首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Previous studies have suggested that increased levels of endocannabinoids in various cardiovascular disorders (e.g., various forms of shock, cardiomyopathies, atherosclerosis) through the activation of CB(1) cannabinoid receptors may promote cardiovascular dysfunction and tissue injury. We have investigated the role of the main endocannabinoid anandamide-metabolizing enzyme (fatty acid amide hydrolase; FAAH) in myocardial injury induced by an important chemotherapeutic drug, doxorubicin (DOX; known for its cardiotoxicity mediated by increased reactive oxygen and nitrogen species generation), using well-established acute and chronic cardiomyopathy models in mice. The DOX-induced myocardial oxidative/nitrative stress (increased 4-hydroxynonenal, protein carbonyl, and nitrotyrosine levels and decreased glutathione content) correlated with multiple cell death markers, which were enhanced in FAAH knockout mice exhibiting significantly increased DOX-induced mortality and cardiac dysfunction compared to their wild type. The effects of DOX in FAAH knockouts were attenuated by CB(1) receptor antagonists. Furthermore, anandamide induced enhanced cell death in human cardiomyocytes pretreated with FAAH inhibitor and enhanced sensitivity to ROS generation in inflammatory cells of FAAH knockouts. These results suggest that in pathological conditions associated with acute oxidative/nitrative stress FAAH plays a key role in controlling the tissue injury that is, at least in part, mediated by the activation of CB(1) receptors by endocannabinoids.  相似文献   

2.
Doxorubicin (DOX) is one of the most effective chemotherapeutic drugs; however, its incidence of cardiotoxicity compromises its therapeutic index. DOX-induced heart failure is thought to be caused by reduction/oxidation cycling of DOX to generate oxidative stress and cardiomyocyte cell death. Resveratrol (RV), a stilbene found in red wine, has been reported to play a cardioprotective role in diseases associated with oxidative stress. The objective of this study was to test the ability of RV to protect against DOX-induced cardiomyocyte death. We hypothesized that RV protects cardiomyocytes from DOX-induced oxidative stress and subsequent cell death through changes in mitochondrial function. DOX induced a rapid increase in reactive oxygen species (ROS) production in cardiac cell mitochondria, which was inhibited by pretreatment with RV, most likely owing to an increase in MnSOD activity. This effect of RV caused additional polarization of the mitochondria in the absence and presence of DOX to increase mitochondrial function. RV pretreatment also prevented DOX-induced cardiomyocyte death. The protective ability of RV against DOX was abolished when Sirt1 was inhibited by nicotinamide. Our data suggest that RV protects against DOX-induced oxidative stress through changes in mitochondrial function, specifically the Sirt1 pathway leading to cardiac cell survival.  相似文献   

3.
4.
5.
Doxorubicin (DOX)-induced cardiotoxicity is thought to be mediated by the generation of superoxide anion radicals (superoxide) from redox cycling of DOX in cardiomyocyte mitochondria. Reduction of superoxide generates H(2)O(2), which diffuses throughout the cell and potentially contributes to oxidant-mediated cardiac injury. The mitochondrial and cytosolic glutathione peroxidase 1 (Gpx1) primarily functions to eradicate H(2)O(2). In this study, we hypothesize that Gpx1 plays a pivotal role in the clearance of H(2)O(2) generated by DOX. To test this hypothesis, we compared DOX-induced cardiac dysfunction, mitochondrial injury, protein nitration, and apoptosis in Gpx1-deficient and wild type mouse hearts. The Gpx1-deficient hearts showed increased susceptibility to DOX-induced acute functional derangements than wild type hearts, including impaired contractility and diastolic properties, decreased coronary flow rate, and reduced heart rate. In addition, DOX treatment impaired the mitochondrial function of Gpx1-deficient hearts. Specifically, Gpx1-deficient hearts treated with DOX demonstrated an increased rate of NAD-linked state 4 respiration and a decline in the P/O ratio relative to wild type hearts, suggesting that DOX uncouples the electron transfer chain and oxidative phosphorylation in Gpx1-deficient hearts. Finally, apoptosis and protein nitration were significantly increased in Gpx1-deficient mouse hearts compared to wild type hearts. These studies suggest that Gpx1 plays significant roles in protecting DOX-induced mitochondrial impairment and cardiac dysfunction in the acute phase.  相似文献   

