首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gating currents were measured by subtracting the linear component of the capacitative current recorded at very positive or very negative potentials. When the membrane is depolarized for a few minutes, repolarized to the usual holding potential (HP) of --70 mV for 1 ms, and then pulsed to 0 mV, the charge transferred in 2--4 ms is approximately 50% of that which was transferred during the same pulse holding at --70 mV. This charge decrease, called slow inactivation of the gating current, was found to be consistent with a shift of the charge vs. potential (Q-V) curve to more hyperpolarized potentials. When the HP is 0 mV, the total charge available to move is the same as the total charge available when the HP is --70 mV. The time constants of the fast component of the ON gating current are smaller at depolarized holding potentials than at --70 mV. When the HP is --70 mV and a prepulse of 50 ms duration is given to 0 mV, the Q-V curve is also shifted to more hyperpolarized potentials (charge immobilization), but the effect is not as pronounced as the one obtained by holding at 0 mV. When the HP is 0 mV, a prepulse to --70 mV for 50 ms partially shifts back the Q-V curve, indicating that fast inactivation of the gating charge may be recovered in the presence of slow inactivation. A physical model consisting of a gating particle that interacts with a fast inactivating particle, and a slow inactivating particle, reproduces most of the experimental results.  相似文献   

2.
Asymmetry currents and admittance in squid axons.   总被引:1,自引:0,他引:1       下载免费PDF全文
The complex admittance of squid (Loligo pealei) axon was measured rapidly (within 1 s) with pseudo-random small signals and discrete Fourier transform techniques under guarded, "space-clamp" conditions and during suppression of ion conduction. Asymmetry currents were measured by paired step clam pulses of +/-70 mV from a holding potential of -97 mV and gave an apparent capacitance of 0.36 muF/cm2. However, the admittance data showed no change in capacitance at holding potentials from -97 to -67 mV and gave a decrease of 0.07 of 0.15 muF/cm2 at -37 mV. The failure to observe a capacitance increase at low membrane potentials suggests the following possibilities: (a) the asymmetry current is a displacement current that inactivates completely with time, and (b) the asymmetry current is not a displacement current and arises from large signal effects (i.e., delayed nonlinearity in ionic current) on the membrane.  相似文献   

3.
Progressive shifts of holding potential (Vh) in crayfish giant axons, from -140 to -70 mV, reduce gating currents seen in depolarizing steps (to 0 mV test potential) while proportionately increasing gating currents in hyperpolarizing steps (to -240 mV). The resulting sigmoid equilibrium charge distribution (Q-Vh curve) shows an effective valence of 1.9e and a midpoint of -100 mV. By contrast, Q-V curves obtained using hyperpolarizing and/or depolarizing steps from a single holding potential, change their "shape" depending on the chosen holding potential. For holding potentials at the negative end of the Q-Vh distribution (e.g., -140 mV), negligible charge moves in hyperpolarizing pulses and the Q-V curve can be characterized entirely from depolarizing voltage steps. The slope of the resulting simple sigmoid Q-V curve also indicates an effective valence of 1.9e. When the axon is held at less negative potentials significant charge moves in hyperpolarizing voltage steps. The component of the Q-V curve collected using hyperpolarizing pulses shows a significantly reduced slope (approximately 0.75e) by comparison with the 1.9e slope found using depolarizing pulses or from the Q-Vh curve. As holding potential is shifted in the depolarizing direction along the Q-Vh curve, an increasing fraction of total charge movement must be assessed in hyperpolarizing voltage steps. Thus charge moving in the low slope component of the Q-V curve increases as holding potential is depolarized, while charge moving with high apparent valence decreases proportionately. Additional results, together with simulations based on a simple kinetic model, suggest that the reduced apparent valence of the low slope component of the Q-V curve results from gating charge immobilization occurring at holding potential. Immobilization selectively retards that fraction of total charge moving in hyperpolarizing pulses. Misleading conclusions, as to the number and valence of the gating particles, may therefore be derived from Q-V curves obtained by other than depolarizing pulses from negative saturated holding potentials.  相似文献   

