首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The temperature ranges for axenic growth of Entamoeba histolytica strain HM-1 and Entamoeba invadens strain 165 clone II in TYI-S-33 medium were: 32 to 40 C for E. histolytica with an optimum of 35.5 to 37 C; whereas the range for E. invadens 165 II was 20 to 30 C, optimum 24 to 27 C. Growth of strain HM-1 at 40 C was dependent upon the cell density of the culture used as a source of the inoculum. Clonal growth in agar was used to assay survival of Entamoeba spp. trophozoites after exposure to deleterious physical conditions. The lowest temperature for thermal killing of E. histolytica HM-1 was 41.5 C and for E. invadens 165, 35.5 C. Both were killed rapidly at 42 C, but slowly at 0 C. Killing of E. histolytica HM-1 trophozoites by exposure to increased oxygen tensions was a function of temperature and time. At 24 C and 35.5 C, there was little loss of viability during the first 7 hr exposure, then killing was quite rapid. The cells were killed sooner if the medium was preexposed to air. In contrast, at 0 C there was less killing by oxygen. E. invadens 165 II appeared to be more oxygen sensitive at 24 than at 0 C. Other E. histolytica strains tested were similar to HM-1 in their responses to temperature and air.  相似文献   

2.
SYNOPSIS. Cysteine and ascorbic acid were previously shown to be required by Entamoeba histolytica trophozoites for attachment to glass, elongation, and ameboid movement as well as for short-term (12–24 h) survival in a balanced salt solution containing bovine serum albumin and a vitamin solution (Maintenance Medium 1). If the only function of cysteine and ascorbate was to decrease the redox potential, other reducing agents should be effective. However, the requirement for cysteine in the presence of ascorbic acid was highly specific. Equally effective were D- and L-cysteine; however, of many other compounds tested, only thioglycolic acid, ascorbic acid, or L-cystine (in decreasing order) were somewhat active. Under N2 atmosphere, cysteine and ascorbic acid were still required, although their concentrations could be halved. The ability to attach in the maintenance medium was irreversibly lost after only 5 min of cysteine-ascorbic acid deprivation; however, there was no decrease in viability when the amebae were transferred to growth medium within 30 min. Cysteine thiol groups in the medium were oxidized rapidly regardless of the concentration of ascorbic acid or the presence of amebae; however, ascorbic acid prolonged attachment of amebae.  相似文献   

3.
The growth responses of Entamoeba histolytica strains HM-1:IMSS and HK-9 to a variety of reducing agents were tested for one subculture in TYI-S-33 medium, prepared with no cysteine or ascorbic acid. Amoebae did not grow in this medium. Addition of l-ascorbic acid, d- or l-cysteine, or l-cystine each permitted the maximum growth observed. Dithiothreitol supported 68% maximum growth of HK-9 amoebae, but only 12% of HM-1. In contrast, growth of both strains was greatly diminished (0–13% growth) with 11 other compounds tested including glutathione, thiomalic acid, thioglycolic acid, and methionine. The growth responses of Giardia lamblia were similarly tested in TYI-S-33, as well as in TP-S-1 media. If l-cysteine was omitted from either medium, trophozoites did not grow, and eventually lysed. In TYI-S-33 medium, the requirement for l-cysteine was specific, whereas in TP-S-1 medium, other sulfhydryl compounds were partially effective and lower concentrations of l-cysteine satisfied the requirement. Ascorbic acid or l-cystine alone was totally ineffective; however, in combination, 30 to 60% of maximum growth was achieved. Once added to either medium, cysteine was rapidly oxidized. Amino acid analysis of the growth media revealed that the broth components of TP-S-1 medium contained 2.8 mM and TYI-S-33 broth 2.1 mM endogenous levels of cysteine (or half-cystine), with an additional 3 mM contributed by 10% serum.  相似文献   