6.
The cardiac toxicity of doxorubicin (DOX), a potent anticancer anthracycline antibiotic, is believed to be mediated through the generation of reactive oxygen species (ROS) in cardiomyocytes. This study aims to determine the function of cellular glutathione peroxidase (Gpx1), which is located in both mitochondria and cytosol, in defense against DOX-induced cardiomyopathy using a line of transgenic mice with cardiac overexpression of Gpx1. The Gpx1-overexpressing hearts were markedly more resistant than nontransgenic hearts to DOX-induced acute functional derangements, including impaired contractility and diastolic properties, decreased coronary flow rate, and reduced heart rate. In addition, DOX treatment impairs mitochondrial function of nontransgenic hearts as evident in a decreased rate of NAD-linked State 3 respiration, presumably a result of inactivation of complex I activity. This is associated with increases in the rates of NAD- and FAD-linked State 4 respiration and declines in P/O ratio, suggesting that the electron transfer and oxidative phosphorylation are uncoupled in these mitochondrial samples. These functional deficits of mitochondria could be largely prevented by Gpx1 overexpression. Taken together, these studies provide new evidence to further support the role of ROS, particularly H(2)O(2) and/or fatty acid hydroperoxides, in causing contractile and mitochondrial dysfunction in mouse hearts acutely exposed to DOX.  相似文献   

7.
Doxorubicin is a commonly used anthracycline chemotherapeutic drug. Its application for treatment has been impeded by its cardiotoxicity as it is detrimental and fatal. DNA damage, cardiac inflammation, oxidative stress and cell death are the critical links in DOX‐induced myocardial injury. Previous studies found that TLR9‐related signalling pathways are associated with the inflammatory response of cardiac myocytes, mitochondrial dysfunction and cardiomyocyte death, but it remains unclear whether TLR9 could influence DOX‐induced heart injury. Our current data imply that DOX‐induced cardiotoxicity is ameliorated by TLR9 deficiency both in vivo and in vitro, manifested as improved cardiac function and reduced cardiomyocyte apoptosis and oxidative stress. Furthermore, the deletion of TLR9 rescued DOX‐induced abnormal autophagy flux in vivo and in vitro. However, the inhibition of autophagy by 3‐MA abolished the protective effects of TLR9 deletion on DOX‐induced cardiotoxicity. Moreover, TLR9 ablation suppressed the activation of p38 MAPK during DOX administration and may promote autophagy via the TLR9‐p38 MAPK signalling pathway. Our study suggests that the deletion of TLR9 exhibits a protective effect on doxorubicin‐induced cardiotoxicity by enhancing p38‐dependent autophagy. This finding could be used as a basis for the development of a prospective therapy against DOX‐induced cardiotoxicity.  相似文献   