4.
Batrachotoxin-activated rat brain Na+ channels were reconstituted in neutral planar phospholipid bilayers in high ionic strength solutions (3 M NaCl). Under these conditions, diffuse surface charges present on the channel protein are screened. Nevertheless, the addition of extracellular and/or intracellular Ba2+ caused the following alterations in the gating of Na+ channels: (a) external (or internal) Ba2+ caused a depolarizing (or hyperpolarizing) voltage shift in the gating curve (open probability versus membrane potential curve) of the channels; (b) In the concentration range of 10-120 mM, extracellular Ba2+ caused a larger voltage shift in the gating curve of Na+ channels than intracellular Ba2+; (c) voltage shifts of the gating curve of Na+ channels as a function of external or internal Ba2+ were fitted with a simple binding isotherm with the following parameters: for internal Ba2+, delta V0.5,max (maximum voltage shift) = -11.5 mV, KD = 64.7 mM; for external Ba2+, delta V0.5,max = 13.5 mV, KD = 25.8 mM; (d) the change in the open probability of the channel caused by extracellular or intracellular Ba2+ is a consequence of alterations in both the opening and closing rate constants. Extracellular and intracellular divalent cations can modify the gating kinetics of Na+ channels by a specific modulatory effect that is independent of diffuse surface potentials. External or internal divalent cations probably bind to specific charges on the Na+ channel glycoprotein that modulate channel gating.  相似文献   

5.
Intramembrane charge movement was recorded in rat and rabbit ventricular cells using the whole-cell voltage clamp technique. Na and K currents were eliminated by using tetraethylammonium as the main cation internally and externally, and Ca channel current was blocked by Cd and La. With steps in the range of -110 to -150 used to define linear capacitance, extra charge moves during steps positive to approximately -70 mV. With holding potentials near -100 mV, the extra charge moving outward on depolarization (ON charge) is roughly equal to the extra charge moving inward on repolarization (OFF charge) after 50-100 ms. Both ON and OFF charge saturate above approximately +20 mV; saturating charge movement is approximately 1,100 fC (approximately 11 nC/muF of linear capacitance). When the holding potential is depolarized to -50 mV, ON charge is reduced by approximately 40%, with little change in OFF charge. The reduction of ON charge by holding potential in this range matches inactivation of Na current measured in the same cells, suggesting that this component might arise from Na channel gating. The ON charge remaining at a holding potential of -50 mV has properties expected of Ca channel gating current: it is greatly reduced by application of 10 muM D600 when accompanied by long depolarizations and it is reduced at more positive holding potentials with a voltage dependence similar to that of Ca channel inactivation. However, the D600-sensitive charge movement is much larger than the Ca channel gating current that would be expected if the movement of channel gating charge were always accompanied by complete opening of the channel.  相似文献   

6.
The unique electromotility of the outer hair cell (OHC) is believed to promote sharpening of the passive mechanical vibration of the mammalian basilar membrane. The cell also presents a voltage-dependent capacitance, or equivalently, a nonlinear gating current, which correlates well with its mechanical activity, suggesting that membrane-bound voltage sensor-motor elements control OHC length. We report that the voltage dependence of the gating charge and motility are directly related to membrane stress induced by intracellular pressure. A tracking procedure was devised to continuously monitor the voltage at peak capacitance (VpkCm) after obtaining whole cell voltage clamp configuration. In addition, nonlinear capacitance was more fully evaluated with a stair step voltage protocol. Upon whole cell configuration, VpkCm was typically near -20 mV. Negative patch pipette pressure caused a negative shift in VpkCm, which obtained a limiting value near the normal resting potential of the OHC (approximately -70 mV) at the point of cell collapse. Positive pressure in the pipette caused a positive shift that could reach values greater than 0 mV. Measures of the mechanical activity of the OHC mirrored those of charge movement. Similar membrane-tension dependent peak shifts were observed after the cortical cytoskeletal network was disrupted by intracellular dialysis of trypsin from the patch pipette. We conclude that unlike stretch receptors, which may sense tension through elastic cytoskeletal elements, the OHC motor senses tension directly. Furthermore, since the voltage dependence of the OHC nonlinear capacitance and motility is directly regulated by intracellular turgor pressure, we speculate that modification of intracellular pressure in vivo provides a mechanism for controlling the gain of the mammalian "cochlear amplifier".  相似文献   

