首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Singlet oxygen quenching rate constants for tocopherol and tocotrienol homologues have been determined in organic solvents of different polarities, as well as for other biological prenyllipids such as plastoquinol, ubiquinol, and alpha-tocopherolquinol. The obtained results showed that the quenching activity of tocochromanols was mainly due to the chromanol ring of the molecule and the activity increased with the number of the methyl groups in the ring and solvent polarity. Among prenylquinols, alpha-tocopherolquinol was the most active scavenger of singlet oxygen followed by ubiquinol and plastoquinol. The oxidation products of tocopherols were identified as 8a-hydroperoxy-tocopherones which are converted to the corresponding tocopherolquinones under acidic conditions. The primary oxidation products of prenylquinols, containing unsaturated side chains, were the corresponding prenylquinones that were further oxidized to hydroxyl side-chain derivatives. In the case of plastochromanol, the gamma-tocotrienol homologue found in some seed oils, mainly the hydroxyl derivatives were formed, although 8a-hydroperoxy-gamma-tocopherones were also formed to a minor extent, both from plastochromanol and from its hydroxyl, side-chain derivatives. The obtained results were discussed in terms of the activity of different prenyllipids as singlet oxygen scavengers in vivo.  相似文献   

2.
Chemical quenching of singlet oxygen by carotenoids in plants   总被引:2,自引:0,他引:2  
Carotenoids are considered to be the first line of defense of plants against singlet oxygen ((1)O(2)) toxicity because of their capacity to quench (1)O(2) as well as triplet chlorophylls through a physical mechanism involving transfer of excitation energy followed by thermal deactivation. Here, we show that leaf carotenoids are also able to quench (1)O(2) by a chemical mechanism involving their oxidation. In vitro oxidation of β-carotene, lutein, and zeaxanthin by (1)O(2) generated various aldehydes and endoperoxides. A search for those molecules in Arabidopsis (Arabidopsis thaliana) leaves revealed the presence of (1)O(2)-specific endoperoxides in low-light-grown plants, indicating chronic oxidation of carotenoids by (1)O(2). β-Carotene endoperoxide, but not xanthophyll endoperoxide, rapidly accumulated during high-light stress, and this accumulation was correlated with the extent of photosystem (PS) II photoinhibition and the expression of various (1)O(2) marker genes. The selective accumulation of β-carotene endoperoxide points at the PSII reaction centers, rather than the PSII chlorophyll antennae, as a major site of (1)O(2) accumulation in plants under high-light stress. β-Carotene endoperoxide was found to have a relatively fast turnover, decaying in the dark with a half time of about 6 h. This carotenoid metabolite provides an early index of (1)O(2) production in leaves, the occurrence of which precedes the accumulation of fatty acid oxidation products.  相似文献   

3.
Polyamines (cadaverine, putrescine, spermidine, spermine) have been shown to be present in all prokaryotic and eukaryotic cells, and proposed to be important anti-inflammatory agents. Some polyamines at high concentrations are known to scavenge superoxide radicals in vitro. We have investigated the possible antioxidant properties of polyamines and found that polyamines, e.g., cadaverine, putrescine, spermidine and spermine do not scavenge superoxide radicals at 0.5, 1.0 and 2 mM concentrations. However, polyamines were found to be potent scavengers of hydroxyl radicals. Hydroxyl radicals were produced in a Fenton type reaction and detected as DMPO-OH adducts by electron paramagnetic resonance spectroscopic technique. Spermine, spermidine, putrescine and cadaverine inhibited DMPO-OH adduct formation in a dose dependent manner, and at 1.5 mM concentration virtually eliminated the adduct formation. The *OH-dependent TBA reactive product of deoxyribose was also inhibited by polyamines in a dose-dependent manner. Polyamines were also found to inhibit the 1O2-dependent 2,2,6,6-tetramethylpiperidine N-oxy 1 (TEMPO) formation. 1O2 was produced in a photosensitizing system using Rose Bengal or Methylene Blue as photosensitizers, and was detected as TEMP-1O2 adduct by EPR spectroscopy. Spermine or spermidine inhibited the 1O2-dependent TEMPO formation maximally to 50%, whereas putrescine or cadaverine inhibited this reaction only up to 15%, when used at 0.5 and 1 mM concentrations. These results suggest that polyamines are powerful. OH scavengers, and spermine or spermidine also can quench singlet oxygen at higher concentrations.  相似文献   

4.
Rate constants for the interaction between singlet molecular oxygen [O2(1 delta g)] and the p-quinones 1,4-benzoquinone (BQ), duroquinone (DQ), 9,10-anthraquinone (AQ) and 1,8-dihydroxy-9,10-anthraquinone (OHAQ) are reported for several solvents at room temperature. The solvent effect on the total quenching rate constant (kt) was analysed employing the semiempirical solvatochromic equation proposed by Kamlet and Taft. The higher values of kt (2-7 x 10(7) M(-1) s(-1)) were obtained when the hydrogen-bond donor solvent ability is increased (higher alpha parameter values). The results indicate the importance of specific solvent interactions in governing the rates of the quenching.  相似文献   

