首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Inhibition of the CDP-choline pathway during apoptosis restricts the availability of phosphatidylcholine (PtdCho) for assembly of membranes and synthesis of signaling factors. The N-terminal nuclear localization signal (NLS) in CTP:phosphocholine cytidylyltransferase (CCT)α is removed during apoptosis but the caspase(s) involved and the contribution to suppression of the CDP-choline pathway is unresolved. In this study we utilized siRNA silencing of caspases in HEK293 cells and caspase 3-deficient MCF7 cells to show that caspase 3 is required for CCTα proteolysis and release from the nucleus during apoptosis. CCTα-Δ28 (a caspase-cleaved mimic) expressed in CCTα-deficient Chinese hamster ovary cells was cytosolic and had increased in vitro activity. However, [3H]choline labeling experiments in camptothecin-treated MCF7 cells and MCF7 cells expressing caspase 3 (MCF7-C3) revealed a global suppression of the CDP-choline pathway that was consistent with inhibition of a step prior to CCTα. In camptothecin-treated MCF7 and MCF7-C3 cells, choline kinase activity was unaffected; however, choline transport into cells was reduced by 30 and 60%, respectively. We conclude that caspase 3-mediated removal of the CCTα NLS contributes minimally to the inhibition of PtdCho synthesis during DNA damage-induced apoptosis. Rather, the CDP-choline pathway is inhibited by caspase 3-independent and -dependent suppression of choline transport into cells.  相似文献   

3.
Life history theory predicts trade-offs between reproductive effort and maternal survivorship in energy-restricted environments. However, empirical evidence for the positive association between maternal mortality and reproductive effort from energetically challenged human populations are mixed and physiological mechanisms that may underlie this association are poorly understood. We hypothesized that increases in aerobic metabolism during repeated periods of pregnancy and lactation result in increased oxidative stress that may contribute to somatic deterioration, vulnerability to illness, and accelerated aging. We therefore predicted that lifetime gravidity and parity would be related to levels of biomarkers of oxidative stress, as well as antioxidative defence enzymes in post-menopausal women. Our hypothesis was supported by positive linear associations between levels of 8-OHdG, a biomarker of DNA oxidative damage (β = 0.21, p<0.05), levels of antioxidative defence enzyme Cu-Zn SOD (β = 0.25, p<0.05), and number of lifetime pregnancies. Furthermore, independent of age and health status, post-menopausal women with higher gravidity and parity (> = 4 pregnancies per lifetime) had 20% higher levels of 8-OHdG and 60% higher levels of Cu-Zn SOD compared to women with lower gravidity and parity (<4 pregnancies per lifetime). Our results present the first evidence for oxidative stress as a possible cost of reproductive effort in humans.  相似文献   

4.
Kaposi’s sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus-8, is the causative agent of three hyperproliferative disorders: Kaposi’s sarcoma, primary effusion lymphoma (PEL) and multicentric Castleman’s disease. During viral latency a small subset of viral genes are produced, including KSHV latency-associated nuclear antigen (LANA), which help the virus thwart cellular defense responses. We found that exposure of KSHV-infected cells to oxidative stress, or other inducers of apoptosis and caspase activation, led to processing of LANA and that this processing could be inhibited with the pan-caspase inhibitor Z-VAD-FMK. Using sequence, peptide, and mutational analysis, two caspase cleavage sites within LANA were identified: a site for caspase-3 type caspases at the N-terminus and a site for caspase-1 and-3 type caspases at the C-terminus. Using LANA expression plasmids, we demonstrated that mutation of these cleavage sites prevents caspase-1 and caspase-3 processing of LANA. This indicates that these are the principal sites that are susceptible to caspase cleavage. Using peptides spanning the identified LANA cleavage sites, we show that caspase activity can be inhibited in vitro and that a cell-permeable peptide spanning the C-terminal cleavage site could inhibit cleavage of poly (ADP-ribose) polymerase and increase viability in cells undergoing etoposide-induced apoptosis. The C-terminal peptide of LANA also inhibited interleukin-1beta (IL-1β) production from lipopolysaccharide-treated THP-1 cells by more than 50%. Furthermore, mutation of the two cleavage sites in LANA led to a significant increase in IL-1β production in transfected THP-1 cells; this provides evidence that these sites function to blunt the inflammasome, which is known to be activated in latently infected PEL cells. These results suggest that specific caspase cleavage sites in KSHV LANA function to blunt apoptosis as well as interfere with the caspase-1-mediated inflammasome, thus thwarting key cellular defense mechanisms.  相似文献   

5.