7.
Ultraviolet radiation irreversibly reduces the sodium permeability in nerve membranes and, in addition, induces a change of the potential dependence of the kinetic parameters of sodium inactivation in the node of Ranvier. This second ultraviolet effect shifts the kinetic parameters of sodium inactivation h infinity (V), alpha h (V), and beta h (V) to more negative potentials (no changes of the slopes of the curves). The amount of the displacement delta V along the potential axis is equal for the three parameters and depends on the ultraviolet dose. It is about delta V = --10 mV after an irradiation dose of 0.7 Ws/cm2 at 280 nm. Both ultraviolet-induced effects depend on membrane potential and on the wavelength of the applied radiation. But while the potential shift is enhanced at more negative holding potentials, the ultraviolet blocking is diminished and vice versa. Further, the ultraviolet-induced potential shift is greater at 260 nm than at 280 nm, whereas a maximum sensitivity of ultraviolet blocking is found at 280 nm. Therefore, the two radiation effects are the result of two separate photoreactions. For explanation of the radiation-induced potential shift it is assumed that ultraviolet radiation decreases the density of negative charges at the inner surface of the nodal membrane. From this hypothesis a value for the inner surface potential psii was derived. --19 mV less than or equal to psii less than or equal to --14 mV.  相似文献   

8.
Sodium channel activations, measured as the fraction of channels open to peak conductance for different test potentials (F[V]), shows two statistically different slopes from holding potential more positive than -90 mV. A high valence of 4-6e is indicated a test potentials within 35 mV of the apparent threshold potential (circa -65 mV at -85 mV holding potential). However, for test potentials positive to -30 mV, the F(V) curve shows a 2e valence. The F(V) curve for crayfish axon sodium channels at these "depolarized" holding potentials thus closely resembles classic data obtained from other preparations at holding potentials between -80 and -60 mV. In contrast, at holding potentials more negative than -100 mV, the high slope essentially disappears and the F(V) curve follows a single Boltzmann distribution with a valence of approximately 2e at all potentials. Neither the slope of this simple distribution nor its midpoint (-20 mV) was significantly affected by removal of fast inactivation with pronase. The change in F(V) slope, when holding potential is increased from -85 to -120 mV, does not appear to be caused by the contribution of a second channel type. The simple voltage dependence of sodium current found at Vh -120 mV be used by to discriminate between models of sodium channel activation, and rules out models with three particles of equal valence.  相似文献   

9.
The effects of extracellular saxitoxin (STX) and tetrodotoxin (TTX) on gating current (IgON) were studied in voltage clamped crayfish giant axons. At a holding potential (VH) of -90 mV, integrated gating charge (QON) was found to be 56% suppressed when 200 nM STX was added to the external solution, and 75% suppressed following the addition of 200 nM TTX. These concentrations of toxin are sufficiently high to block greater than 99% of sodium channels. A smaller suppression of IgON was observed when 1 nM STX was used (KD = 1-2 nM STX). The suppression of IgON by external toxin was found to be hold potential dependent, with only minimal suppression observed at the most hyperpolarized hold potentials, -140 to -120 mV. The maximal effect of these toxins on IgON was observed at hold potentials where the QON vs. VH plot was found to be steepest, -100 to -80 mV. The suppression of IgON induced by TTX is partially relieved following the removal of fast inactivation by intracellular treatment with N-bromoacetamide (NBA). The effect of STX and TTX on IgON is equivalent to a hyperpolarizing shift in the steady state inactivation curve, with 200 nM STX and 200 nM TTX inducing shifts of 4.9 +/- 1.7 mV and 10.0 +/- 2.1 mV, respectively. Our results are consistent with a model where the binding of toxin displaces a divalent cation from a negatively charged site near the external opening of the sodium channel, thereby producing a voltage offset sensed by the channel gating apparatus.  相似文献   