8.
Doxorubicin (DOX) is a highly effective treatment for several forms of cancer. However, clinical experience shows that DOX induces a cumulative and dose-dependent cardiomyopathy that has been ascribed to redox-cycling of the drug on the mitochondrial respiratory chain generating free radicals and oxidative stress in the process. Mitochondrial dysfunction including induction of the mitochondrial permeability transition (MPT) and inhibition of mitochondrial respiration have been implicated as major determinants in the pathogenesis of DOX cardiotoxicity. The present work was aimed at investigating whether the inhibition of mitochondrial respiration occurs secondarily to MPT induction in heart mitochondria isolated from DOX-treated rats and whether one or both consequences of DOX treatment are related with oxidation of protein thiol residues. DOX-induced oxidative stress was associated with the accumulation of products of lipid peroxidation and the depletion of alpha-tocopherol in cardiac mitochondrial membranes. No changes in mitochondrial coenzyme Q9 and Q10 concentrations were detected in hearts of DOX-treated rats. Cardiac mitochondria from DOX-treated rats were more susceptible to diamide-dependent induction of the MPT. Although DOX treatment did not affect state 4 respiration, state 3 respiration was decreased in heart mitochondria isolated from DOX-treated rats, which was reversed in part by adding either cyclosporin A or dithiothreitol, but not Trolox. The results suggest that in DOX-treated rats, (i) induction of the MPT is at least in part responsible for decreased mitochondrial respiration, (ii) heart mitochondria are more susceptible to diamide induced-MPT, (iii) thiol-dependent alteration of mitochondrial respiration is partially reversible ex vivo with dithiothreitol. Collectively, these data are consistent with the thesis that thiol-dependent alteration of MPT and respiration is an important factor in DOX-induced mitochondrial dysfunction.  相似文献   

9.
The anthracycline antibiotic doxorubicin (DOX) is an effective anticancer agent, but its clinical use is limited by dose-dependent cardiotoxicity. Scutellarin (SCU), a natural polyphenolic flavonoid, is used as a cardioprotective agent for infarction and ischemia-reperfusion injury. This study investigated the beneficial effect of SCU on DOX-induced chronic cardiotoxicity. Rats were injected intraperitoneally (i. p.) with DOX (2.5 mg/kg) twice a week for four weeks and then allowed to rest for two weeks to establish the chronic cardiotoxicity animal model. A dose of 10 mg/kg/day SCU was injected i. p. daily for six weeks to attenuate cardiotoxicity. SCU attenuated DOX-induced elevated oxidative stress levels and cardiac troponin T (cTnT), decreased left ventricular ejection fraction (LVEF) and fractional shortening (LVFS), elevated isovolumic relaxation time (IVRT), electrophysiology and histopathological alterations. In addition, SCU significantly attenuated DOX-induced cardiac fibrosis and reduced extracellular matrix (ECM) accumulation by inhibiting the TGF-β1/Smad2 signaling pathway. Furthermore, SCU also prevented against DOX-induced apoptosis and autophagy as evidenced by upregulation of Bcl-2, downregulation of Bax and cleaved caspase-3, inhibited the AMPK/mTOR pathway. These results revealed that the cardioprotective effect of SCU on DOX-induced chronic cardiotoxicity may be attributed to reducing oxidative stress, myocardial fibrosis, apoptosis and autophagy.  相似文献   

10.
The efficacy of doxorubicin (DOX) as an antitumor agent is greatly limited by the induction of cardiomyopathy, which results from mitochondrial dysfunction and iron-catalyzed oxidative stress in the cardiomyocyte. Metformin (MET) has been seen to have a protective effect against the oxidative stress induced by DOX in cardiomyocytes through its modulation of ferritin heavy chain (FHC), the main iron-storage protein. This study aimed to assess the involvement of FHC as a pivotal molecule in the mitochondrial protection offered by MET against DOX cardiotoxicity. The addition of DOX to adult mouse cardiomyocytes (HL-1 cell line) increased the cytosolic and mitochondrial free iron pools in a time-dependent manner. Simultaneously, DOX inhibited complex I activity and ATP generation and induced the loss of mitochondrial membrane potential. The mitochondrial dysfunction induced by DOX was associated with the release of cytochrome c to the cytosol, the activation of caspase 3, and DNA fragmentation. The loss of iron homeostasis, mitochondrial dysfunction, and apoptosis induced by DOX were prevented by treatment with MET 24 h before the addition of DOX. The involvement of FHC and NF-κB was determined through siRNA-mediated knockdown. Interestingly, the presilencing of FHC or NF-κB with specific siRNAs blocked the protective effect induced by MET against DOX cardiotoxicity. These findings were confirmed in isolated primary neonatal rat cardiomyocytes. In conclusion, these results deepen our knowledge of the protective action of MET against DOX-induced cardiotoxicity and suggest that therapeutic strategies based on FHC modulation could protect cardiomyocytes from the mitochondrial damage induced by DOX by restoring iron homeostasis.  相似文献   

