首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We collected 3D ultrasound images of the medial gastrocnemius muscle belly (MG) in 16 children with spastic hemiplegic cerebral palsy (SHCP) (mean age: 7.8 years; range: 4–12) and 15 typically-developing (TD) children (mean age: 9.5 years; range: 4–13). All children with SHCP had limited passive dorsiflexion range on the affected side with the knee extended (mean ± 1SD: −9.3° ± 11.8). Scans were taken of both legs with the ankle joint at its resting angle (RA) and at maximum passive dorsiflexion (MD), with the knee extended. RA and MD were more plantar flexed (p < 0.05) in children with SHCP than in TD children.

We measured the volumes and lengths of the MG bellies. We also measured the length of muscle fascicles in the mid-portion of the muscle belly and the angle that the fascicles made with the deep aponeurosis of the muscle. Volumes were normalised to the subject’s body mass; muscle lengths and fascicle lengths were normalised to the length of the fibula.

Normalised MG belly lengths in the paretic limb were shorter than the non-paretic side at MD (p = 0.0001) and RA (p = 0.0236). Normalised muscle lengths of the paretic limb were shorter than those in TD children at both angles (p = 0.0004; p = 0.0003). However, normalised fascicle lengths in the non-paretic and paretic limbs were similar to those measured in TD children (p > 0.05). When compared to the non-paretic limb, muscle volume was reduced in the paretic limb (p < 0.0001), by an average of 28%, and normalised muscle volume in the paretic limb was smaller than in the TD group (p < 0.0001).

The MG is short and small in the paretic limb of children with SHCP. The altered morphology is not due to a decrease in fascicle length. We suggest that MG deformity in SHCP is caused by lack of cross-sectional growth.  相似文献   


2.
A.  D.  E.  K.  E.  C.   《Journal of electromyography and kinesiology》2006,16(6):661-668
The purpose of this study was to examine the differences in electromyographic activity of agonist and antagonist knee musculature between a maximal and a submaximal isokinetic fatigue protocol. Fourteen healthy males (age: 24.3 ± 2.5 years) performed 25 maximal (MIFP) and 60 submaximal (SIFP) isokinetic concentric efforts of the knee extensors at 60° s−1, across a 90° range of motion. The two protocols were performed a week apart. The EMG activity of vastus medialis (VM), vastus lateralis (VL) and biceps femoris (BF) were recorded using surface electrodes. The peak torque (PT) and average EMG (aEMG) were expressed as percentages of pre-fatigue maximal value. One-way analysis of variance indicated a significant (p < 0.05) decline of PT during the maximal (45.7%) and submaximal (46.8%) protocols. During the maximal test, the VM and VL aEMG initially increased and then decreased. In contrast, VM and VL aEMG continuously increased during submaximal testing (p < 0.05). The antagonist (BF) aEMG remained constant during maximal test but it increased significantly and then declined during the submaximal testing. The above results indicate that agonist and antagonist activity depends on the intensity of the selected isokinetic fatigue test.  相似文献   

3.
The purpose of this study was to manipulate bicycle seat height in order to perturbate muscle length, contraction velocity and excitation of soleus and medial gastrocnemius muscles. One group of female riders (n = 13) rode a stationary ergometer at 200 W and a cadence of 80 rpm. Individuals rode at a self-selected seat height, a 10% lowered and 5% raised seat position. It was hypothesized that because the two muscles would operate at decreased contraction velocities at the low seat, the integrated EMG would be less for the lowest seat position. The soleus and medial gastrocnemius muscles showed a significant decrease in integrated EMG value with decreased seat height (soleus F2,24 = 5.4, p < 0.01, gastrocnemius F2,24 = 51.6, p < 0.0001). The combined effect of the movement at the ankle and knee joints resulted in increased length of gastrocnemius rather than shortening at the lowered seat-height position as anticipated. This suggested that there was a greater role of knee-joint angle in determining the muscle excitation for medial gastrocnemius. The original hypothesis was accepted, confirming the importance of setting proper seat height.  相似文献   