4.
Cysteine and ascorbic acid were previously shown to be required by Entamoeba histolytica trophozoites for attachment to glass, elongation, and ameboid movement as well as for short-term (12-24 h) survival in a balanced salt solution containing bovine serum albumin and a vitamin solution (Maintenance Medium 1). If the only function of cysteine and ascorbate was to decrease the redox potential, other reducing agents should be effective. However, the requirement for cysteine in the presence of ascorbic acid was highly specific. Equally effective were D- and L-cysteine; however, of many other compounds tested, only thioglycolic acid, ascorbic acid, or L-cystine (in decreasing order) were somewhat active. Under N2 atmosphere, cysteine and ascorbic acid were still required, although their concentrations could be halved. The ability to attach in the maintenance medium was irreversibly lost after only 5 min of cysteine-ascorbic acid deprivation; however, there was no decrease in viability when the amebae were transferred to growth medium within 30 min. Cysteine thiol groups in the medium were oxidized rapidly regardless of the concentration of ascorbic acid or the presence of amebae; however, ascorbic acid prolonged attachment of amebae.  相似文献   

5.
Monoxenic cultivation of pathogenic Entamoeba histolytica trophozoites with Escherichia coli serotype 055 which binds strongly to the Gal/GalNAc amoebic lectin, markedly improved the growth of E. histolytica and produced a significant decrease in cysteine proteinase activity and a lower cytopathic activity on monolayer cells after 3 months of monoxenic culture. However, after long term monoxenic culture (12 months) the proteolytic and cytopathic activities were recovered and the amoebic growth reached the maximum yield. Employing the GeneFishingR technology and DNA macroarrays we detected differentially gene expression related to the amoebic interaction with bacteria. A number of differentially expressed genes encoding metabolic enzymes, ribosomal proteins, virulence factors and proteins related with cytoskeletal and vesicle trafficking were found. These results suggest that E. coli 055 has a nutritional role that strongly supports the amoebic growth, and is also able to modulate some biological activities related with amoebic virulence.  相似文献   

6.
Cysteine proteases are known to be important pathogenicity factors of the protozoan parasite Entamoeba histolytica. So far, a total of eight genes coding for cysteine proteases have been identified in E. histolytica, two of which are absent in the closely related nonpathogenic species E. dispar. However, present knowledge is restricted to enzymes expressed during in vitro cultivation of the parasite, which might represent only a subset of the entire repertoire. Taking advantage of the current E. histolytica genome-sequencing efforts, we analyzed databases containing more than 99% of all ameba gene sequences for the presence of cysteine protease genes. A total of 20 full-length genes was identified (including all eight genes previously reported), which show 10 to 86% sequence identity. The various genes obviously originated from two separate ancestors since they form two distinct clades. Despite cathepsin B-like substrate specificities, all of the ameba polypeptides are structurally related to cathepsin L-like enzymes. None of the previously described enzymes but 7 of the 12 newly identified proteins are unique compared to cathepsins of higher eukaryotes in that they are predicted to have transmembrane or glycosylphosphatidylinositol anchor attachment domains. Southern blot analysis revealed that orthologous sequences for all of the newly identified proteases are present in E. dispar. Interestingly, the majority of the various cysteine protease genes are not expressed in E. histolytica or E. dispar trophozoites during in vitro cultivation. Therefore, it is likely that at least some of these enzymes are required for infection of the human host and/or for completion of the parasite life cycle.  相似文献   

7.
Laboratory studies on adhesion of microalgae to hard substrates   总被引:1,自引:0,他引:1  
Sekar  R.  Venugopalan  V.P.  Satpathy  K.K.  Nair  K.V.K.  Rao  V.N.R. 《Hydrobiologia》2004,512(1-3):109-116
Adhesion of Chlorella vulgaris(chlorophyceae), Nitzschia amphibia(bacillariophceae) and Chroococcus minutus(cyanobacteria) to hydrophobic (perspex, titanium and stainless steel 316-L), hydrophilic (glass) and toxic (copper, aluminium brass and admiralty brass) substrata were studied in the laboratory. The influence of surface wettability, surface roughness, pH of the medium, culture age, culture density, cell viability and presence of organic and bacterial films on the adhesion of Nitzschia amphibia was also studied using titanium, stainless steel and glass surfaces. All three organisms attached more on titanium and stainless steel and less on copper and its alloys. The attachment varied significantly with respect to exposure time and different materials. The attachment was higher on rough surfaces when compared to smooth surfaces. Attachment was higher on pH 7 and above. The presence of organic film increased the attachment significantly when compared to control. The number of attached cells was found to be directly proportional to the culture density. Attachment by log phase cells was significantly higher when compared to stationary phase cells. Live cells attached more when compared to heat killed and formalin killed cells. Bacterial films of Pseudomonas putida increased the algal attachment significantly. %  相似文献   