5.
Integrated steady state rate equations have been used to determine the kinetic constants (Vs, Ks, Vp, and Kp) and rate constants (k1, k2, k3, and k4) of the reversible enzyme mechanism: (see article). The fumarase reaction has been used as a model to illustrate the procedures for determining these constants. In contrast to initial velocity studies, the values of the constants have been obtained by examining the enzyme reaction in only one direction rather than in both forward and reverse directions. To accomplish this, a new procedure is described for fitting data to integrated rate equations which eliminates problems encountered when data are analyzed graphically. The advantages of examining on enzyme reaction in one direction with these new procedures allow this method to be extended to the examination of enzymes with simple mechanisms where initial velocities are difficult to measure because either the substrate or product is not readily available, or because the reaction is not readily reversible.  相似文献   

6.
Prenylquinols (tocochromanols and plastoquinols) serve as efficient physical and chemical quenchers of singlet oxygen (1O2) formed during high light stress in higher plants. Although quenching of 1O2 by prenylquinols has been previously studied, direct evidence for chemical quenching of 1O2 by plastoquinols and their oxidation products is limited in vivo. In the present study, the role of plastoquinol‐9 (PQH2‐9) in chemical quenching of 1O2 was studied in Arabidopsis thaliana lines overexpressing the SOLANESYL DIPHOSPHATE SYNTHASE 1 gene (SPS1oex) involved in PQH2‐9 and plastochromanol‐8 biosynthesis. In this work, direct evidence for chemical quenching of 1O2 by plastoquinols and their oxidation products is presented, which is obtained by microscopic techniques in vivo. Chemical quenching of 1O2 was associated with consumption of PQH2‐9 and formation of its various oxidized forms. Oxidation of PQH2‐9 by 1O2 leads to plastoquinone‐9 (PQ‐9), which is subsequently oxidized to hydroxyplastoquinone‐9 [PQ(OH)‐9]. We provide here evidence that oxidation of PQ(OH)‐9 by 1O2 results in the formation of trihydroxyplastoquinone‐9 [PQ(OH)3‐9]. It is concluded here that PQH2‐9 serves as an efficient 1O2 chemical quencher in Arabidopsis, and PQ(OH)3‐9 can be considered as a natural product of 1O2 reaction with PQ(OH)‐9. The understanding of the mechanisms underlying 1O2 chemical quenching provides information on the role of plastoquinols and their oxidation products in the response of plants to photooxidative stress.  相似文献   

7.
Three newly discovered non-heme bromoperoxidases isolated from marine algae were found to catalyze the production of singlet oxygen in reactions composed of the bromoperoxidase, hydrogen peroxide, and bromide. The bromoperoxidases studied were vanadium bromoperoxidase (V-BrPO) from Ascophyllum nodosum, native non-heme bromoperoxidase from Corallina vancouveriensis (which contains vanadium and iron), and the vanadium-reconstituted bromoperoxidase derivative from C. vancouveriensis. These enzyme systems generated near infrared emission, characteristic of singlet oxygen. The emission had a peak intensity near 1268 nm, was greatly increased in 2H2O-containing buffers, and was greatly decreased by the singlet oxygen quenchers, histidine and azide. The yield of singlet oxygen was approximately 80% of the theoretical yield. A unique feature of the non-heme bromoperoxidases distinct from the iron heme haloperoxidases, was the remarkable stability of the non-heme enzymes in the presence of singlet oxygen and oxidized bromine species. V-BrPO turned over multiple aliquots of 2 mM hydrogen peroxide without losing efficiency. In contrast, iron heme lactoperoxidase was completely inactivated after turnover of the first aliquot of 2 mM hydrogen peroxide, and iron heme chloroperoxidase was 50% deactivated. The profile of singlet oxygen formation by V-BrPO and the near stoichiometric yield of singlet oxygen suggest that the mechanism of singlet oxygen formation is the same as the mechanism of dioxygen formation determined by oxygen probe measurements.  相似文献   

8.
Effect of proline on the production of singlet oxygen   总被引:14,自引:0,他引:14  
Alia  Mohanty P  Matysik J 《Amino acids》2001,21(2):195-200
Molecular oxygen in electronic singlet state is a very powerful oxidant. Its damaging action in a variety of biological processes has been well recognized. Here we report the singlet oxygen quenching action of proline. Singlet oxygen (1O2) was produced photochemically by irradiating a solution of sensitiser and detected by following the formation of stable nitroxide radical yielded in the reaction of 1O2 with the sterically hindered amine (2,2,6,6-tetramethylpiperidine, TEMP). Illumination of a sensitiser, toluidine blue led to a time dependent increase in singlet oxygen production as detected by the formation of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) by EPR spectrometry. Interestingly, the production of TEMPO was completely abolished by the presence of proline at concentration as low as 20mM. These results show that proline is a very effective singlet oxygen quencher. Other singlet oxygen generating photosensitizer like hematopophyrin and fluorescein also produced identical results with proline. Since proline is one of the important solutes which accumulate in many organisms when they are exposed to environmental stresses, it is likely that proline accumulation is related to the protection of these organisms against singlet oxygen production during stress conditions. A possible mechanism of singlet oxygen quenching by proline is discussed.  相似文献   