Background

The objective of this study was to demonstrate the anti-skin cancer and chemopreventive potential of 1,1-bis(3′-indolyl)-1-(p-chlorophenyl methane) (DIM-D) using an in vitro model.

Methods

In vitro cell cytotoxicity and viability assays were carried out in A431 human epidermoid carcinoma cell line and normal human epidermal keratinocytes (NHEK) respectively by crystal violet staining. Apoptosis induction in A431 cells (DIM-D treated) and NHEK cells pretreated with DIM-D (2 hr) prior to UVB irradiation, were assessed. The accumulation of reactive oxygen species (ROS) in DIM-D pretreated NHEK cells (2 hr) prior to UVB exposure was also determined. Immunocytochemistry and western blot analysis was performed to determine cleaved caspase 3 and DNA damage markers in DIM-D treated A431 cells and in DIM-D pretreated NHEK cells prior to UVB irradiation.

Results

The IC50 values of DIM-D were 68.7±7.3, 48.3±10.1 and 11.5±3.1 μM whilst for Epigallocatechin gallate (EGCG) were 419.1±8.3, 186.1±5.2 and 56.7±3.1 μM for 24, 48 and 72 hr treatments respectively. DIM-D exhibited a significantly (p<0.05) greater induction of DNA fragmentation in A431 cells compared to EGCG with percent cell death of 38.9. In addition, DIM-D induced higher expression in A431 cells compared to EGCG of cleaved caspase 3 (3.0-fold vs. 2.4-fold changes), Nurr1 (2.7-fold vs. 1.7-fold changes) and NFκB (1.3-fold vs. 1.1-fold changes). DIM-D also exhibited chemopreventive activity in UVB-irradiated NHEK cells by significantly (p<0.05) reducing UVB-induced ROS formation and apoptosis compared to EGCG. Additionally, DIM-D induced expression of Nurr1 but reduced expression of 8-OHdG significantly in UVB-irradiated NHEK cells compared to EGCG and UV only.

Conclusion

Our results suggest that DIM-D exhibits Nurr1-dependent transactivation in the induction of apoptosis in A431 cells and it protects NHEK cells against UVB-induced ROS formation and DNA damage.  相似文献   

6.
We investigated the impact of cryopreservation and thawing on levels of caspases-3, -8, and -9 activity, intact mitochondrial membrane potential (Deltapsim), and DNA fragmentation in human spermatozoa. Eleven pools of cryopreserved and eight pools of fresh semen samples were examined. Mature and immature fractions were separated on a two-layer density gradient (47% and 90%) and further subdivided based on the externalization of phosphatidylserine and its binding to annexin V-labeled superparamagnetic microbeads (ANMB). Levels of activated caspases were assessed using fluorescein-labeled inhibitors of caspases (FLICA), Deltapsim using a lipophilic cationic dye, and DNA fragmentation by the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay. Cryopreservation was significantly associated with activation of caspases-3, -8, and -9, as well as disruption of the mitochondrial membrane potential but no significant changes were observed in DNA fragmentation. In mature sperm, caspase activation was only detected in the ANMB+ fraction, whereas in immature sperm, both ANMB+ and ANMB- fractions showed activated caspase levels. In ANMB+ immature sperm, apoptosis seemed to be triggered by a surface ligand-receptor mechanism as well as by disruption of mitochondria, whereas in ANMB- immature sperm, apoptosis was induced by activation of caspase-9 following loss of intact Deltapsim. These results demonstrate that selection of annexin V-negative mature spermatozoa might be of clinical relevance for fertility preservation, as this sperm fraction shows no activated apoptosis during the cryopreservation process.  相似文献   