4.
The aim of this work is to quantify the occurrence of an anticipatory mechanism in the control of quiet standing by measuring the lag between the myoelectric activity of the lateral gastrocnemius muscle and the stabilometric signal, as well as to determine the influence of the muscle fatigue on this process. Stabilometric and electromyographic (EMG) signals were synchronously collected from 22 subjects. Gastrocnemius fatigue was induced by a sustained plantar flexed posture until muscle failure. The data acquisition lasted for 120 s before and after the induced fatigue. After mean removal, the root mean square values of the EMG (RMS-EMG) were calculated for each 20 ms period. The normalized cross-correlation function was estimated to find the time delay between RMS-EMG and stabilometric signals. Anticipation values up to 1.62 s were found both before and after fatigue conditions (p < 0.05), indicating that this mechanism plays an important role in body sway control. The fatigue caused a significant increase in the latency between the myoelectric activity of the gastrocnemius muscle and the movements of the center of pressure (p < 0.05).  相似文献   

5.
The purpose of this study was to assess the development of ageing- and glucocorticoid-related sarcopenia on the level of myofibrillar apparatus, paying attention to the synthesis (SR) and degradation rate (DR) of contractile proteins, muscle strength, and daily motor activity. We also wanted to test the effect of ageing and dexamethasone (Dex) excess on the regeneration peculiarities of skeletal muscle autografts. Four and 30-month-old male rats of the Wistar strain were used. Ageing associated sarcopenia was calculated from gastrocnemius muscle relative mass decrease (from 5.6 ± 0.08 to 3.35 ± 0.04; p < 0.001). The SR of MyHC in old rats was 30% and actin 23% lower than in young rats. Dex treatment decreased SR of two main contractile proteins significantly in both age groups (p < 0.001) and increased DR during ageing from 2.11 ± 0.15 to 4.09 ± 0.29%/day (p < 0.001). Hindlimb grip strength in young rats was 5.90 ± 0.35 N/100 g bw and 2.64 ± 0.2 N/100 g bw (p < 0.001) in old rats.

Autografts of old rats have a higher content of adipose tissue 14.9 ± 1.1% in comparison with young rats 6.8 ± 0.51% (p < 0.001) and less muscle tissue 39.8 ± 2.6% and 48.3 ± 2.8%, respectively (p < 0.05).

Both, ageing and dex-caused sarcopenic muscles have diminished capacity for regeneration.  相似文献   


6.
Electromyographic (EMG) amplitude and mechanical tension are directly related during isometric contraction. Maximal voluntary isometric contractions are typically elicited through two different procedures; resisting a load, which is eccentric in nature, and contracting against an immovable object, which is concentric in nature. A wealth of literature exists indicating that EMG amplitude during concentric contractions is greater than that of eccentric contractions of the same magnitude. However, the effects of different methods to elicit isometric contraction on EMG amplitude have yet to be investigated. The purpose of this study was to compare EMG amplitudes under different loading configurations designed to elicit isometric muscle contraction. Twenty healthy volunteers (10 males and 10 females, age = 23 ± 2 yrs, height = 1.7 ± 0.09 m, mass = 69.9 + 16.8 kg) performed a maximal voluntary plantarflexion effort for which the vertical ground reaction force (GRFv) sampled from a force plate and surface EMG of the soleus were recorded. Participants then performed isometric plantarflexion at 20%, 30%, 40%, and 50% GRFvmax in a seated position, from a neutral ankle position, under two different counterbalanced isometric loading conditions (concentric and eccentric). For concentric loading conditions, the subject contracted against an immovable resistance to the specified %GRFv identified via visual and auditory feedback. For eccentric loading conditions, subjects contracted against an applied load placed on the distal anterior thigh that produced the specified %GRFv. This applied load had the tendency to force the ankle into dorsiflexion. Therefore, plantarflexion force, in an attempt to maintain the ankle in a neutral position, resisted lengthening of the plantarflexor musculature, thus representing eccentric loading during an isometric contraction. Mean EMG amplitude was compared across loading levels and types using a 2 (loading type: concentric, eccentric) × 4 (loading level: 20%, 30%, 40%, 50% GRFv) repeated-measures ANOVA. The main effect for loading level was significant (p = 0.007). However, the main effect for loading type, and the loading type × loading level interaction were non-significant (p > 0.05). The present findings provide evidence that isometric muscle contractions loaded in either concentric or eccentric manners elicit similar EMG amplitudes, and are therefore comparable in research settings.  相似文献   