11.
The possible protective effects of resveratrol (RVT) against cardiotoxicity were investigated in Wistar albino rats treated with saline, saline+doxorubicin (DOX; 20 mg/kg) or RVT (10 mg/kg)+DOX. Blood pressure and heart rate were recorded on the 1st week and on the 7th week, while cardiomyopathy was assessed using transthoracic echocardiography before the rats were decapitated. DOX-induced cardiotoxicity resulted in decreased blood pressure and heart rate, but lactate dehydrogenase, creatine phosphokinase, total cholesterol, triglyceride, aspartate aminotransferase and 8-OHdG levels were increased in plasma. Moreover, DOX caused a significant decrease in plasma total antioxidant capacity along with a reduction in cardiac superoxide dismutase, catalase and Na+,K+-ATPase activities and glutathione contents, while malondialdehyde, myelopreoxidase activity and the generation of reactive oxygen species were increased in the cardiac tissue. On the other hand, RVT markedly ameliorated the severity of cardiac dysfunction, while all oxidant responses were prevented; implicating that RVT may be of therapeutic use in preventing oxidative stress due to DOX toxicity.  相似文献   

12.
《Translational oncology》2020,13(2):471-480
Dysregulation of calcium homeostasis is a major mechanism of doxorubicin (DOX)-induced cardiotoxicity. Treatment with DOX causes activation of sarcoplasmic reticulum (SR) ryanodine receptor (RYR) and rapid release of Ca2+ in the cytoplasm resulting in depression of myocardial function. The aim of this study was to examine the effect of dantrolene (DNT) a RYR blocker on both the cardiotoxicity and antitumor activity of DOX in a rat model of breast cancer. Female F344 rats with implanted MAT B III breast cancer cells were randomized to receive intraperitoneal DOX twice per week (12 mg/kg total dose), 5 mg/kg/day oral DNT or a combination of DOX + DNT for 3 weeks. Echocardiography and blood troponin I levels were used to measure myocardial injury. Hearts and tumors were evaluated for histopathological alterations. Blood glutathione was assessed as a measure of oxidative stress. The results showed that DNT improved DOX-induced alterations in the echocardiographic parameters by 50%. Histopathologic analysis of hearts showed reduced DOX induced cardiotoxicity in the group treated with DOX + DNT as shown by reduced interstitial edema, cytoplasmic vacuolization, and myofibrillar disruption, compared with DOX-only–treated hearts. Rats treated with DNT lost less body weight, had higher blood GSH levels and lower troponin I levels than DOX-treated rats. These data indicate that DNT is able to provide protection against DOX cardiotoxicity without reducing its antitumor activity. Further studies are needed to determine the optimal dosing of DNT and DOX in a tumor-bearing host.  相似文献   

13.
14.
Cancer is a destructive disease that causes high levels of morbidity and mortality. Doxorubicin (DOX) is a highly efficient antineoplastic chemotherapeutic drug, but its use places survivors at risk for cardiotoxicity. Many studies have demonstrated that multiple factors are involved in DOX-induced acute cardiotoxicity. Among them, oxidative stress and cell death predominate. In this review, we provide a comprehensive overview of the mechanisms underlying the source and effect of free radicals and dependent cell death pathways induced by DOX. Hence, we attempt to explain the cellular mechanisms of oxidative stress and cell death that elicit acute cardiotoxicity and provide new insights for researchers to discover potential therapeutic strategies to prevent or reverse doxorubicin-induced cardiotoxicity.  相似文献   

