首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This investigation describes how the binding characteristics of the single-stranded DNA-binding protein encoded by gene V of bacteriophage M13, are affected by single-site amino acid substitutions. The series of mutant proteins tested includes mutations in the purported monomer-monomer interaction region as well as mutations in the DNA-binding domain at positions which are thought to be functionally involved in monomer-monomer interaction or single-stranded DNA binding. The characteristics of the binding of the mutant proteins to the homopolynucleotides poly(dA), poly(dU) and poly(dT), were studied by means of fluorescence-titration experiments. The binding stoichiometry and fluorescence quenching of the mutant proteins are equal to, or lower than, the wild-type gene V protein values. In addition, all proteins measured bind a more-or-less co-operative manner to single-stranded DNA. The binding affinities for poly(dA) decrease in the following order: Y61H greater than wild-type greater than F68L and R16H greater than Y41F and Y41H greater than F73L greater than R21C greater than Y34H greater than G18D/Y56H. Possible explanations for the observed differences are discussed. The conservation of binding affinity, also for mutations in the single-stranded DNA-binding domain, suggests that the binding to homopolynucleotides is largely non-specific.  相似文献   

2.
Although transmembrane (TM) segments of integral membrane proteins are putatively alpha-helical in conformation, beta-sheet promoters (Val, Ile, Thr) often account for approximately 40% of TM residue composition. We are examining the conformational role(s) of these residues, using as a model system the major coat protein of the filamentous bacteriophage M13. This 50-residue protein, which is located at the Escherichia coli host membrane during phage reproduction, contains a prototypic 19-residue hydrophobic midregion (residues 21-39: YIGYAWAMVVVIVGATIGI). Using "Eckstein" site-directed mutagenesis, we have generated several viable M13 coat protein mutants with beta-branched amino acid substitutions within their TM region. Mutant coat proteins, including Ile32----Val (I32V) and Ala27----Thr (A27T), were obtained in milligram quantities by growing M13 mutant phages in liter preparations, confirming that these coat proteins are capable of assuming their normal biological function(s) in phage reproduction. Circular dichroism spectroscopy performed in the membrane-mimetic medium of deoxycholate micelles indicated comparable alpha-helical contents of mutants I32V and A27T to wild-type protein. 13C nuclear magnetic resonance experiments with mutant A27T demonstrated that the combination of additional beta-branched content and introduction of an -OH substituent induced chemical shift and temperature-dependent changes and influenced the local protein environment at sites up to 12 residues remote from the mutation site. In contrast, mutant I32V (of which a salient feature is a mid-TM pentavaline segment) behaved very similarly to wild-type coat. These findings are interpreted in terms of the range of TM secondary structure and stability which can be accommodated by viable M13 coat protein mutants.  相似文献   

3.
4.
5.
6.
7.
Vesicular stomatitis virus (VSV) induces apoptosis by at least two mechanisms. The viral matrix (M) protein induces apoptosis via the mitochondrial pathway due to the inhibition of host gene expression. However, in some cell types, the inhibition of host gene expression by VSV expressing wild-type (wt) M protein delays VSV-induced apoptosis, indicating that another mechanism is involved. In support of this, the recombinant M51R-M (rM51R-M) virus, expressing a mutant M protein that is defective in its ability to inhibit host gene expression, induces apoptosis much more rapidly in L929 cells than do viruses expressing wt M protein. Here, we determine the caspase pathways by which the rM51R-M virus induces apoptosis. An analysis of caspase activity, using fluorometric caspase assays and Western blots, indicated that each of the main initiator caspases, caspase-8, caspase-9, and caspase-12, were activated during infection with the rM51R-M virus. The overexpression of Bcl-2, an inhibitor of the mitochondrial pathway, or MAGE-3, an inhibitor of caspase-12 activation, did not delay apoptosis induction in rM51R-M virus-infected L929 cells. However, an inhibitor of caspase-8 activity significantly delayed apoptosis induction. Furthermore, the inhibition of caspase-8 activity prevented the activation of caspase-9, suggesting that caspase-9 is activated by cross talk with caspase-8. These data indicate that VSV expressing the mutant M protein induces apoptosis via the death receptor apoptotic pathway, a mechanism distinct from that induced by VSV expressing the wt M protein.  相似文献   

8.
CTnDOT encodes an integrase that is a member of the tyrosine recombinase family. The recombination reaction proceeds by sequential sets of genetic exchanges between the attDOT site in CTnDOT and an attB site in the chromosome. The exchanges are separated by 7 base pairs in each site. Unlike most tyrosine recombinases, IntDOT exchanges sites that contain different DNA sequences between the exchange sites to generate Holliday junctions (HJs) that contain mismatched bases. We demonstrate that IntDOT resolves synthetic HJs in vitro. Holliday junctions that contain identical sequences between the exchange sites are resolved into both substrates and products, while HJs that contain mismatches are resolved only to substrates. This result implies that resolution of HJs to products requires the formation of a higher-order nucleoprotein complex with natural sites containing IntDOT. We also found that proteins with substitutions of residues (V95, K94, and K96) in a putative alpha helix at the junction of the N and CB domains (coupler region) were defective in resolving HJs. Mutational analysis of charged residues in the coupler and the N terminus of the protein did not provide evidence for a charge interaction between the regions of the protein. V95 may participate in a hydrophobic interaction with another region of IntDOT.  相似文献   