10.
The power spectrum of current fluctuations and the complex admittance of squid axon were determined in the frequency range 12.5 to 5,000 Hx during membrane voltage clamps to the same potentials in the same axon during internal perfusion with cesium. The complex admittance was determined rapidly and with high resolution by a fast Fourier transform computation of the current response, acquired after a steady state was attained, to a synthesized signal with predetermined spectral characteristics superposed as a continuous, repetitive, small perturbation on step voltage clamps. Linear conduction parameters were estimated directly from admittance data by fitting an admittance model, derived from the linearized Hodgkin-Huxley equations modified by replacing the membrane capacitance with a "constant-phase-angle" capacitance, to the data. The constant phase angle obtained was approximately 80 degrees. At depolarizations the phase of the admittance was 180 degrees, and the real part of the impedance locus was in the left-half complex plane for frequencies below 1 kHz, which indicates a steady-state negative Na conductance. The fits also yielded estimates of the natural frequencies of Na "activation" and "inactivation" processes. By fitting Na-current noise spectra with a double Lorentzian function, a lower and an upper corner frequency were obtained; these were compared with the two natural frequencies determined from admittance analysis at the corresponding potentials. The frequencies from fluctuation analyses ranged from 1.0 to 10.3 times higher than those from linear (admittance) analysis. This discrepancy is consistent with the concept that the fluctuations reflect a nonlinear rate process that cannot be fully characterized by linear perturbation analysis. Comparison of the real part of the admittance and the current noise spectrum shows that the Nyquist relation, which generally applies to equilibrium conductors, does not hold for the Na process in squid axon. The Na-channel conductance, gamma Na, was found to increase monotonically from 0.1 to 4.8 pS for depolarizations up to 50 mV from a holding potential of -60 mV, with no indication of a maximum value.  相似文献   

11.
Conduction in inward rectifier, K+-channels in Aplysia neuron and Ba++ blockade of these channels were studied by rapid measurement of the membrane complex admittance in the frequency range 0.05 to 200 Hz during voltage clamps to membrane potentials in the range -90 to -40 mV. Complex ionic conductances of K+ and Cl- rectifiers were extracted from complex admittances of other membrane conduction processes and capacitance by vector subtraction of the membrane complex admittance during suppressed inward K+ current (near zero-mean current and in zero [K+]0) from complex admittances determined at other [K+]0 and membrane potentials. The contribution of the K+ rectifier to the admittance is distinguishable in the frequency domain above 1 Hz from the contribution of the Cl- rectifier, which is only apparent at frequencies less than 0.1 Hz. The voltage dependence (-90 to -40 mV) of the chord conductance (0.2 to 0.05 microS) and the relaxation time (4-8 ms) of K+ rectifier channels at [K+]0 = 40 mM were determined by curve fits of admittance data by a membrane admittance model based on the linearized Hodgkin-Huxley equations. The conductance of inward rectifier, K+ channels at a membrane potential of -80 mV had a square-root dependence on external K+ concentration, and the relaxation time increased from 2 to 7.5 ms for [K+]0 = 20 and 100 mM, respectively. The complex conductance of the inward K+ rectifier, affected by Ba++, was obtained by complex vector subtraction of the membrane admittance during blockage of inward rectifier, K+ channels (at -35 mV and [Ba++]0 = 5 mM) from admittances determined at -80 mV and at other Ba++ concentrations. The relaxation time of the blockade process decreased with increases in Ba++ concentration. An open-closed channel state model produces the inductive-like kinetic behavior in the complex conductance of inward rectifier, K+ channels and the addition of a blocked channel state accounts for the capacitive-like kinetic behavior of the Ba++ blockade process.  相似文献   