7.
Xu DX  Shen HM  Zhu QX  Chua L  Wang QN  Chia SE  Ong CN 《Mutation research》2003,534(1-2):155-163
To explore the associations among semen quality, oxidative DNA damage in human spermatozoa and concentrations of cadmium, lead and selenium in seminal plasma, 56 non-smoking subjects were asked to collect semen by masturbation into a sterile wide-mouth metal-free plastic container after 3 days of abstinence. The conventional semen parameters were analysed. The concentrations of Cd, Pb and Se in seminal plasma were detected using atomic absorption spectrophotometer. 8-OHdG levels in sperm DNA were measured using HPLC-EC. The results showed that the geometric mean concentrations of Cd, Pb and Se were 0.78, 7.8 and 51.4 microg/l, respectively. The geometric mean of 8-OHdG/10(6) dG was 51.4 (95% CI: 21.5-123.0). A significant inverse correlation exists between Cd and sperm density (r=-0.28, P<0.05), and between Cd and sperm number per ejaculum (r=-0.27, P<0.05). In contrast, there was a significantly positive correlation between Se and sperm density (r=0.50, P<0.01), between Se and sperm number (r=0.49, P<0.01), between Se and sperm motility (r=0.40, P<0.01), and between Se and sperm viability (r=0.38, P<0.01). No statistically significant correlation was observed between Pb and semen quality. A significant inverse correlation was observed between 8-OHdG and sperm density (r=-0.34, P<0.01), between 8-OHdG and sperm number per ejaculum (r=-0.30, P<0.01), and 8-OHdG and sperm viability (r=-0.24, P<0.05). 8-OHdG was significantly correlated with Cd in seminal plasma (r=0.55, P<0.01). A significant but weak positive correlation was found between 8-OHdG and Pb concentration in seminal plasma (r=0.28, P<0.05). In contract, a significant inverse correlation was observed between 8-OHdG and Se concentration in seminal plasma (r=-0.40, P<0.01). The results indicate that Cd in seminal plasma could affect semen quality and oxidative DNA damage in human spermatozoa. Se could protect against oxidative DNA damage in human sperm cells. Pb did not appear to have any association with the semen quality when concentration of Pb in seminal plasma was below 10 microg/l.  相似文献   

8.

Background

This study aimed to assess the association between oxidative damage markers and carotid artery intima-media thickness (CIMT) after controlling for conventional risk factors of atherosclerosis in multiple logistic regression models.

Methods and Findings

Fifty-one case male participants (CIMT ≥ 0.9 mm) were enrolled during their visits to Korean Genomic Rural Cohort Study of Wonju centers between May 1 and August 31, 2011, along with 51 control participants (CIMT < 0.9 mm) selected using frequency matching by age group. The levels of oxidative damage markers, 8-hydroxy-2′-deoxyquuanosine (8-OHdG), malondialdehyde (MDA), and 8-iso-prostaglandin F2α (Isoprostane), were measured. Conditional logistic regression models were used to evaluate relative relationships between the oxidative damage markers and the risk of high CIMT.

Results

The markers of oxidative lipid (Isoprostane and MDA) and DNA (8-OHdG) damage were associated with CIMT after controlling for the conventional risk factors, including age, low density lipoprotein, body mass index, smoking history, alcohol consumption, and metabolic syndrome (ORs [95% CI] for Isoprostane: 3rd tertile, 8.47 [2.59-27.67]; for MDA: 3rd tertile, 8.47 [2.59-27.67]; for 8-OHdG: 3rd tertile, 5.58 [1.79-17.33]). When all the oxidative damage markers were incorporated in the same logistic regression model, only Isoprostanewas significantly related to CIMT (OR [95% CI]: 4.22 [1.31-13.53] in 2nd tertile and 14.21 [3.34-60.56] in 3rd tertile).

Conclusions

In this nested case-control study, the oxidative damage markers of lipid and DNA were associated with CIMT even after controlling for the conventional risk factors of cardiovascular diseases.  相似文献   

9.
The dynamics of sperm DNA fragmentation (sDF) and sperm viability were analyzed in frozen-thawed sperm samples of Equus asinus (Zamorano-Leonés), a breed at risk of extinction. Sperm DNA fragmentation was assessed using an adaptation of the sperm chromatin dispersion test developed for stallions in five different frozen samples. Sperm were thawed and incubated at different temperatures (37 degrees C, 25 degrees C, and 4 degrees C) and sDF was assessed at different times and compared. The mean sDF after thawing at the beginning of the experiment was 18.20+/-14.77% and did not differ significantly from the results of a neutral comet assay (22.0+/-19.34%). The tendency in the sDF of all donkeys indicated that sperm DNA is more sensitive to breakage when incubated at 37 degrees C than when incubated at 25 degrees C or 4 degrees C. Interestingly, the tendency was not the same when different animals were compared, and differences in sDF dynamics were established among individuals. sDF correlated negatively with sperm viability in some individuals but not in others. From a conservation perspective, sDF analysis may offer a new way to assess sperm quality in endangered breeds in order to identify and select the best semen samples for artificial reproduction purposes. In particular, we recommend for artificial insemination the use of semen samples with a slow increase in sDF with time after thawing.  相似文献   