15.
BackgroundDoxorubicin (DOX) is a widely used antitumor drug. However, its clinical application is limited for its serious cardiotoxicity. The mechanism of DOX-induced cardiotoxicity is attributed to the increasing of cell stress in cardiomyocytes, then following autophagic and apoptotic responses. Our previous studies have demonstrated the protective effect of Shenmai injection (SMI) on DOX-induced cardiotoxicity via regulation of inflammatory mediators for releasing cell stress.PurposeTo further investigate whether SMI attenuates the DOX-induced cell stress in cardiomyocytes, we explored the mechanism underlying cell stress as related to Jun N-terminal kinase (JNK) activity and the regulation of autophagic flux to determine the mechanism by which SMI antagonizes DOX-induced cardiotoxicity.Study designThe DOX-induced cardiotoxicity model of autophagic cell death was established in vitro to disclose the protected effects of SMI on oxidative stress, autophagic flux and JNK signaling pathway. Then the autophagic mechanism of SMI antagonizing DOX cardiotoxicity was validated in vivo.ResultsSMI was able to reduce the DOX-induced cardiomyocyte apoptosis associated with inhibition of activation of the JNK pathway and the accumulation of reactive oxygen species (ROS). Besides, SMI antagonized DOX cardiotoxicity, regulated cardiomyocytes homeostasis by restoring DOX-induced cardiomyocytes autophagy. Under specific circumstances, SMI depressed autophagic process by reducing the Beclin 1-Bcl-2 complex dissociation which was activated by DOX via stimulating the JNK signaling pathway. At the same time, SMI regulated lysosomal pH to restore the autophagic flux which was blocked by DOX in cardiomyocytes.ConclusionSMI regulates cardiomyocytes apoptosis and autophagy by controlling JNK signaling pathway, blocking DOX-induced apoptotic pathway and autophagy formation. SMI was also found to play a key role in restoring autophagic flux for counteracting DOX-damaged cardiomyocyte homeostasis.  相似文献   

16.
Doxorubicin (DOX) is an anthracycline antibiotic widely used as a chemotherapeutic agent in the treatment of several tumours. However, its cardiac toxicity limits its use at maximum therapeutic doses. Most studies implicated increased oxidative stress as the major determinant of DOX cardiotoxicity. The local Saudi flora is very rich in a variety of plants of quite known folkloric or traditional medicinal uses. Tribulus macropterus Boiss., Olea europaea L. subsp. africana (Mill.) P. S. Green, Tamarix aphylla (L.) H. Karst., Cynomorium coccineum L., Cordia myxa L., Calligonum comosum L' Hér, and Withania somnifera (L.) Dunal are Saudi plants known to have antioxidant activities. The aim of the current study was to explore the potential protective effects of methanolic extracts of these seven Saudi plants against DOX-induced cardiotoxicity in rats. Two plants showed promising cardioprotective potential in the order Calligonum comosum > Cordia myxa. The two plant extracts showed potent in vitro radical scavenging and antioxidant properties. They significantly protected against DOX-induced alterations in cardiac oxidative stress markers (GSH and MDA) and cardiac serum markers (CK-MB and LDH activities). Additionally, histopathological examination indicated a protection against DOX-induced cardiotoxicity. In conclusion, C. comosum and C. myxa exerted protective activity against DOX-induced cardiotoxicity, which is, at least partly, due to their antioxidant effect.  相似文献   