7.
Distinguishing gastrocnemius and soleus muscle function is relevant for treating gait disorders in which abnormal plantarflexor activity may contribute to pathological movement patterns. Our objective was to use experimental and computational analysis to determine the influence of gastrocnemius and soleus activity on lower limb movement, and determine if anatomical variability of the gastrocnemius affected its function. Our hypothesis was that these muscles exhibit distinct functions, with the gastrocnemius inducing limb flexion and the soleus inducing limb extension. To test this hypothesis, the gastrocnemius or soleus of 20 healthy participants was electrically stimulated for brief periods (90 ms) during mid- or terminal stance of a random gait cycle. Muscle function was characterized by the induced change in sagittal pelvis, hip, knee, and ankle angles occurring during the 200 ms after stimulation onset. Results were corroborated with computational forward dynamic gait models, by perturbing gastrocnemius or soleus activity during similar portions of the gait cycle. Mid- and terminal stance gastrocnemius stimulation induced posterior pelvic tilt, hip flexion and knee flexion. Mid-stance gastrocnemius stimulation also induced ankle dorsiflexion. In contrast mid-stance soleus stimulation induced anterior pelvic tilt, knee extension and plantarflexion, while late-stance soleus stimulation induced relatively little change in motion. Model predictions of induced hip, knee, and ankle motion were generally in the same direction as those of the experiments, though the gastrocnemius? results were shown to be quite sensitive to its knee-to-ankle moment arm ratio.  相似文献   

8.
The relative contribution of synergistic muscles has been studied during pedalling on a bicycle. The electromyographic (EMG) activity of the different components of triceps surae (namely soleus or SOL and medial gastrocnemius or MG) has been recorded and analyzed for increasing pedalling speed performed against increasing resistance. The results indicate that SOL IEMG (integrated EMG) increases linearly (y = 2x-12.1; r = 0.98) with increasing load (10-70 N) at constant speed (60 rpm), whereas no change is noted in MG IEMG below 40 N. In contrast, when the pedalling speed is increased (from 30 to 170 rpm) at constant load, MG IEMG shows the largest increase. Furthermore, although in both muscles EMG activity appears earlier in the movement with increases in load and/or speed, the delay between the onset of both EMGs remains unchanged at constant speed and synchronization of MG with SOL is only observed when speed is increased above 140 rpm. These results suggest that the different muscles of the triceps surae make specific contributions to the development of the mechanical tension required to maintain or increase the speed of movement.  相似文献   

9.
Ghrelin, an endogenous ligand for the growth-hormone-secretagogue receptor, is a 28-amino acid peptide with a post-translational acyl modification necessary for its activity. It has central nervous system actions that affect appetite, body mass and energy balance. An intracerebroventricular (ICV) injection protocol of sub-nanomolar doses of ghrelin, known to alter the morphology of ACTH and GH producing pituicytes and plasma levels of these hormones, was used to provide an overview of metabolic changes linked to energy metabolism. Variables measured were: food intake (FI), water intake (WI), fecal mass, urine volume, body weight (BW), retroperitoneal (RP) and epididymal (EPI) white adipose tissue (WAT), and changes in serum leptin, insulin, triglycerides, cholesterol, and glucose. Five injections of rat ghrelin or PBS (n = 8 per group) were given ICV every 24 h (1 μg/5 μL PBS) to adult male rats. Ghrelin had a positive and cumulative effect on FI, WI and BW (p < 0.05), but not feces mass or urine volume (p > 0.05). Centrally applied ghrelin clearly increased RP WAT (by 235%, p < 0.001), EPI WAT (by 85%, p < 0.05) and serum insulin levels (by 43%, p < 0.05), and decreased serum leptin levels (by 77%, p < 0.05) without (p > 0.05) evoking changes in blood triglyceride cholesterol, or glucose levels.