10.
Most DNA in human sperm is bound to highly basic proteins called protamines, but a small proportion is complexed with histones similar to those found in active chromatin. This raises the intriguing possibility that histones in sperm are marking sets of genes that will be preferentially activated during early development. We have examined the chromatin structure of members of the β-globin gene family, which are expressed at different times in development, and the protamine 2 gene, which is expressed in spermatids prior to the widespread displacement of histones by transition proteins. The genes coding for and γ globin, which are active in the embryonic yolk sac, contain regions which are histone associated in the sperm. No histone-associated regions are present at the sites tested within the β- and δ-globin genes which are silent in the embryonic yolk sac. The trends of histone or protamine association are consistent for samples from the same person, and no significant between-subject variations in these trends are found for 13 of the 15 fragments analyzed in the two donors. The results suggest that sperm chromatin structures are generally similar in different men but that the length of the histone-associated regions can vary. The association of sperm DNA with histones or protamines sometimes changes within as little as 400 bp of DNA, suggesting that there is fine control over the retention of histones.  相似文献   

11.
Huntington''s disease (HD), a neurodegenerative disease characterized by progressive dementia, psychiatric problems, and chorea, is known to be caused by CAG repeat expansions in the HD gene HTT. However, the mechanism of this pathology is not fully understood. The translesion DNA polymerase θ (Polθ) carries a large insertion sequence in its catalytic domain, which has been shown to allow DNA loop-outs in the primer strand. As a result of high levels of oxidative DNA damage in neural cells and Polθ''s subsequent involvement in base excision repair of oxidative DNA damage, we hypothesized that Polθ contributes to CAG repeat expansion while repairing oxidative damage within HTT. Here, we performed Polθ-catalyzed in vitro DNA synthesis using various CAG•CTG repeat DNA substrates that are similar to base excision repair intermediates. We show that Polθ efficiently extends (CAG)n•(CTG)n hairpin primers, resulting in hairpin retention and repeat expansion. Polθ also triggers repeat expansions to pass the threshold for HD when the DNA template contains 35 repeats upward. Strikingly, Polθ depleted of the catalytic insertion fails to induce repeat expansions regardless of primers and templates used, indicating that the insertion sequence is responsible for Polθ''s error-causing activity. In addition, the level of chromatin-bound Polθ in HD cells is significantly higher than in non-HD cells and exactly correlates with the degree of CAG repeat expansion, implying Polθ''s involvement in triplet repeat instability. Therefore, we have identified Polθ as a potent factor that promotes CAG•CTG repeat expansions in HD and other neurodegenerative disorders.  相似文献   

12.

Background

Dexamethasone suppressed inflammation and haemodynamic changes in an animal model of pulmonary arterial hypertension (PAH). A major target for dexamethasone actions is NF-κB, which is activated in pulmonary vascular cells and perivascular inflammatory cells in PAH. Reverse remodelling is an important concept in PAH disease therapy, and further to its anti-proliferative effects, we sought to explore whether dexamethasone augments pulmonary arterial smooth muscle cell (PASMC) apoptosis.

Methods

Analysis of apoptosis markers (caspase 3, in-situ DNA fragmentation) and NF-κB (p65 and phospho-IKK-α/β) activation was performed on lung tissue from rats with monocrotaline (MCT)-induced pulmonary hypertension (PH), before and after day 14–28 treatment with dexamethasone (5 mg/kg/day). PASMC were cultured from this rat PH model and from normal human lung following lung cancer surgery. Following stimulation with TNF-α (10 ng/ml), the effects of dexamethasone (10−8–10−6 M) and IKK2 (NF-κB) inhibition (AS602868, 0–3 μM (0-3×10−6 M) on IL-6 and CXCL8 release and apoptosis was determined by ELISA and by Hoechst staining. NF-κB activation was measured by TransAm assay.

Results

Dexamethasone treatment of rats with MCT-induced PH in vivo led to PASMC apoptosis as displayed by increased caspase 3 expression and DNA fragmentation. A similar effect was seen in vitro using TNF-α-simulated human and rat PASMC following both dexamethasone and IKK2 inhibition. Increased apoptosis was associated with a reduction in NF-κB activation and in IL-6 and CXCL8 release from PASMC.