9.
The fluorescence of tryptophan and some related derivatives was found to be quenched by hydrogen peroxide. The quenching mechanism was shown to be essentially dynamic in nature, without any ground-state complex formation, and it is interpreted as resulting through an electron transfer from the excited indole ring to hydrogen peroxide.  相似文献   

10.
11.
A kinetic study of the quenching reaction of singlet oxygen ((1)O(2)) with catechins (catechin (CA), epicatechin (EC), epigallocatechin (EGC), epicatechin gallate (ECG), epigallocatechin gallate (EGCG)) and related compounds (5-methoxyresorcinol (MR), 4-methylcatechol (MC), and n-propyl gallate (PG)) was performed in ethanol at 35 degrees C. MR, MC, and PG are considered to be a model of resorcinol (A)-, catechol (B)-, and gallate (G)-rings in catechins, respectively. The overall rate constants, k(Q) (= k(q) + k(r), physical quenching + chemical reaction), for the reaction of catechins with (1)O(2) increased in the order of PG < MR < MC < CA < EC < EGC < ECG < EGCG. In a comparison of the rate constants, the relationship between quenching rates and chemical structures is discussed. The catechins which have lower peak oxidation potentials, E(P), show higher reactivities. It was observed that the chemical reaction (k(r)) is almost negligible in the quenching reaction of (1)O(2) by catechins. The k(Q) values of EGCG (1.47 x 10(8) M(-1) s(-1)) and ECG (7.81 x 10(7)) were found to be larger than those of lipids (1.3 x 10(5)-1.9 x 10(5) M(-1) s(-1)), amino acids (<3.7 x 10(7)), and DNA (5.1 x 10(5)). Further, these values are similar to those (1.15 x 10(8)-2.06 x 10(8) M(-1) s(-1)) of alpha- and gamma-tocopherol, ubiquinol-10, and gamma-tocopherol hydroquinone (plastoquinol model). The result suggests that catechins may contribute to the protection of oxidative damage in biological systems, by quenching (1)O(2).  相似文献   

12.
The triplet states of adriamycin (Ad), daunomycin (D) and two daunomycin analogues, daunomycinone (Dc) and daunomycin N-trifluoroacetamide (DAc), have been studied using laser flash photolysis and pulse radiolysis techniques. Triplet lifetimes, molar absorption coefficients, energy levels and quantum yields have been obtained for Dc and DAc, and estimated for D and Ad. Time-resolved near-infrared singlet oxygen luminescence measurements have been carried out on D, Ad and 5-iminodaunomycin (5-ID) in 2H2O solution and Dc in benzene solution at room temperature. Singlet oxygen quenching by the water-soluble anthracyclines was observed and a second-order rate constant of approx. 10(8) M-1.s-1 obtained. Electron spin resonance experiments have demonstrated that D photoexcited at lambda less than or 365 nm gives rise to singlet oxygen as shown by its reaction with 2,2,6,6-tetramethyl-4-piperidone to give the corresponding nitroxyl radical. Although all the anthracyclines studied have the ability to photosensitize the formation of singlet oxygen, the quantum yields are very low (phi delta approximately 0.02-0.03), suggesting that these anthracyclines would be poor photodynamic sensitisers.  相似文献   

13.
Carcinogenic chromium(VI), iron(III) nitrilotriacetate, cobalt(II), and nickel(II) react with hydrogen peroxide leading to the production of active species including hydroxyl radical and singlet oxygen, which cause DNA damage.  相似文献   

14.
Fifteen plant alkaloids and related heterocyclic compounds were tested for their ability to quench singlet oxygen. Most of the compounds showed high activity; brucine and strychnine were especially efficient quenchers. Brucine, at a concentration of ca 2.6 x 10?5 M, is capable of inactivating half the singlet oxygen molecules it encounters. This quenching may serve in nature to protect plants from the deleterious effects of singlet oxygen or other reactive oxidants.  相似文献   

15.
16.
17.
18.
19.
Dynamic quenching of fluorophores and quenchers in lipid micelles and bilayers can yield information about the bimolecular rate constant for the quenching reaction, and hence information about the microviscosity of the fluorophore-quencher environment. When the fluorophore and quencher have relatively fixed transverse positions in the bilayer, the analysis of Sikaris et al. (Chem. Phys. Lipids. 29 (1981) 23) can be used to separate the microviscosity and proximity contributions to quenching. We now extend this method to show explicitly the effect of static quenching on the analysis. We show by simulation and experiment that a correction factor must be included when static quenching contributes to the observed quenching efficiency.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号