8.
Nitric oxide (NO) has antimicrobial properties against many pathogens due to its reactivity as an S-nitrosylating agent. It inhibits many of the key enzymes that are involved in the metabolism and virulence of the parasite Entamoeba histolytica through S-nitrosylation of essential cysteine residues. Very little information is available on the mechanism of resistance to NO by pathogens in general and by this parasite in particular. Here, we report that exposure of the parasites to S-nitrosoglutathione (GSNO), an NO donor molecule, strongly reduces their viability and protein synthesis. However, the deleterious effects of NO were significantly reduced in trophozoites overexpressing Ehmeth, the cytosine-5 methyltransferase of the Dnmt2 family. Since these trophozoites also exhibited high levels of tRNAAsp methylation, the high levels suggested that Ehmeth-mediated tRNAAsp methylation is part of the resistance mechanism to NO. We previously reported that enolase, another glycolytic enzyme, binds to Ehmeth and inhibits its activity. We observed that the amount of Ehmeth-enolase complex was significantly reduced in GSNO-treated E. histolytica, which explains the aforementioned increase of tRNA methylation. Specifically, we demonstrated via site-directed mutagenesis that cysteine residues 228 and 229 of Ehmeth are susceptible to S-nitrosylation and are crucial for Ehmeth binding to enolase and for Ehmeth-mediated resistance to NO. These results indicate that Ehmeth has a central role in the response of the parasite to NO, and they contribute to the growing evidence that NO is a regulator of epigenetic mechanisms.  相似文献   

9.
Entamoeba histolytica causes amoebiasis, an infection that kills 100,000 individuals each year. Metronidazole and its derivatives are currently used against this protozoan, but these drugs present adverse effects on human health. Here, we investigated the effect of resveratrol (a natural compound) on E. histolytica trophozoites viability, as well as its influence on the parasite virulence. Trophozoites growth was arrested by 72 μM resveratrol and the IC50 was determined as 220 μM at 48 h. Cells appeared smaller, rounded and in clusters, with debris-containing vacuoles and with abnormally condensed chromatin. Resveratrol triggered reactive oxygen species production. It caused lipid peroxidation and produced phosphatidylserine externalization and DNA fragmentation this latter evidenced by TUNEL assays. It also provoked an increase of intracellular Ca2+ concentration, activated calpain and decreased superoxide dismutase activity, indicating that an apoptosis-like event occurred; however, autophagy was not detected. Cytopathic activity, phagocytosis, encystment and in vivo virulence were diminished dramatically by pre-incubation of trophozoites with resveratrol, evidencing that resveratrol attenuated the trophozoite virulence in vitro. Interestingly, after the inoculation of virulent trophozoites, animals treated with the drug did not develop or developed very small abscesses. Our findings propose that resveratrol could be an alternative to contend amoebiasis.  相似文献   

10.
Entamoeba histolytica, which causes amoebic colitis and occasionally liver abscess in humans, is able to induce host cell death. However, signaling mechanisms of colon cell death induced by E. histolytica are not fully elucidated. In this study, we investigated the signaling role of NOX in cell death of HT29 colonic epithelial cells induced by E. histolytica. Incubation of HT29 cells with amoebic trophozoites resulted in DNA fragmentation that is a hallmark of apoptotic cell death. In addition, E. histolytica generate intracellular reactive oxygen species (ROS) in a contact-dependent manner. Inhibition of intracellular ROS level with treatment with DPI, an inhibitor of NADPH oxidases (NOXs), decreased Entamoeba-induced ROS generation and cell death in HT29 cells. However, pan-caspase inhibitor did not affect E. histolytica-induced HT29 cell death. In HT29 cells, catalytic subunit NOX1 and regulatory subunit Rac1 for NOX1 activation were highly expressed. We next investigated whether NADPH oxidase 1 (NOX1)-derived ROS is closely associated with HT29 cell death induced by E. histolytica. Suppression of Rac1 by siRNA significantly inhibited Entamoeba-induced cell death. Moreover, knockdown of NOX1 by siRNA, effectively inhibited E. histolytica-triggered DNA fragmentation in HT29 cells. These results suggest that NOX1-derived ROS is required for apoptotic cell death in HT29 colon epithelial cells induced by E. histolytica.  相似文献   