Conclusions

Dexamethasone exerted reverse-remodelling effects by augmenting apoptosis and reversing inflammation in PASMC possibly via inhibition of NF-κB. Future PAH therapies may involve targeting these important inflammatory pathways.  相似文献   

13.
BACKGROUND: The fluorochrome-labeled inhibitors of caspases (FLICA) were recently used as markers of activation of these enzymes in live cells during apoptosis (Bedner et al.: Exp Cell Res 259:308-313, 2000). The aims of this study were to (a) explore if FLICA can be used to study intracellular localization of caspases; (b) combine the detection of caspase activation with analysis of the changes with cell morphology detected by microscopy and laser scanning cytometry (LSC); and (c) adapt the assay to fixed cells that would enable correlation, by multiparameter analysis, of caspase activation with the cell attributes that require cell permeabilization in order to be measured. METHODS: Apoptosis of human MCF-7, U-937, or HL-60 cells was induced by camptothecin (CPT) or tumor necrosis factor-alpha (TNF-alpha) combined with cycloheximide (CHX). Binding of FLICA to apoptotic versus nonapoptotic cells was studied in live cells as well as following their fixation and counterstaining of DNA. Intensity of cell labeling with FLICA and DNA-specific fluorochromes was measured by LSC. RESULTS: Exposure of live cells to FLICA led to selective labeling of cells that had morphological changes characteristic of apoptosis. The FLICA labeling withstood cell fixation and permeabilization, which made it possible to stain DNA and measure its content for identification of the cell cycle position of labeled cells. When fixed cells were treated with FLICA, both apoptotic and nonapoptotic cells became strongly labeled and the labeling pattern was consistent with the localization of caspases as reported in the literature. A translocation of the FLICA binding targets from mitochondria to cytosol was seen in the MCF-7 cells treated with CPT. FLICA binding was largely (> 90%) prevented by the substrates of the caspases or by the unlabeled caspase inhibitors having the same peptide moiety as the respective FLICA. CONCLUSIONS: The detection of caspase activation combined with cell permeabilization requires exposure of live cells to FLICA followed by their fixation. Cell reactivity with the respective FLICA, under these conditions, identifies the activated caspases and makes it possible to correlate their activation with the cell cycle position and other cell attributes that can be measured only after cell fixation/permeabilization. FLICA can also be used to study intracellular localization of caspases, including their translocation.  相似文献   

14.

Background

In recent years, oxidative stress has been studied extensively as a main contributing factor to male infertility. Nitric Oxide, a highly reactive free radical gas, is potentially detrimental to sperm function and sperm DNA integrity at high levels. Thus, the aim of this study was to investigate the associations between five polymorphisms in nitric oxide synthase genes (NOSs) and the risk of male infertility and sperm DNA damage as well.

Methods

Genotypes were determined by the OpenArray platform. Sperm DNA fragmentation was detected using the Tdt-mediated dUTP nick-end labeling assay, and the level of 8-hydroxydeoxyguanosine (8-OHdG) in sperm DNA was measured using immunofluorescence. The adjusted odds ratio (OR) and 95% confidence interval (CI) were estimated using unconditional logistic regression.

Results

Our results revealed a statistically significant difference between the cases and controls in both genotypic distribution (P<0.001) and allelic frequency (P = 0.021) only for the NOS3 rs1799983 SNP. Multivariate logistic regression analyses revealed that rs1799983 was associated with a borderline significantly increased risk of male infertility (GT vs. GG: adjusted OR = 1.30, 95% CI: 1.00–1.70; GT+TT vs. GG: adjusted OR = 1.34, 95% CI: 1.03–1.74; P trend = 0.020). Moreover, NOS3 rs1799983 was positively associated with higher levels of sperm DNA fragmentation (β = 0.223, P = 0.044). However, the other 4 polymorphisms (NOS1 rs2682826, NOS1 rs1047735, NOS2 rs2297518, and NOS2 rs10459953) were not found to have any apparent relationships with male infertility risk.