12.
The effect of low pH on the kinetics of Na channel ionic and gating currents was studied in frog skeletal muscle fibers. Lowering external pH from 7.4 to 5.0 slows the time course of Na current consistent with about a +25-mV shift in the voltage dependence of activation and inactivation time constants. Similar shifts in voltage dependence adequately describe the effects of low pH on the tail current time constant (+23.3 mV) and the gating charge vs. voltage relationship (+22.1 mV). A significantly smaller shift of +13.3 mV described the effect of pH 5.0 solution on the voltage dependence of steady state inactivation. Changes in the time course of gating current at low pH were complex and could not be described as a shift in voltage dependence. tau g, the time constant that describes the time course of the major component of gating charge movement, was slowed in pH 5.0 solution by a factor of approximately 3.5 for potentials from -60 to +45 mV. We conclude that the effects of low pH on Na channel gating cannot be attributed simply to a change in surface potential. Therefore, although it may be appropriate to describe the effect of low pH on some Na channel kinetic properties as a "shift" in voltage dependence, it is not appropriate to interpret such shifts as a measure of changes in surface potential. The maximum gating charge elicited from a holding potential of -150 mV was little affected by low pH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Summary A computer-controlled apparatus is described, which combines the two powerful methods of voltage-clamping and admittance measurement. The 5-Hz admittance ofChara plasmalemma is obtained for transmembrane PD from −400 mV to 0. DC conductance is also measured by the bipolar staircase method. Both the DC and 5-Hz conductances at steady state display a central maximum at ≈−250 mV. This feature is attributed to the conductance/voltage characteristics of the H+ pump. The steady-state capacitance does not show any trend throughout the potential interval. At the time of the delay, before excitation commences, the 5-Hz conductance is smaller than after excitation. At the time of excitation the 5-Hz conductance echoes the time-course of the ionic current, while the capacitance undergoes a sharp decrease followed by an increase. A possible explanation of the capacitance behavior is attempted involving transport number effects and reactances associated with the Hodgkin-Huxley gating mechanism. At punchthrough the membrane becomes inductive.  相似文献   

14.
Ba2+ currents through L-type Ca2+ channels were recorded from cell- attached patches on mouse pancreatic beta cells. In 10 mM Ba2+, single- channel currents were recorded at -70 mV, the beta cell resting membrane potential. This suggests that Ca2+ influx at negative membrane potentials may contribute to the resting intracellular Ca2+ concentration and thus to basal insulin release. Increasing external Ba2+ increased the single-channel current amplitude and shifted the current-voltage relation to more positive potentials. This voltage shift could be modeled by assuming that divalent cations both screen and bind to surface charges located at the channel mouth. The single- channel conductance was related to the bulk Ba2+ concentration by a Langmuir isotherm with a dissociation constant (Kd(gamma)) of 5.5 mM and a maximum single-channel conductance (gamma max) of 22 pS. A closer fit to the data was obtained when the barium concentration at the membrane surface was used (Kd(gamma) = 200 mM and gamma max = 47 pS), which suggests that saturation of the concentration-conductance curve may be due to saturation of the surface Ba2+ concentration. Increasing external Ba2+ also shifted the voltage dependence of ensemble currents to positive potentials, consistent with Ba2+ screening and binding to membrane surface charge associated with gating. Ensemble currents recorded with 10 mM Ca2+ activated at more positive potentials than in 10 mM Ba2+, suggesting that external Ca2+ binds more tightly to membrane surface charge associated with gating. The perforated-patch technique was used to record whole-cell currents flowing through L-type Ca2+ channels. Inward currents in 10 mM Ba2+ had a similar voltage dependence to those recorded at a physiological Ca2+ concentration (2.6 mM). BAY-K 8644 (1 microM) increased the amplitude of the ensemble and whole-cell currents but did not alter their voltage dependence. Our results suggest that the high divalent cation solutions usually used to record single L-type Ca2+ channel activity produce a positive shift in the voltage dependence of activation (approximately 32 mV in 100 mM Ba2+).  相似文献   

15.
The effects of the agonist enantiomer S(-)Bay K 8644 on gating charge of L-type Ca channels were studied in single ventricular myocytes. From a holding potential (Vh) of -40 mV, saturating (250 nm) S(-)Bay K shifted the half-distribution voltage of the activation charge (Q1) vs. V curve -7.5 +/- 0.8 mV, almost identical to the shift produced in the Ba conductance vs. V curve (-7.7 +/- 2 mV). The maximum Q1 was reduced by 1.7 +/- 0.2 nC/microF, whereas Q2 (charge moved in inactivated channels) was increased in a similar amount (1.4 +/- 0.4 nC/microF). The steady-state availability curves for Q1, Q2, and Ba current showed almost identical negative shifts of -14.8 +/- 1.7 mV, -18.6 +/- 5.8 mV, and -15.2 +/- 2.7 mV, respectively. The effects of the antagonist enantiomer R(+)BayK 8644 were also studied, the Q1 vs. V curve was not significantly shifted, but Q1max (Vh = -40 mV) was reduced and the Q1 availability curve shifted by -24.6 +/- 1.2 mV. We concluded that: a) the left shift in the Q1 vs. V activation curve produced by S(-)BayK is a purely agonistic effect; b) S(-)BayK induced a significantly larger negative shift in the availability curve than in the Q1 vs. V relation, consistent with a direct promotion of inactivation; c) as expected for a more potent antagonist, R(+)Bay K induced a significantly larger negative shift in the availability curve than did S(-)Bay K.  相似文献   