These data and the available literature clearly document that exposure of the brain of normal rats, over time, to sub-nanomolar doses of ghrelin results in metabolic dysregulation culminating in increased body mass, consummatory behavior, and lipid stores as well as changes in blood leptin/insulin levels. Thus, modulation of central ghrelin receptors may represent a pharmacological approach for controlling multiple factors involved in energy balance and obesity.  相似文献   


10.
The gastrocnemius medialis (GM) muscle plays an important role in stair negotiation. The aim of the study was to investigate the influence of cadence on GM muscle fascicle behaviour during stair ascent and descent. Ten male subjects (young adults) walked up and down a four-step staircase (with forceplates embedded in the steps) at three velocities (63, 88 and 116 steps/min). GM muscle fascicle length was measured using ultrasonography. In addition, kinematic and kinetic data of the lower legs, and GM electromyography (EMG) were measured. For both ascent and descent, the amount of fascicular shortening, shortening velocity, knee moment, ground reaction force and EMG activity increased monotonically with gait velocity. The ankle moment increased up to 88 steps/min where it reached a plateau. The lack of increase in ankle moment coinciding with further shortening of the fascicles can be explained by an increased shortening of the GM musculotendon complex (MTC), as calculated from the knee and ankle angle changes, between 88 and 116 steps/min only. For descent, the relative instant of maximum shortening, which occurred during touch down, was delayed at higher gait velocities, even to the extent that this event shifted from the double support to the single support phase.  相似文献   

11.
The purpose of this study was to characterize biomechanically three different toe-walking gait patterns, artificially induced in six neurologically intact subjects and to compare them to selected cases of pathological toe-walking. The subjects, equipped with lightweight mechanical exoskeleton with elastic ropes attached to the left leg's heel on one end and on shank and thigh on the other end in a similar anatomical locations where soleus and gastrocnemius muscles attach to skeleton, walked at speed of approximately 1m/s along the walkway under four experimental conditions: normal walking (NW), soleus contracture emulation (SOL), gastrocnemius contracture emulation (GAS) and emulation of both soleus and gastrocnemius contractures (SOLGAS). Reflective markers and force platform data were collected and ankle, knee and hip joint angles, moments and powers were calculated using inverse dynamic model for both legs. Characteristic peaks of averaged kinematic and kinetic patterns were compared among all four experimental conditions in one-way ANOVA. In the left leg SOL contracture mainly influenced the ankle angle trajectory, while GAS and SOLGAS contractures influenced the ankle and knee angle trajectories. GAS and SOLGAS contractures significantly increased ankle moment during midstance as compared to SOL contracture and NW. All three toe-walking experimental conditions exhibited significant power absorption in the ankle during loading response, which was absent in the NW condition, while during preswing significant decrease in power absorption as compared to NW was seen. In the knee joint SOL contracture diminished, GAS contracture increased while SOLGAS contracture approximately halved knee extensor moment during midstance as compared to NW. All three toe-walking experimental conditions decreased hip range of motion, hip flexor moment and power requirements during stance phase. Main difference in the right leg kinematic and kinetic patterns was seen in the knee moment trajectory, where significant increase in the knee extensor moment took place in terminal stance for GAS and SOLGAS experimental conditions as compared to SOL and NW. The kinetic trajectories under SOL and GAS experimental conditions were qualitatively compared to two selected clinical cases showing considerable similarity. This implies that distinct differences in kinetics between SOL, GAS and SOLGAS experimental conditions, as described in this paper, may be clinically relevant in determining the relative contribution of soleus and gastrocnemius muscles contractures to toe-walking in particular pathological gait.  相似文献   