Conclusions

Of five NOS gene polymorphisms investigated in the present study, we found NOS3 rs1799983 might cause oxidative sperm DNA damage, thereby contributing to male infertility.  相似文献   

15.
In this study, we show that caspases2, 3, 6, and 7 were activated during peroxynitrite-induced apoptosis inhuman leukemia HL-60 cells and that processing of these caspases wasaccompanied by cleavage of poly(ADP-ribose) polymerase and lamin B. Treatment of cells with DEVD-fluoromethyl ketone (FMK), a selectiveinhibitor for caspase 3-like proteases, resulted in a marked diminution of apoptotic cells. VAVAD-FMK, an inhibitor of caspase 2, partially inhibited the apoptotic response to peroxynitrite. However, selective inactivation of caspase 6 by VEID-FMK did not affect apoptosis rates.These data suggest that caspase 3-like proteases and caspase 2, but notcaspase 6, are required for peroxynitrite-induced apoptosis in thiscell type. Moreover, we demonstrate that peroxynitrite treatmentstimulated activation of caspases 8 and 9, two initial caspases in theapoptotic signaling pathway, and preincubation of cells with theirinhibitor, IETD-FMK, inhibited activation of caspase 3-like proteasesand caspase 2 at the concentration that prevents the apoptosis. Theseobservations, together, suggest that caspase 8 and/or caspase 9 mediates activation of caspase 3-like proteases and caspase 2 duringthe apoptosis induced by peroxynitrite in HL-60 cells.

  相似文献   

16.
8-Oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo) is a biomarker of oxidative DNA damage and can be repaired by hOGG1 and APE1 via the base excision repair (BER) pathway. In this work, we studied coordinated BER of 8-oxodGuo by hOGG1 and APE1 in nucleosome core particles and found that histones transiently formed DNA-protein cross-links (DPCs) with active repair intermediates such as 3′-phospho-α,β-unsaturated aldehyde (PUA) and 5′-deoxyribosephosphate (dRP). The effects of histone participation could be beneficial or deleterious to the BER process, depending on the circumstances. In the absence of APE1, histones enhanced the AP lyase activity of hOGG1 by cross-linking with 3′-PUA. However, the formed histone-PUA DPCs hampered the subsequent repair process. In the presence of APE1, both the AP lyase activity of hOGG1 and the formation of histone-PUA DPCs were suppressed. In this case, histones could catalyse removal of the 5′-dRP by transiently cross-linking with the active intermediate. That is, histones promoted the repair by acting as 5′-dRP lyases. Our findings demonstrate that histones participate in multiple steps of 8-oxodGuo repair in nucleosome core particles, highlighting the diverse roles that histones may play during DNA repair in eukaryotic cells.  相似文献   

17.
Curcumin attracts worldwide scientific interest due to its anti-proliferative and apoptosis inducing effects on different tumor cells at concentrations ranging from 10 to 150 µM (3.7–55 µg/ml). Unfortunately, because of a low oral bioavailability, only low and pharmacologically ineffective serum levels are achievable. In this study, an alternative treatment concept consisting of low concentration curcumin (0.2–5 µg/ml) and irradiation with UVA or visible light (VL) has been tested. The experimental results show clearly that this treatment decreases the proliferation and the viability of human melanoma cells while the cell membrane integrity remains intact. We identified the onset of apoptosis characterized by typical markers such as active caspases 8, 9 and 3 as well as DNA fragmentation accompanied by the loss of cell adhesion. The mitochondrial apoptosis signaling pathway is predominant due to an early activation of caspase-9. The present data indicate a higher efficacy of a combination of curcumin and VL than curcumin and UVA. Reduced effects as a result of light absorption by heavily pigmented skin are unlikely if VL is used. These results indicate that a combination of curcumin and light irradiation may be a useful additional therapy in the treatment of malignant disease.  相似文献   

