function of the beta subunits is to initiate coat formation, while the remaining subunits of the AP complexes have other roles in coated pit and coated vesicle function.  相似文献   

9.
The human immunodeficiency virus type 1 virulence protein Nef interacts with the endosomal sorting machinery via a leucine-based motif. Similar sequences within the cytoplasmic domains of cellular transmembrane proteins bind to the adaptor protein (AP) complexes of coated vesicles to modulate protein traffic, but the molecular basis of the interactions between these motifs and the heterotetrameric complexes is controversial. To identify the target of the Nef leucine motif, the native sequence was replaced with either leucine- or tyrosine-based AP-binding sequences from cellular proteins, and the interactions with AP subunits were correlated with function. Tyrosine motifs predictably modulated the interactions between Nef and the mu subunits of AP-1, AP-2, and AP-3; heterologous leucine motifs caused little change in these interactions. Conversely, leucine motifs mediated a ternary interaction between Nef and hemicomplexes containing the sigma1 plus gamma subunits of AP-1 or the sigma3 plus delta subunits of AP-3, whereas tyrosine motifs did not. Similarly, only leucine motifs supported the Nef-mediated association of AP-1 and AP-3 with endosomal membranes in cells treated with brefeldin A. Functionally, Nef proteins containing leucine motifs down-regulated CD4 from the cell surface and enhanced viral replication, whereas those containing tyrosine motifs were inactive. Apparently, the interaction of Nef with the mu subunits of AP complexes is insufficient for function. A leucine-specific mode of interaction that likely involves AP hemicomplexes is further required for Nef activity. The mu and hemicomplex interactions may cooperate to yield high avidity binding of AP complexes to Nef. This binding likely underlies the unusual ability of Nef to induce the stabilization of these complexes on endosomal membranes, an activity that correlates with enhancement of viral replication.  相似文献   

10.
Adaptor protein complexes (APs) function as vesicle coat components in different membrane traffic pathways; however, there are a number of pathways for which there is still no candidate coat. To find novel coat components related to AP complexes, we have searched the expressed sequence tag database and have identified, cloned, and sequenced a new member of each of the four AP subunit families. We have shown by a combination of coimmunoprecipitation and yeast two-hybrid analysis that these four proteins (epsilon, beta4, mu4, and sigma4) are components of a novel adaptor-like heterotetrameric complex, which we are calling AP-4. Immunofluorescence reveals that AP-4 is localized to approximately 10-20 discrete dots in the perinuclear region of the cell. This pattern is disrupted by treating the cells with brefeldin A, indicating that, like other coat proteins, the association of AP-4 with membranes is regulated by the small GTPase ARF. Immunogold electron microscopy indicates that AP-4 is associated with nonclathrin-coated vesicles in the region of the trans-Golgi network. The mu4 subunit of the complex specifically interacts with a tyrosine-based sorting signal, indicating that, like the other three AP complexes, AP-4 is involved in the recognition and sorting of cargo proteins with tyrosine-based motifs. AP-4 is of relatively low abundance, but it is expressed ubiquitously, suggesting that it participates in a specialized trafficking pathway but one that is required in all cell types.  相似文献   

11.
Clathrin-associated protein (AP) complexes have been implicated in the assembly of clathrin coats and the selectivity of clathrin-mediated protein transport processes. We have identified a yeast gene, APS1, encoding a homolog of the small (referred to herein as sigma) subunits of the mammalian AP-1 complex. Sequence comparisons have shown that Aps1p is more similar to the sigma subunit of the Golgi-localized mammalian AP-1 complex than Aps2p, which is more related to the plasma membrane AP-2 sigma subunit. Like their mammalian counterparts, Aps1p and Aps2p are components of distinct, large (> 200 kDa) complexes and a significant portion of the Aps proteins co-fractionate with clathrin-coated vesicles during gel filtration chromatography. Unexpectedly, even though the evolutionary conservation of AP small subunits is substantial (50% identity between mammalian and yeast proteins), disruptions of APS1 (aps1 delta) and APS2 (aps2 delta), individually or in combination, elicit no detectable mutant phenotypes. These data indicate that the Aps proteins are not absolutely required for clathrin-mediated selective protein transport in cells expressing wild type clathrin. However, aps1 delta accentuated the slow growth and alpha-factor pheromone maturation defect of cells carrying a temperature-sensitive allele of clathrin heavy chain (Chc) (chc1-ts). In contrast, aps1 delta did not influence the effects of chc1-ts on vacuolar protein sorting or receptor-mediated endocytosis. The aps2 delta mutation resulted in a slight effect on chc1-ts cell growth but had no additional effects. The growth defect of cells completely lacking Chc was compounded by aps1 delta but not aps2 delta. These results comprise evidence that Aps1p is involved in a subset of clathrin functions at the Golgi apparatus. The effect of aps1 delta on cells devoid of clathrin function suggests that Aps1p also participates in clathrin-independent processes.  相似文献   