12.
Six male subjects made maximal isometric plantar flexions unilaterally (UL) and bilaterally (BL), with the knee joint angle positioned at 90° and 0° (full extension) and the ankle joint kept at 90°. Plantar flexion torque and electromyogram (EMG) of the lateral gastrocnemius (LG) and the soleus (Sol) muscles were recorded. There was a deficit in torque in BL compared to UL (P<0.05), and the deficit was greater when the knee was extended than when bent to 90° (13.9% vs 6.6%). The integrated EMG (iEMG) of UL and BL did not differ when the knee was at 90°. On the other hand, when the knee was extended iEMG of LG was smaller for BL than for UL, suggesting that the larger bilateral deficit when the knee was extended was due to a reduced activity of the LG motor units. In addition, the H-reflex recorded from Sol when the contralateral leg was performing a maximal unilateral plantarflexion was reduced. This would indicate that the force deficit was associated with a reduction of motoneuron excitability. Accepted: 18 August 1997  相似文献   

13.
The purpose of this study was to test the endurance of the soleus muscle, and to examine the joint position at which it is most active, while simultaneously suppressing the activity of the gastrocnemius. Ten young males performed maximum isometric contraction of the triceps surae for 100 s, and the endurance and plantar flexion torque of this muscle were measured at various angles of the knee and ankle joints. The electromyogram was measured simultaneously and subsequently converted into integrated electromyogram (IEMG) values. With the knee flexed at 130 degrees, the rate of change in IEMG values for the soleus (0.454% x s(-1)) with the ankle in a neutral position was significantly higher than that for the medial and lateral gastrocnemius. Both with the ankle dorsiflexed at 10 degrees and in the neutral position, the rate of change in IEMG for the soleus was significantly higher with the knee flexed at 90 degrees and 130 degrees than with the knee fully extended. With the knee flexed at 90 degrees and 130 degrees, the IEMG activity of the soleus during the initial (5-10 s) and final 5 s tended to be higher than those for the medial and lateral gastrocnemius, regardless of the ankle joint position. We conclude that the position in which the soleus acts most selectively during a sustained maximum isometric contraction of the triceps surae is with the ankle in a neutral position and the knee flexed at 130 degrees.  相似文献   

14.
The properties of protein-based film prepared from round scad (Decapterus maruadsi) muscle in the absence and the presence of palm oil and/or chitosan were investigated. Films added with 25% palm oil (as glycerol substitiution) had the slight decrease in water vapor permeability (WVP) and elongation at break (EAB) (p < 0.05). WVP and tensile strength (TS) of films increased but EAB decreased when 10–40% chitosan (as protein substitution) was incorporated (p < 0.05). Hydrophobic interactions and hydrogen bonds, together with disulfide and non-disulfide covalent bonds, played an important role in stabilizing the film matrix. The a* and b*-values increased with increasing chitosan levels (p < 0.05). Films added with chitosan were less transparent and had the lowered transmission in the visible range. The incorporation of 25% palm oil and 40% chitosan yielded the films with the improved TS but decreased water vapor barrier property. Apart from film strengthening effect, chitosan inconjunction with Tween-20 most likely functioned as the emulsifier/stabilizer in film forming solution containing palm oil.  相似文献   

15.
The aim of this study was to determine the effects of dexamethasone on sperm characteristics and hyaluronidase activity of serum and semen. In this investigation, 14 healthy Akkaraman rams, at the age of 2 years and weighing between 50–60 kg, were used. The rams were randomly divided into two groups. After the last administration of dexamethasone intramuscularly at a dose of 0.25 mg/kg, semen and blood samples were taken at different times. The results showed that the serum hyaluronidase activity was increased significantly (p < 0.001) in the treatment group when compared with the control group except for the 1st hour. There was a significant difference (p < 0.001, 0.01, 0.05) in the hyaluronidase activity of semen between the treatment group and the control group. Furthermore, there was a significant difference (p < 0.01) in sperm concentration between both groups at all the times except the 96th hour. There were statistically significant (p < 0.05) differences in semen volume between the treatment and control groups. There were also significant differences (p < 0.05) in sperm motility between the treatment and control groups except for the 72 and 96th hours.