9.
In these experiments we demonstrate that purified RAS proteins, whether derived from the yeast RAS1 or RAS2 or the human H-ras genes, activate yeast adenylate cyclase in the presence of guanine nucleotides. These results confirm the prediction of earlier genetic and biochemical data and for the first time provide a complete biochemical assay for RAS protein function. Furthermore, we observe a biochemical difference between the RAS2 and RAS2val19 proteins in their ability to activate adenylate cyclase after preincubation with GTP.  相似文献   

10.
Analysis of wild-type and mutant p21WAF-1 gene activities.   总被引:14,自引:6,他引:8       下载免费PDF全文
The p21WAF-1 gene is positively regulated by the wild-type p53 protein. p21WAF-1 has been shown to interact with several cyclin-dependent kinase complexes and block the activity of G1 cyclin-dependent kinases (cdks). Mutational analysis with the p21WAF-1 gene localized a site, at amino acid residues 21 and 24 in the amino terminus of the protein, for p21WAF-1 binding to cyclins D and E. This region of the protein is conserved (residues 21 to 26) in other p21WAF-1 family members, p27kip-1 and p57kip-2. The same p21WAF-121,24 mutant also fails to bind to cyclin D1-cdk 4 or cyclin E-cdk 2 complexes in vitro, suggesting that amino acid residues 21 and 24 are important for p21WAF-1-cdk-cyclin trimeric complex interactions. The p21WAF-1 wild-type protein will suppress tumor cell growth in culture while p21WAF-1 mutant proteins with defects in residues 21 and 24 fail to suppress tumor cell growth. The overexpression of cyclin D or E in these cells will partially overcome the growth suppression of wild-type p21WAF-1 protein in cells. These results provide evidence that p21WAF-1 acts through cyclin D1-cdk4 and cyclin E-cdk2 complexes in vivo to induce the growth suppression. The p21WAF-1 binding sites for cyclins (residues 21 to 26), cdk2 (residues 49 to 71), and proliferating-cell nuclear antigen (residues 124 to 164) have all been mapped to discrete sites on the protein.  相似文献   

11.
To facilitate the purification of wild type p53 protein, we established a recombinant p53 vaccinia viral expression system. Using this efficient eukaryotic expression vector, we found that the expressed p53 proteins retained their specific structural characteristics. A comparison between wild type and mutant p53 proteins showed the conservation of the typical subcellular localization and the expression of specific antigenic determinants. Furthermore, wild type p53 exhibited a typical binding with large T antigen, whereas no binding was detected with mutant p53. Both wild type and mutant p53 proteins were highly stable and constituted 5-7% of total protein expressed in the infected cells. These expression recombinant viruses offer a simple, valuable system for the purification of wild type and mutant p53 proteins that are expressed abundantly in eukaryotic cells.  相似文献   

12.
We expressed the human immunodeficiency virus type 1 transactivator protein, Tat, in the wheat germ cell-free translation system and found it to exist as a monomer. The first coding exon (residues 1 to 72) of wheat germ-expressed Tat was resistant to trypsin digestion, indicating that it is a highly folded, independently structured protein domain. Several mutant Tat proteins were dramatically more sensitive to trypsin than the wild type was, suggesting that their reduced transactivation activities are the result of destabilized structures. Mutant proteins with single-amino-acid substitutions were also identified that had reduced transactivation activities but wild-type structures in the trypsin assay. These mutants clustered in two regions of Tat, at acidic residues 2 and 5 in the amino terminus and between residues 18 and 32. These mutants, wild type in structure but reduced in activity, identify residues in the wild-type protein that may directly contact other molecules during Tat function.  相似文献   

13.
14.
Cystathionine β-synthase (CBS) is a pyridoxal 5′-phosphate (PLP)-dependent enzyme that catalyzes the condensation of homocysteine with serine to generate cystathionine. Homocystinuria is an autosomal recessive disorder commonly caused by a deficiency of CBS activity. Here, we characterized a novel CBS mutation (c.260C > A (p.T87N)) and a previously reported variant (c.700G > A (p.D234N)) found in Venezuelan homocystinuric patients, one nonresponsive and one responsive to vitamin B6. Both mutant proteins were expressed in vitro in prokaryotic and eukaryotic cells, finding lower soluble expression in HEK-293 cells (19% T87N and 23% D234N) compared to wild-type CBS. Residual activities obtained for the mutant proteins were 3.5% T87N and 43% D234N. Gel exclusion chromatography demonstrated a tendency of the T87N mutant to aggregate while the distribution of the D234N mutant was similar to wild-type enzyme. Using immunofluorescence microscopy, an unexpected difference in intracellular localization was observed between the wild-type and mutant proteins. While the T87N mutant exhibited a punctate appearance, the wild-type protein was homogeneously distributed inside the cell. Interestingly, the D234N protein showed both distributions. This study demonstrates that the pathogenic CBS mutations generate unstable proteins that are unable (T87N) or partially unable (D234N) to assemble into a functional enzyme, implying that these mutations might be responsible for the homocystinuria phenotype.  相似文献   