17.
Doxorubicin (DOX) is one of the most powerful and widely prescribed chemotherapeutic agents to treat divergent human cancers. However, the clinical use of DOX is restricted due to its severe cardiotoxic side-effects. There has been ongoing search for cardioprotectants against DOX toxicity. Inorganic nitrate has emerged as a bioactive compound that can be reduced into nitrite and nitric oxide in vivo and in turn plays a therapeutic role in diseases associated with nitric oxide insufficiency or dysregulation. In this review, we describe a novel concept of using dietary supplementation of inorganic nitrate to reduce DOX-induced cardiac cellular damage and dysfunction, based on our recent promising studies in a mouse model of DOX cardiotoxicity. Our data show that chronic oral ingestion of sodium nitrate, at a dose equivalent to ~400% of the Acceptable Daily Intake of the World Health Organization, alleviated DOX-induced left ventricular dysfunction and mitochondrial respiratory chain damage. Such cardioprotective effects were associated with reduction of cardiomyocyte necrosis/apoptosis, tissue lipid peroxidation, and mitochondrial H(2)O(2) generation following DOX treatment. Furthermore, proteomic studies revealed enhanced cardiac expression of mitochondrial antioxidant enzyme - peroxiredoxin 5 in the nitrate-treated animals. These studies suggest that inorganic nitrate could be an inexpensive therapeutic agent for long-term oral administration in preventing DOX-induced cardiac toxicity and myopathy during the prolonged pathological process. Future clinical trials in the cancer patients undergoing DOX chemotherapy are warranted to translate these experimental findings into an effective new therapy in preventing the DOX-induced cardiomyopathy.  相似文献   

18.
19.
The use of the potent antitumor antibiotic doxorubicin (DOX) is hampered because of its severe cardiac toxicity that leads to the development of cardiomyopathy and heart failure. In this study, we have developed a cell culture model for DOX-induced myocardial injury using primary adult rat cardiomyocytes that were cultured in serum-free medium and exposed to 1 to 40 microM DOX. DOX caused a dose-dependent release of sarcosolic enzyme lactate dehydrogenase (LDH) from cultured myocytes. The release of LDH was prevented by the cell-permeable superoxide dismutase (SOD) mimetic (MnTBAP), but was unaffected by either cell-impermeable SOD enzyme, or manganese (II) sulfate. Ebselen, a glutathione peroxidase (GPx) mimetic, enhanced the protection of cardiomyocytes afforded by MnTBAP. DOX caused the increased formation of oxidants in cardiomyocytes, and MnTBAP lowered the amount of intracellular oxidants induced by DOX. In addition, DOX selectively inactivated aconitase in cardiomyocytes, and MnTBAP partially reversed this inactivation. Ebselen further amplified the protective effect of MnTBAP on aconitase activity. These results suggest that the SOD mimetic MnTBAP prevents DOX-induced damage to cardiomyocytes and that the GPx mimetic ebselen synergistically enhanced the cardioprotection afforded by MnTBAP. Relevance of these findings to minimizing cardiotoxicity in cancer treatment is discussed.  相似文献   

20.
Doxorubicin (DOX) and VP16 are DNA topoisomerase II inhibitors yet only DOX induces an irreversible cardiotoxicity, likely through DOX-induced oxidative stress. Egr-1 is overexpressed after many stimuli that increase oxidative stress in vitro and after DOX-injection into adult mice in vivo. To investigate Egr-1 function in the heart, we compared the molecular and histological responses of wild type (+/+) and Egr-1 deficient (-/-) female mice to saline, DOX, VP16, the cardioprotectant dexrazoxane (DZR), or DOX+DZR injection. DOX, and to a lesser extent VP16, induced characteristic increases in cardiac muscle and non-muscle genes typical of cardiac damage in +/+ mice, whereas only beta-MHC and Sp1 were increased in -/- mice. DZR-alone treated +/+ mice showed increased cardiomyocyte transnuclear width without a change to the heart to body weight (HW/BW) ratio. However, DZR-alone treated -/- mice had an increased HW/BW, increased cardiomyocyte transnuclear width, and gene expression changes similar to DOX-injected +/+ mice. DZR pre-injection alleviated DOX-induced gene changes in +/+ mice; in DZR+DOX injected -/- mice the increases in cardiac and non-muscle gene expression were equal to, or exceeded that, detected after DOX-alone or DZR-alone injections. We conclude that Egr-1 is required for DOX-induced molecular changes and for DZR-mediated cardioprotection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号