12.
Here we report the identification and characterization of AP-4, a novel protein complex related to the heterotetrameric AP-1, AP-2, and AP-3 adaptors that mediate protein sorting in the endocytic and late secretory pathways. The key to the identification of this complex was the cloning and sequencing of two widely expressed, mammalian cDNAs encoding new homologs of the adaptor beta and sigma subunits named beta4 and sigma4, respectively. An antibody to beta4 recognized in human cells an approximately 83-kDa polypeptide that exists in both soluble and membrane-associated forms. Gel filtration, sedimentation velocity, and immunoprecipitation experiments revealed that beta4 is a component of a multisubunit complex (AP-4) that also contains the sigma4 polypeptide and two additional adaptor subunit homologs named mu4 (mu-ARP2) and epsilon. Immunofluorescence analyses showed that AP-4 is associated with the trans-Golgi network or an adjacent structure and that this association is sensitive to the drug brefeldin A. We propose that, like the related AP-1, AP-2, and AP-3 complexes, AP-4 plays a role in signal-mediated trafficking of integral membrane proteins in mammalian cells.  相似文献   

13.
The fifth adaptor protein complex   总被引:1,自引:0,他引:1  
Adaptor protein (AP) complexes sort cargo into vesicles for transport from one membrane compartment of the cell to another. Four distinct AP complexes have been identified, which are present in most eukaryotes. We report the existence of a fifth AP complex, AP-5. Tagged AP-5 localises to a late endosomal compartment in HeLa cells. AP-5 does not associate with clathrin and is insensitive to brefeldin A. Knocking down AP-5 subunits interferes with the trafficking of the cation-independent mannose 6-phosphate receptor and causes the cell to form swollen endosomal structures with emanating tubules. AP-5 subunits can be found in all five eukaryotic supergroups, but they have been co-ordinately lost in many organisms. Concatenated phylogenetic analysis provides robust resolution, for the first time, into the evolutionary order of emergence of the adaptor subunit families, showing AP-3 as the basal complex, followed by AP-5, AP-4, and AP-1 and AP-2. Thus, AP-5 is an evolutionarily ancient complex, which is involved in endosomal sorting, and which has links with hereditary spastic paraplegia.  相似文献   

14.
Clathrin and the -adaptin subunit of the AP-1 clathrinadaptor have been previously identified on H-K-ATPase-richtubulovesicles from gastric acid secretory (oxyntic) cells [C. T. Okamoto, S. M. Karam, Y. Y. Jeng, J. G. Forte, and J. Goldenring.Am. J. Physiol. 274 (Cell Physiol. 43):C1017-C1029]. We further characterized this AP-1 adaptorfrom rabbit and hog tubulovesicles biochemically and immunologically.Clathrin coat proteins were stripped from purified tubulovesicularmembranes and fractionated by hydroxyapatite chromatography. The AP-1adaptor appears to elute at 200 mM sodium phosphate, based on thepresence of proteins in this fraction that are immunoreactive withantibodies against three of the four subunits of this heterotetramericcomplex: the -, µ1-, and1-adaptin subunits. Althoughthe putative -adaptin subunit in this fraction is not immunoreactivewith the anti--adaptin monoclonal antibody (MAb), this -adaptinis immunoreactive with polyclonal antibodies (PAbs) directed againstthe peptide sequenceGly625-Asp-Leu-Leu-Gly-Asp-Leu-Leu-Asn-Leu-Asp-Leu-Gly-Pro-Pro-Val640,a region conserved between 1-and 2-adaptins that is thought to be involved in the binding of clathrin heavy chain.Immunoprecipitation of the AP-1 adaptor complex from this fraction withanti--adaptin MAb 100/3 resulted in the coimmunoprecipitation of the-adaptin that did not react with the anti--adaptin MAb but didreact with the anti--adaptin PAbs. In contrast, immunoprecipitationof the AP-1 adaptor complex from crude clathrin-coated vesicles from brain resulted in the coimmunoprecipitation of a -adaptin that wasrecognized by both the anti--adaptin MAb and PAbs. These resultssuggest that the tubulovesicular AP-1 adaptor complex may be distinctfrom that found in the trans-Golgi network and may contain animmunologically distinct -adaptin. This immunologically distinct-adaptin may be diagnostic of apical tubulovesicular endosomes ofepithelial cells.