15.
The c1 repressor gene of bacteriophage P1 and the temperature-sensitive mutants P1c1.100 and P1c1.162 was cloned into an expression vector and the repressor proteins were overproduced. A rapid purification procedure was required for the isolation of the thermolabile repressor proteins. Identification of the highly purified protein of an apparent molecular weight of 33,000 as the product of the c1 gene was verified by (i) the coincidence of partial amino acid sequences determined experimentally to that deduced from the c1 DNA sequence, and (ii) the temperature-sensitive binding to the operator DNA of the thermolabile repressor proteins. Analysis of the products of c1-c1.100 recombinant DNAs relates the thermolability to an unknown alteration in the C-terminal half of the c1.100 repressor. Binding to the operator DNA of c1 repressor is sensitive to N-ethylmaleimide. Since the only three cysteine residues are located in the C-terminal half of the repressor it is suggested that this part of the molecule is important for the binding to the operator DNA. This assumption is supported by the findings that a 14-kDa C-terminal repressor fragment obtained by cyanogen bromide cleavage retains DNA binding properties.  相似文献   

16.
The gene II region of bacteriophage f1 DNA codes for two proteins, the 46 kd gene II protein and the 13 kd gene X protein, which results from an in-phase start at codon 300 of gene II. Using antigens II protein IgG, we show that the intracellular concentration of both proteins is controlled by the phage gene V protein. In wild-type f1-infected cells, the amount of gene II protein reaches a plateau of about 1500 molecules per cell at 20 min after infection, as measured by blot immunoassay. Similarly, the amount of gene X protein reaches a peak of about 500 molecules per cell around 10 min after infection. In contrast, when the gene V protein is inactive, both gene II and gene X proteins continue to accumulate at a high rate for at least 40 min after infection. This difference is caused by decreased synthesis of gene II and gene X proteins in the presence of gene V protein, which represses the translation of these two proteins.  相似文献   

17.
Tryptophan hydroxylase (TPH) catalyses the rate-limiting step in the biosynthesis of serotonin. In vertebrates, the homologous genes tph1 and tph2 encode two different enzymes with distinct patterns of expression, enzyme kinetics and regulation. Variants of TPH2 have recently reported to be associated with reduced serotonin production and behavioural alterations in man and mice. We have produced the human forms of these enzymes in Esherichia coli and in human embryonic kidney cell lines (HEK293) and examined the effects of mutations on their heterologous expression levels, solubility, thermal stability, secondary structure, and catalytic properties. Pure human TPH2 P449R (corresponds to mouse P447R) had comparable catalytic activity (V(max)) and solubility relative to the wild type, but had decreased thermal stability; whereas human TPH2 R441H had decreased activity, solubility and stability. Thus, we consider the variations in kinetic values between wild-type and TPH2 mutants to be of secondary importance to their effects on protein stability and solubility. These findings provide potential molecular explanations for disorders related to the central serotonergic system, such as depression or suicidal behaviour.  相似文献   

18.
19.
Complete identification of spin systems in the aromatic region of recombinant human interleukin-1 beta has been achieved using two-dimensional homonuclear Hartmann-Hahn spectroscopy. In addition, sequence-specific assignments for the four tyrosine residues have been carried out with the help of a series of mutant proteins, obtained by site-directed mutagenesis of the cloned gene. It is shown that, for the mutant proteins investigated, either none or only local structural changes occur. The use of NMR spectroscopy to determine the structural identity of site-directed mutant proteins with respect to the wild-type protein is discussed.  相似文献   

20.
Summary The water-proton nuclear-magnetic-relaxation dispersion profiles have been analyzed for Cu2Zn2-superoxide dismutase (SOD) and Cu2-alkaline phosphatase (AP). The electronic relaxation times are derived, together with structural information. The effect of magnetic coupling with another copper ion in Cu2Cu2SOD and Cu2Cu2AP is discussed. It is shown that the electronic relaxation times of copper(II) essentially do not change. The opposite happens with Cu2Co2SOD, Cu2Co2AP and Cu2Ni2SOD in which fast-relaxing metal ions provide relaxation mechanisms for copper(II) as well. In these cases the systems can be studied through high-resolution NMR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号