首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
We have isolated and sequenced overlapping cDNA clones from a breast carcinoma cDNA library containing the entire coding region of both the R1 and R2 subunits of the human ribonucleotide reductase gene. The coding region of the human R1 subunit comprises 2376 nucleotides and predicts a polypeptide of 792 amino acids (calculated molecular mass 90,081). The sequence of this subunit is almost identical to the equivalent mouse ribonucleotide reductase subunit with 97.7% homology between the mouse and human R1 subunit amino acid sequences. The coding region of the human R2 subunit of ribonucleotide reductase comprises 1170 nucleotides and predicts a polypeptide of 389 amino acids (calculated molecular mass 44,883), which is one amino acid shorter than the equivalent mouse subunit. The human and mouse R2 subunits display considerable homology in their carboxy-terminal amino acid sequences, with 96.3% homology downstream of amino acid 68 of the human and mouse R2 proteins. However, the amino-terminal portions of these two proteins are more divergent in sequence, with only 69.2% homology in the first 68 amino acids.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
Transforming growth factor-beta 1 (TGF-beta 1) stimulated DNA synthesis (3-fold) in BALBc/3T3 fibroblasts following 24 hours of growth factor exposure. Since ribonucleotide reductase is important for the coordination of DNA synthesis and cell proliferation, we investigated the hypothesis that cells like BALB/c 3T3, which are TGF-beta 1 responsive, would exhibit modifications in expression of the gene for ribonucleotide reductase following growth factor treatment. We observed 2.6, 4.1, and 4.8-fold increases in ribonucleotide reductase activity following TGF-beta 1 exposure for 6, 12, and 24 hours, respectively. Increased ribonucleotide reductase R2 gene expression (3, 3.7, and 4.5-fold) and R1 gene expression (2,2.5, and 2.6-fold) were observed following 6, 12, and 24 hours of TGF-beta 1 treatment, respectively. Western blots indicated 2.2, 3.1, and 4.1-fold increases in protein R2 levels at 6, 12, and 24 hours exposure to TGF-beta 1, whereas 2.6 and 3.3-fold elevations in R1 protein levels were observed at 12 and 24 hours post-TGF-beta 1 exposure. These TGF-beta 1 mediated modifications in ribonucleotide reductase gene expression occurred, in part, prior to any detectable changes in the rate of DNA synthesis, demonstrating alterations in the normal regulation of ribonucleotide reductase. Furthermore, these alterations could be markedly reduced by prolonged pretreatment with 12-O-tetradecanoylphorbol-13-acetate (R2 gene expression increased by only 1.3, 1.5 and 2.3-fold after 6, 12, and 24 hours of TGF-beta 1 treatment, respectively), suggesting a role for a protein kinase C pathway in the TGF-beta 1 regulated changes in ribonucleotide reductase gene expression. These results indicate for the first time that TGF-beta 1 can regulate the expression of the two genes for ribonucleotide reductase in BALB/c 3T3 fibroblasts, and suggest that regulation of these genes plays an important role in critical events involved in growth factor modulation of normal and transformed cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号