  相似文献   

15.
Two acyl-CoA carboxylases from Streptomyces coelicolor have been successfully reconstituted from their purified components. Both complexes shared the same biotinylated alpha subunit, AccA2. The beta and the epsilon subunits were specific from each of the complexes; thus, for the propionyl-CoA carboxylase complex the beta and epsilon components are PccB and PccE, whereas for the acetyl-CoA carboxylase complex the components are AccB and AccE. The two complexes showed very low activity in the absence of the corresponding epsilon subunits; addition of PccE or AccE dramatically increased the specific activity of the enzymes. The kinetic properties of the two acyl-CoA carboxylases showed a clear difference in their substrate specificity. The acetyl-CoA carboxylase was able to carboxylate acetyl-, propionyl-, or butyryl-CoA with approximately the same specificity. The propionyl-CoA carboxylase could not recognize acetyl-CoA as a substrate, whereas the specificity constant for propionyl-CoA was 2-fold higher than for butyryl-CoA. For both enzymes the epsilon subunits were found to specifically interact with their carboxyltransferase component forming a beta-epsilon subcomplex; this appears to facilitate the further interaction of these subunits with the alpha component. The epsilon subunit has been found genetically linked to several carboxyltransferases of different Streptomyces species; we propose that this subunit reflects a distinctive characteristic of a new group of acyl-CoA carboxylases.  相似文献   

16.
The mouse mutants mocha and pearl are deficient in the AP-3 delta and beta3A subunits, respectively. We have used cells from these mice to investigate both the assembly of AP-3 complexes and AP-3 function. In mocha cells, the beta3 and mu3 subunits coassemble into a heterodimer, whereas the sigma3 subunit remains monomeric. In pearl cells, the delta and sigma3 subunits coassemble into a heterodimer, whereas mu3 gets destroyed. The yeast two hybrid system was used to confirm these interactions, and also to demonstrate that the A (ubiquitous) and B (neuronal-specific) isoforms of beta3 and mu3 can interact with each other. Pearl cell lines were generated that express beta3A, beta3B, a beta3Abeta2 chimera, two beta3A deletion mutants, and a beta3A point mutant lacking a functional clathrin binding site. All six constructs assembled into complexes and were recruited onto membranes. However, only beta3A, beta3B, and the point mutant gave full functional rescue, as assayed by LAMP-1 sorting. The beta3Abeta2 chimera and the beta3A short deletion mutant gave partial functional rescue, whereas the beta3A truncation mutant gave no functional rescue. These results indicate that the hinge and/or ear domains of beta3 are important for function, but the clathrin binding site is not needed.  相似文献   

17.
beta-Arrestins, proteins involved in the turn-off of G protein-coupled receptor (GPCR) activation, bind to the beta(2)-adaptin subunit of the clathrin adaptor AP-2. The interaction of beta(2)-adaptin with beta-arrestin involves critical arginine residues in the C-terminal domain of beta-arrestin and plays an important role in initiating clathrin-mediated endocytosis of the beta(2)-adrenergic receptor (beta(2)AR) (Laporte, S. A., Oakley, R. H., Holt, J. A., Barak, L. S., and Caron, M. G. (2000) J. Biol. Chem. 275, 23120--23126). However, the beta-arrestin-binding site in beta(2)-adaptin has not been identified, and little is known about the role of beta-arrestin/AP-2 interaction in the endocytosis of other GPCRs. Using in vitro binding assays, we have identified two glutamate residues (Glu-849 and Glu-902) in beta(2)-adaptin that are important in beta-arrestin binding. These residues are located in the platform subdomain of the C terminus of beta(2)-adaptin, where accessory/adapter endocytic proteins for other classes of receptors interact, distinct from the main site where clathrin interacts. The functional significance of the beta-arrestin/AP-2/clathrin complex in the endocytosis of GPCRs such as the beta(2)AR and vasopressin type II receptor was evaluated using mutant constructs of the beta(2)-adaptin C terminus containing either the clathrin and the beta-arrestin binding domains or the beta-arrestin-binding domain alone. When expressed in human embryonic kidney 293 cells, both constructs acted as dominant negatives inhibiting the agonist-induced internalization of the beta(2)AR and the vasopressin type II receptor. In addition, although the beta(2)-adaptin construct containing both the clathrin and beta-arrestin binding domains was able to block the endocytosis of transferrin receptors, a beta(2)-adaptin construct capable of associating with beta-arrestin but lacking its high affinity clathrin interaction did not interfere with transferrin receptor endocytosis. These results suggest that the interaction of beta-arrestin with beta(2)-adaptin represents a selective endocytic trigger for several members of the GPCR family.  相似文献   