11.
12.
Entamoeba histolytica. I. Aerobic metabolism   总被引:5,自引:0,他引:5  
The respiration of intact trophozoites harvested from axenic cultures of Entamoeba histolytica was studied with the polarographic technique utilizing the Clark oxygen electrode. A typical Qo2 value for the freshly harvested amebae was 1 μatom oxygen/mg protein/hr.It was conclusively demonstrated that this parasite, a putative anaerobe, not only consumes oxygen when provided, but has a high affinity for the gas.Added glucose, galactose, and ethanol increased the respiratory rates, whereas other carbohydrates were without effect on the endogenous respiration. Intermediates of the tricarboxylic acid cycle, amino and fatty acids did not stimulate the respiration of E. histolytica.Inhibitors of the mammalian respiratory chain (cyanide, antimycin) as well as agents that inhibit enzymes catalyzing the tricarboxylic acid cycle (malonate, fluoropyruvate, fluoroacetate, fluorocitrate) had little effect on the endogenous or glucose-supported respiration. Alkylating agents (iodoacetamide, iodoacetate), cinnamate, and N-ethylymaleimide strongly inhibited the oxygen consumption of E. histolytica. The chemotherapeutic agents, Paromomycin, Emetine and Metronidazole, at concentrations that inhibit growth in vitro, did not restrict the respiration.Storage of the trophozoites at 4 C led to progressive deterioraion of the parasites and loss of endogenous and glucose-supported respiration. The deterioration was paralled by loss of SH-materials from the amebae. Likewise, sonication or lysis with detergents abolished both the endogenous respiration and response to glucose.Exogenous NADH or NADPH evoked only marginal increases in oxygen consumption of the freshly harvested amebae, but were effective respiratory substrates with stored or sonicated organisms. Addition of vitamin K3 greatly enhanced the endogenous and glucose-supported respiration of the intact amebae, as well as enhancing the response of stored or sonicated amebae to reduced pyridine nucleotides.  相似文献   

13.
The flagellated protozoan Giardia lamblia has been grown only in highly complex media under reduced oxygen tension. Therefore, the organic and physiological requirements for in vitro attachment and short-term (12-h) survival of this organism were determined. In defined maintenance media, a thiol reducing agent (e.g., cysteine) was absolutely required for attachment and survival of this aerotolerant anaerobe. The crude bovine serum Cohn III fraction greatly stimulated attachment and survival. Attachment was decreased at a reduced temperature (24 degrees C as compared with 35.5 degrees C) and absent at 12 degrees C or below. Attachment and survival were strongly dependent upon pH and ionic strength, with optima at pH 6.85 to 7.0 and 200 to 300 mosmol/kg. Sodium chloride was better tolerated than KC1. Reduction of Ca2+ and Mg2+ to below 10(-8) M did not significantly affect attachment.  相似文献   

14.
15.
Entamoeba histolytica is the causative agent of human amoebiasis, which mainly affects developing countries. Although several drugs are effective against E. histolytica trophozoites, the control of amoebiasis requires the development of new and better alternative therapies. Medicinal plants have been the source of new molecules with remarkable antiprotozoal activity. Incomptine A isolated from Decachaeta incompta leaves, is a sesquiterpene lactone of the heliangolide type which has the major in vitro activity against E. histolytica trophozoites. However the molecular mechanisms involved in its antiprotozoal activity are still unknown. Using a proteomic approach based on two-dimensional gel electrophoresis and mass spectrometry (ESI-MS/MS) analysis, we evidenced that 21 E. histolytica proteins were differentially expressed in response to incomptine A treatment. Notably, three glycolytic enzymes, namely enolase, pyruvate:ferredoxin oxidoreductase and fructose-1,6-biphosphate aldolase, were down-regulated. Moreover, ultrastructural analysis of trophozoites through electronic microscopy showed an increased number of glycogen granules. Taken together, our data suggested that incomptine A could affect E. histolytica growth through alteration of its energy metabolism.  相似文献   