These findings indicate that dexamethasone increases hyaluronidase activity of serum and semen, but it decreases sperm concentration, semen volume and sperm motility in rams. Therefore the use of these drugs in breeding rams during breeding season is not suitable.  相似文献   


16.
This aim of this study is to provide quantitative analyses of asymmetrical movements between affected and unaffected limbs for hemiparetic subjects in a cycling ergometer. To acquire kinesiological and kinematical data, electromyography (EMG) of quadriceps muscles in the both legs as well as crank positions under three cycling workloads were recorded. The symmetry index (SI) was designed to measure the similarity between muscle activities recorded from affected and unaffected limbs. Using kinematical information of the crank position, the cycling unsmoothness (denoted as roughness index, RI) can be derived from the curvature of the instantaneous cycling speed. Thirteen hemiparetic subjects following a cerebrovascular accident (CVA) and eight able-bodied subjects participated in this study. With total symmetry at SI = 1, the average SIs of hemiparetic subjects (0.66 ± 0.18) were significantly lower (p < 0.01) than those of normal subjects (0.91 ± 0.08) but no significant difference found among three workloads. From the average RI, subjects with hemiparesis exhibited less smooth cycling movements compared to normal group (p < 0.01). Non-parametric Friedman and Wilcoxon tests of RIs further indicated that the workload factors are significantly different only for hemiparetic group (p < 0.01). No significant difference between lower workloads in RIs showed that the CVA subjects’ sound side alone can execute most of the cycling load with minimal involvement of the affected side under lower workload condition. When cycling at a heavier load, however, it is essential to force the affected limb to assist in the pedaling, thus accomplishing an effective cycling exercise. By combining these two quantitative indices, we can observe the kinesiological measurement of the symmetry of EMG phasic activities from SI and the kinematical cycling smoothness in a coordinated movement from RI, which could provide a clinical guideline for cycling exercises for hemiparetic subjects.  相似文献   

17.
The fluorescence in situ hybridization (FISH) technique with whole chromosome painting for chromosomes #1 and #4 was used to study the impact of air pollution containing higher concentrations of carcinogenic polycyclic aromatic hydrocarbons (c-PAHs) in three European cities, Prague (Czech Republic), Kosice (Slovakia) and Sofia (Bulgaria). In each site were followed an exposed group, who were police officers or bus drivers who work usually through busy streets for at least 8 h, and a reference group, who spent more than 90% of their daily time indoors.

In Prague, a significant increase was observed in percentage of aberrant cells (% AB.C.) in the police officers compared to the reference group (0.33 ± 0.25 versus 0.24 ± 0.18, p < 0.05). In Kosice, the exposed group differed from reference in the endpoints FG/100 1.52 ± 1.18 versus 1.12 ± 1.30, p < 0.05; % AB.C. 0.30 ± 0.19 versus 0.21 ± 0.20, p < 0.05; t/1000 3.91 ± 3.18 versus 2.84 ± 3.10, p < 0.05. In Sofia were followed two exposed groups: police officers and bus drivers. All FISH endpoints were significantly higher in police officers compared to reference group (FG/100 1.60 ± 0.99 versus 0.82 ± 0.79, p < 0.01; % AB.C. 0.25 ± 0.14 versus 0.13 ± 0.13, p < 0.01; t/1000 4.19 ± 2.65 versus 2.13 ± 2.05, p < 0.05; rcp 1.46 ± 1.07 versus 0.70 ± 0.76, p < 0.05). In bus drivers compared to reference there was an increase in % AB.C. (0.25 ± 0.18 versus 0.13 ± 0.13, p < 0.05).