18.
NADH:ubiquinone oxidoreductase (complex I) was purified from bovine heart mitochondria by solubilization with n-dodecyl beta-D-maltoside (lauryl maltoside), ammonium sulfate fractionation, and chromatography on Mono Q in the presence of the detergent. Its subunit composition was very similar to complex I purified by conventional means. Complex I was dissociated in the presence of N,N-dimethyldodecylamine N-oxide and beta-mercaptoethanol, and two subcomplexes, I alpha and I beta, were isolated by chromatography. Subcomplex I alpha catalyzes electron transfer from NADH to ubiquinone-1. It is composed of about 22 different and mostly hydrophilic subunits and contains 2.0 nmol of FMN/mg of protein. Among its subunits is the 51-kDa subunit, which binds FMN and NADH and probably contains a [4Fe-4S] cluster also. Three other potential Fe-S proteins, the 75- and 24-kDa subunits and a 23-kDa subunit (N-terminal sequence TYKY), are also present. All of the Fe-S clusters detectable by EPR in complex I, including cluster 2, are found in subcomplex I alpha. The line shapes of the EPR spectra of the Fe-S clusters are slightly broadened relative to spectra measured on complex I purified by conventional means, and the quinone reductase activity is insensitive to rotenone. Similar changes were found in samples of the intact chromatographically purified complex I, or in complex I prepared by the conventional method and then subjected to chromatography in the presence of lauryl maltoside. Subcomplex I beta contains about 15 different subunits. The sequences of many of them contain hydrophobic segments that could be membrane spanning, including at least two mitochondrial gene products, ND4 and ND5. The role of subcomplex I beta in the intact complex remains to be elucidated.  相似文献   

19.
The mouse gene Ptprr encodes the neuronal protein tyrosine phosphatases PTP-SL and PTPBR7. These proteins differ in their N-terminal domains, with PTP-SL being a cytosolic, membrane-associated phosphatase and PTPBR7 a type I transmembrane protein. In this study, we further explored the nature of the PTP-SL-associated vesicles in neuronal cells using a panel of organelle markers and noted a comparable subcellular distribution for PTP-SL and the beta4-adaptin subunit of the AP4 complex. PTP-SL, PTPBR7 and beta4-adaptin are localised at the Golgi apparatus and at vesicles throughout the cytoplasm. Immunohistochemical analysis demonstrated that PTP-SL, PTPBR7 and beta4-adaptin are all endogenously expressed in brain. Interestingly, coexpression of PTP-SL and beta4-adaptin leads to an altered subcellular localisation for PTP-SL. Instead of the Golgi and vesicle-type staining pattern, still observable for beta4-adaptin, PTP-SL is now distributed throughout the cytoplasm. Although beta4-adaptin was found to interact with the phosphatase domain of PTP-SL and PTPBR7 in the yeast two-hybrid system, it failed to do so in transfected neuronal cells. Our data suggest that the tyrosine phosphatases PTP-SL and PTPBR7 may be involved in the formation and transport of AP4-coated vesicles or in the dephosphorylation of their transmembrane cargo molecules at or near the Golgi apparatus.  相似文献   

20.
Heterotetrameric adaptor (AP) complexes are thought to coordinate cargo recruitment and clathrin assembly during clathrin-coated vesicle biogenesis. We have identified, and characterized the physiological significance of clathrin-binding activities in the two large subunits of the AP-1 complex in Saccharomyces cerevisiae . Using GST-fusion chromatography, two clathrin-binding sites were defined in the β1 subunit that match consensus clathrin-binding sequences in other mammalian and yeast clathrin-binding proteins. Clathrin interactions were also identified with the C-terminal region of the γ subunit. When introduced into chromosomal genes, point mutations in the β1 clathrin-binding motifs, or deletion of the γ C-terminal region, reduced association of AP-1 with clathrin in coimmunoprecipitation assays. The β1 mutations or the γ truncation individually produced minor effects on AP-1 distribution by subcellular fractionation. However, when β1 and γ mutations were combined, severe defects were observed in AP-1 association with membranes and incorporation into clathrin-coated vesicles. The combination of subunit mutations accentuated growth and α-factor pheromone maturation defects in chc1-ts cells, though not to the extent caused by complete loss of AP-1 activity. Our results suggest that both the β1 and γ subunits contribute interactions with clathrin that are important for stable assembly of AP-1 complexes into clathrin coats in vivo .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号