16.
We have recorded membrane impedance and voltage noise in the pacemaker range of potentials (-70 to -59 mV) from spheroidal aggregates of 7-d embryonic chick ventricle cells made quiescent by exposure to tetrodotoxin in medium containing 4.5 mM K+. The input capacitance is proportional to aggregate volume and therefore to total membrane area. The specific membrane capacitance is 1.24 microF/cm2. The input resistance at constant potential is inversely proportional to aggregate volume and therefore to total membrane area. The specific membrane resistance in 18 k omega . cm2 at -70 mV and increases to 81 k omega . cm2 at -59 mV. The RC time constant is 22 ms at -70 mV and increases to 146 ms at -59 mV. The aggregate transmembrane small-signal impedance can be represented by a parallel RC circuit itself in parallel with an inductive branch consisting of a resistor (rL) and an inductor (L) in series. The time constant of the inductive branch (L/rL) is 340 ms, and is only weakly dependent on potential. Correlation functions of aggregate voltage noise and the impedance data were modeled by a population of channels with simple open-close kinetics. The time constant of a channel (tau s) derived from the noise analysis is 300 ms. The low frequency limit of the pacemaker current noise (SI[0]), derived from the voltage noise and impedance, increases from 10(-20) A2/Hz . cm2 at -67 mV to 10(-19) A2/Hz . cm2 at -61 mV.  相似文献   

17.
Gating of Shaker K+ channels: I. Ionic and gating currents.   总被引:3,自引:1,他引:2       下载免费PDF全文
Ionic and gating currents from noninactivating Shaker B K+ channels were studied with the cut-open oocyte voltage clamp technique and compared with the macropatch clamp technique. The performance of the cut-open oocyte voltage clamp technique was evaluated from the electrical properties of the clamped upper domus membrane, K+ tail current measurements, and the time course of K+ currents after partial blockade. It was concluded that membrane currents less than 20 microA were spatially clamped with a time resolution of at least 50 microseconds. Subtracted, unsubtracted gating currents with the cut-open oocyte voltage clamp technique and gating currents recorded in cell attached macropatches had similar properties and time course, and the charge movement properties directly obtained from capacity measurements agreed with measurements of charge movement from subtracted records. An accurate estimate of the normalized open probability Po(V) was obtained from tail current measurements as a function of the prepulse V in high external K+. The Po(V) was zero at potentials more negative than -40 mV and increased sharply at this potential, then increased continuously until -20 mV, and finally slowly increased with voltages more positive than 0 mV. Deactivation tail currents decayed with two time constants and external potassium slowed down the faster component without affecting the slower component that is probably associated with the return between two of the closed states near the open state. In correlating gating currents and channel opening, Cole-Moore type experiments showed that charge moving in the negative region of voltage (-100 to -40 mV) is involved in the delay of the conductance activation but not in channel opening. The charge moving in the more positive voltage range (-40 to -10 mV) has a similar voltage dependence to the open probability of the channel, but it does not show the gradual increase with voltage seen in the Po(V).  相似文献   