16.
The enteric protozoan parasite Entamoeba histolytica is the causative agent of human amebiasis. During infection, adherence of E. histolytica through Gal/GalNAc lectin on the surface of the amoeba can induce caspase-3-dependent or -independent host cell death. Phosphorylinositol 3-kinase (PI3K) and protein kinase C (PKC) in E. histolytica play an important function in the adhesion, killing, or phagocytosis of target cells. In this study, we examined the role of amoebic PI3K and PKC in amoeba-induced apoptotic cell death in Jurkat T cells. When Jurkat T cells were incubated with E. histolytica trophozoites, phosphatidylserine (PS) externalization and DNA fragmentation in Jurkat cells were markedly increased compared to those of cells incubated with medium alone. However, when amoebae were pretreated with a PI3K inhibitor, wortmannin before being incubated with E. histolytica, E. histolytica-induced PS externalization and DNA fragmentation in Jurkat cells were significantly reduced compared to results for amoebae pretreated with DMSO. In addition, pretreatment of amoebae with a PKC inhibitor, staurosporine strongly inhibited Jurkat T cell death. However, E. histolytica-induced cleavage of caspase-3, -6, and -7 were not inhibited by pretreatment of amoebae with wortmannin or staurosporin. In addition, we found that amoebic PI3K and PKC have an important role on amoeba adhesion to host compartment. These results suggest that amebic PI3K and PKC activation may play an important role in caspase-independent cell death in Entamoeba-induced apoptosis.  相似文献   

17.
Entamoeba histolytica contains a large and novel family of transmembrane kinases (TMKs). The expression patterns of the E. histolytica TMKs in individual trophozoites and the roles of the TMKs for sensing and responding to extracellular cues were incompletely characterised. Here we provide evidence that single cells express multiple TMKs and that TMK39 and TMK54 likely serve non-redundant cellular functions. Laser-capture microdissection was used in conjunction with microarray analysis to demonstrate that single trophozoites express more than one TMK gene. Anti-peptide antibodies were raised against unique regions in the extracellular domains of TMK39, TMK54 and PaTMK, and TMK expression was analysed at the protein level. Flow cytometric assays revealed that populations of trophozoites homogeneously expressed TMK39, TMK54 and PaTMK, while confocal microscopy identified different patterns of cell surface expression for TMK39 and TMK54. The functions of TMK39 and TMK54 were probed by the inducible expression of dominant-negative mutants. While TMK39 co-localised with ingested beads and expression of truncated TMK39 interfered with trophozoite phagocytosis of apoptotic lymphocytes, expression of a truncated TMK54 inhibited growth of amoebae and altered the surface expression of the heavy subunit of the E. histolytica Gal/GalNAc lectin. Overall, our data indicates that multiple members of the novel E. histolytica TMK family are utilised for non-redundant functions by the parasite.  相似文献   

18.
19.
EhADH112 is part of the EhCPADH complex, a protein involved in key events of the Entamoeba histolytica host invasion. EhADH112 participates in trophozoite adherence to target cells and in phagocytosis. We report here the finding of two EhADH112 homologues in the E. histolytica genome (EhADH112-like proteins). EhADH112 and its relatives have a Bro1 domain at their amino-terminus and a consensus context for phosphorylation by Src-tyrosine kinases, both involved in signal transduction processes in other organisms. Our findings associate EhADH112 to supplementary functions related to those reported for the Alix/AIP1 family. To elucidate the precise function of EhADH112, we studied the phenotypes displayed by trophozoites transfected with the Ehadh112 full gene. Transfected trophozoites overexpressed a 78 kDa protein, which was mainly targeted to the EhCPADH complex. Moreover, these trophozoites exhibited enhanced phagocytic rates, providing further evidence of EhADH112 contribution to adhesion and phagocytosis activities.  相似文献   

20.
We explored the requirements of inorganic phosphate (Pi), the incorporation of 32P-orthophosphate (32Pi), and the occurrence of inorganic polyphosphate (polyP) in axenic Entamoeba cultures. Maximal population densities and growth rates of Entamoeba histolytica trophozoites were attained in complete TP-S-1 medium. As 32Pi concentration was increased in the medium, its own incorporation and the culture growth rate were progressively inhibited, especially in Pi-deficient medium. PolyP grains were found in the cytoplasm and occasionally in the nuclear membrane of E. histolytica, E. histolytica-like, E. invadens, and E. moshkovskii trophozoites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号