18.
Myocardial infarction triggers oxidative DNA damage, apoptosis and adverse cardiac remodeling in the heart. Small ubiquitin-like modifier (SUMO) proteins mediate post-translational SUMOylation of the cardiac proteins in response to oxidative stress signals. Upregulation of isoform SUMO2 could attenuate myocardial injury via increasing protein SUMOylation. The present study aimed to discover the identity and cardioprotective activities of SUMOylated proteins. A plasmid vector for expressing N-Strep-SUMO2 protein was generated and introduced into H9c2 rat cardiomyocytes. The SUMOylated proteins were isolated with Strep-Tactin® agarose beads and identified by MALDI-TOF-MS technology. As a result, γ-actin was identified from a predominant protein band of ~42 kDa and verified by Western blotting. The roles of SUMO2 and γ-actin SUMOylation were subsequently determined in a mouse model of myocardial infarction induced by ligating left anterior descending coronary artery and H9c2 cells challenged by hypoxia-reoxygenation. In vitro lentiviral-mediated SUMO2 expression in H9c2 cells were used to explore the role of SUMOylation of γ-actin. SUMOylation of γ-actin by SUMO2 was proven to be a new cardioprotective mechanism from the following aspects: 1) SUMO2 overexpression reduced the number of TUNEL positive cells, the levels of 8-OHdG and p-γ-H2ax while promoted the nuclear deposition of γ-actin in mouse model and H9c2 cell model of myocardial infarction; 2) SUMO-2 silencing decreased the levels of nuclear γ-actin and SUMOylation while exacerbated DNA damage; 3) Mutated γ-actin (K68R/K284R) void of SUMOylation sites failed to protect cardiomyocytes against hypoxia-reoxygenation challenge. The present study suggested that SUMO2 upregulation promoted DNA damage repair and attenuated myocardial injury via increasing SUMOylation of γ-actin in the cell nucleus.  相似文献   

19.
Oxidative stress induces caspase-independent retinal apoptosis in vitro   总被引:14,自引:0,他引:14  
Apoptosis is the mode of cell death in retinitis pigmentosa (RP), a heterogeneous group of retinal degenerations. The activation of the caspase proteases forms a pivotal step in the initiation and execution phase of apoptosis in many cells. Inhibition of caspases has been reported to prevent apoptosis in many model systems. However, we demonstrate the absence of caspase activation during retinal cell apoptosis in vitro which involves phosphatidylserine (PS) externalisation, DNA nicking and cell shrinkage. In addition, zVAD-fmk, DEVD-CHO and BD-fmk, inhibitors of the caspases, were unable to alter the characteristics or kinetics of apoptosis, implying that retinal cell death in vitro follows a caspase-independent pathway. We have previously demonstrated the ability of reactive oxygen species (ROS) to act as mediators of retinal cell apoptosis in vitro as well as the ability of antioxidants to prevent retinal cell apoptosis. Here we demonstrate the oxidative inactivation of caspases in this model of retinal apoptosis and provide evidence for an oxidative stress driven cell death pathway that does not involve caspase activity and which retains key features of apoptotic cell death. Furthermore, our data indicates that apoptotic events such as PS exposure, DNA nicking and cell shrinkage may occur independently of caspase activity.  相似文献   

20.
BACKGROUND: Antimycin A (AMA) inhibits mitochondrial electron transport, collapses the mitochondrial membrane potential, and causes the production of reactive oxygen species. Previous work by me and my colleagues has demonstrated that AMA causes an array of typical apoptotic phenomena in HL-60 cells. The hypothesis that AMA causes HL-60 apoptosis by the intrinsic apoptotic pathway has now been tested. METHODS: Z-LEHD-FMK and Z-IETD-FMK were used as specific inhibitors of the initiator caspases 9 and 8, respectively. Caspase 3 activation, DNA fragmentation, and cellular disintegration were measured by flow cytometry. Cytochrome c release, chromatin condensation, and nuclear fragmentation were measured by microscopy. RESULTS: AMA caused mitochondrial cytochrome c release and neither Z-LEHD-FMK nor Z-IETD-FMK inhibited that. In the absence of caspase inhibition there was a very close correlation between cytochrome c release and caspase 3 activation. Z-LEHD-FMK blocked caspase 3 activation but enhanced DNA fragmentation and failed to stop nuclear or cellular disintegration. Z-IETD-FMK also blocked caspase 3 activation but, in contrast to Z-LEHD-FMK, delayed DNA fragmentation and disintegration of the nucleus and the cell. CONCLUSIONS: The hypothesis to explain AMA-induced HL-60 apoptosis was clearly inadequate because: (a) caspase 9 inhibition did not prevent DNA fragmentation or cell death, (b) apoptosis proceeded in the absence of caspase-3 activation, (c) the main pathway leading to activation of the executioner caspases was by caspase-8 activation, but caspase 8 inhibition only delayed apoptosis, and (d) activation of caspases 8 and 9 may be necessary for caspase-3 activation. Thus, in this cell model, apoptosis triggered from within the mitochondria does not necessarily proceed by caspase 9, and caspase 3 is not critical to apoptosis. The results provide further evidence that, when parts of the apoptotic network are blocked, a cell is able to complete the program of cell death by alternate pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号