This is the first study when FISH method was used to analyze the impact of environmental air pollution. According to the original hypothesis it is expected that the most important group of chemicals responsible for the biological activity of air pollution represent c-PAHs.  相似文献   


18.
The plantarflexors of the lower limb are often assumed to act as independent actuators, but the validity of this assumption is the subject of considerable debate. This study aims to determine the degree to which passive changes in gastrocnemius muscle length, induced by knee motion, affect the tension in the adjacent soleus muscle. A second aim is to quantify the magnitude of myofascial passive force transmission between gastrocnemius and adjacent soleus. Fifteen healthy volunteers participated. Simultaneous ultrasound images of the gastrocnemius and soleus muscles were obtained during passive knee flexion (0-90°), while keeping the ankle angle fixed at either 70° or 115°. Image correlation analysis was used to quantify muscle fascicle lengths in both muscles. The data show that the soleus muscle fascicles elongate significantly during gastrocnemius shortening. The approximate change in passive soleus force as a result of the observed change in fascicle length was estimated and appears to be <5 N, but this estimate is sensitive to the assumed slack length of soleus.  相似文献   

19.
The relative proportion of the circulating luteinizing hormone isoforms in goats during follicular phase (pre-ovulatory peak; F) and anestrus (A) was investigated. Estrus was synchronized in six goats with a prostaglandin analogue. After estrus was detected, blood samples were taken at 1 h intervals for 24 h. Four anestrous goats received 100 μg i.v. of GnRH and blood samples were collected every 15 min for 5 h. Samples with the greatest LH concentration in follicular phase and after GnRH administration (anestrus) were analyzed by chromatofocusing and eluted with a pH gradient from 10.5 to 3.5. For quantification purposes eluted LH was grouped into basic (pH ≥ 7.5), neutral (pH 7.4–6.5) and acidic isoforms (pH ≤ 6.4) as well as by pH unit. In both physiological conditions (PC), basic and acidic isoforms were greater than the neutral. With this grouping criteria, there was an interaction between PC and pH group, with the proportion of neutral isoforms being greater (p < 0.05) in A (12.0 ± 0.8%) as compared with F (5 ± 2%). Analysis by pH unit showed a very basic group of eluted isoforms (pH ≥ 10), which amounted to a percentage of 6.0 ± 0.4% of the total observed during A, and 3 ± 1% during F (p < 0.05). Predominant isoforms in A eluted in the pH range 9.99–9.0 (42 ± 3%) as compared to 7 ± 3% (p < 0.01) in that pH range in F. In contrast, the predominant isoforms in F eluted in the pH range 8.99–8.0, representing 55 ± 8%, while in A the proportion was 11 ± 2% (p < 0.01). Isoforms eluted at the pH range 7.9–7 represented a significantly greater proportion during A (5.0 ± 0.6%) as compared with F (3 ± 1%). This is the first report on goat LH circulating isoforms. During A the LH isoforms secreted by the pituitary are more basic than during F.  相似文献   

20.
The aim of the study was to investigate EMG signal features during fatigue and recovery at three locations of the vastus medialis and lateralis muscles. Surface EMG signals were detected from 10 healthy male subjects with six 8-electrode arrays located at 10%, 20%, and 30% of the distance from the medial (for vastus medialis) and lateral (vastus lateralis) border of the patella to the anterior superior spine of the pelvic. Subjects performed contractions at 40% and 80% of the maximal force (MVC) until failure to maintain the target force, followed by 20 2-s contractions at the same force levels every minute for 20 min (recovery). Average rectified value, mean power spectral frequency, and muscle fiber conduction velocity were estimated from the EMG signals in 10 epochs from the beginning of the contraction to task failure (time to task failure, mean ± SD, 70.7 ± 25.8 s for 40% MVC; 27.4 ± 16.8 s for 80% MVC) and from the 20 2 s time intervals during recovery. During the fatiguing contraction, the trend over time of EMG average rectified value depended on location for both muscles (P < 0.05). After 20-min recovery, mean frequency and conduction velocity of both muscles were larger than in the beginning of the fatigue task (P < 0.05) (supernormal values). Moreover, the trend over time of mean frequency during recovery was affected by location and conduction velocity values depended on location for both muscles (P < 0.05). The results indicate spatial dependency of EMG variables during fatigue and recovery and thus the necessity of EMG spatial sampling for global muscle assessment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号