18.
Changes in holding potential (Vh), affect both gating charge (the Q(Vh) curve) and peak ionic current (the F(Vh) curve) seen at positive test potentials. Careful comparison of the Q(Vh) and F(Vh) distributions indicates that these curves are similar, having two slopes (approximately 2.5e for Vh from -115 to -90 mV and approximately 4e for Vh from -90 to -65 mV) and very negative midpoints (approximately -86 mV). Thus, gating charge movement and channel availability appear closely coupled under fully-equilibrated conditions. The time course by which channels approach equilibration was explored using depolarizing prepulses of increasing duration. The high slope component seen in the F(Vh) and Q(Vh) curves is not evident following short depolarizing prepulses in which the prepulse duration approximately corresponds to the settling time for fast inactivation. Increasing the prepulse duration to 10 ms or longer reveals the high slope, and left-shifts the midpoint to more negative voltages, towards the F(Vh) and Q(Vh) distributions. These results indicate that a separate slow-moving voltage sensor affects the channels at prepulse durations greater than 10 ms. Charge movement and channel availability remain closely coupled as equilibrium is approached using depolarizing pulses of increasing durations. Both measures are 50% complete by 50 ms at a prepulse potential of -70 mV, with proportionately faster onset rates when the prepulse potential is more depolarized. By contrast, charge movement and channel availability dissociate during recovery from prolonged depolarizations. Recovery of gating charge is considerably faster than recovery of sodium ionic current after equilibration at depolarized potentials. Recovery of gating charge at -140 mV, is 65% complete within approximately 100 ms, whereas less than 30% of ionic current has recovered by this time. Thus, charge movement and channel availability appear to be uncoupled during recovery, although both rates remain voltage sensitive. These data suggest that channels remain inactivated due to a separate process operating in parallel with the fast gating charge. We demonstrate that this behavior can be simulated by a model in which the fast charge movement associated with channel activation is electrostatically-coupled to a separate slow voltage sensor responsible for the slow inactivation of channel conductance.  相似文献   

19.
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) ion channels are important for rhythmic activity in the brain and in the heart. In this study, using ionic and gating current measurements, we show that cloned spHCN channels undergo a hysteresis in their voltage dependence during normal gating. For example, both the gating charge versus voltage curve, Q(V), and the conductance versus voltage curve, G(V), are shifted by about +60 mV when measured from a hyperpolarized holding potential compared with a depolarized holding potential. In addition, the kinetics of the tail current and the activation current change in parallel to the voltage shifts of the Q(V) and G(V) curves. Mammalian HCN1 channels display similar effects in their ionic currents, suggesting that the mammalian HCN channels also undergo voltage hysteresis. We propose a model in which HCN channels transit between two modes. The voltage dependence in the two modes is shifted relative to each other, and the occupancy of the two modes depends on the previous activation of the channel. The shifts in the voltage dependence are fast (tau approximately 100 ms) and are not accompanied by any apparent inactivation. In HCN1 channels, the shift in voltage dependence is slower in a 100 mM K extracellular solution compared with a 1 mM K solution. Based on these findings, we suggest that molecular conformations similar to slow (C-type) inactivation of K channels underlie voltage hysteresis in HCN channels. The voltage hysteresis results in HCN channels displaying different voltage dependences during different phases in the pacemaker cycle. Computer simulations suggest that voltage hysteresis in HCN channels decreases the risk of arrhythmia in pacemaker cells.  相似文献   

20.
The bacterial sodium channel, NaChBac, from Bacillus halodurans provides an excellent model to study structure-function relationships of voltage-gated ion channels. It can be expressed in mammalian cells for functional studies as well as in bacterial cultures as starting material for protein purification for fine biochemical and biophysical studies. Macroscopic functional properties of NaChBac have been described previously (Ren, D., B. Navarro, H. Xu, L. Yue, Q. Shi, and D.E. Clapham. 2001. Science. 294:2372-2375). In this study, we report gating current properties of NaChBac expressed in COS-1 cells. Upon depolarization of the membrane, gating currents appeared as upward inflections preceding the ionic currents. Gating currents were detectable at -90 mV while holding at -150 mV. Charge-voltage (Q-V) curves showed sigmoidal dependence on voltage with gating charge saturating at -10 mV. Charge movement was shifted by -22 mV relative to the conductance-voltage curve, indicating the presence of more than one closed state. Consistent with this was the Cole-Moore shift of 533 micros observed for a change in preconditioning voltage from -160 to -80 mV. The total gating charge was estimated to be 16 elementary charges per channel. Charge immobilization caused by prolonged depolarization was also observed; Q-V curves were shifted by approximately -60 mV to hyperpolarized potentials when cells were held at 0 mV. The kinetic properties of NaChBac were simulated by simultaneous fit of sodium currents at various voltages to a sequential kinetic model. Gating current kinetics predicted from ionic current experiments resembled the experimental data, indicating that gating currents are coupled to activation of NaChBac and confirming the assertion that this channel undergoes several transitions between closed states before channel opening. The results indicate that NaChBac has several closed states with voltage-dependent transitions between them realized by translocation of gating charge that causes activation of the channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号