首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method is described for rapid enzymatic isolation of mesophyll protoplasts and cells from the crassulacean acid metabolism (CAM) plant Notonia grandiflora DC. The mesophyll protoplasts exhibited high rates of 14CO2 fixation both in the light (45 μmol of CO2 fixed mg?1 Chl h?1) and in the dark (20 μmol of CO2 fixed mg?1 Chl h?1). The protoplasts also showed O2 evolution (40 μmol of O2 evolved mg?1 Chl h?1) without added bicarbonate. Exogenously added bicarbonate had no stimulating effect on the O2 evolution. Analyses of early photosynthetic products in the light showed the formation of both C3 and C4 acids. Aspartate was found to be a predominant photosynthate.  相似文献   

2.
3.
Cells of potato (Solanum tuberosum L.) were obtained which were capable of photoautotrophic growth in liquid suspension culture under a photon flux density of 90–110 μmol m?2 s?1 PAR and in an atmosphere enriched with 2% CO2. These photoautotrophic cells contained between 100 to 200 μg Chl (g fresh weight)?1 and fixed CO2 at a maximum rate of 16 μmol CO2 (g fresh weight)?1h?1. In order to obtain cells capable of photoautotrophic growth it was necessary to adapt highly chlorophyllous heterotrophic cells (>50 μg Chl (g fresh weight)?1) for growth in medium with 2.5 g sucrose 1?1 (photomixotrophic cells). The photomixotropic cells had a Chl content of ca 100 μg Chl (g fresh weight)?1 and were capable of photosynthetic activity which allowed them to survive after sugars had been depleted from the medium. It was from the photomixotrophic cells that cells capable of photoautotrophic growth were obtained. Heterotrophic cells initially established in liquid medium with 25 g sucrose I?1 from chlorophyllous callus contained about 50 to 150 μg Chl (g fresh weight)?1. However, after 5 to 10 passages the Chl content decreased to a maximum of 15 μg Chl (g fresh weight)?1. These cells could not be adapted to photomixotrophic or photoautotrophic growth. These cells also were not able to regain Chl or initiate high rates of CO2 fixation during the stationary phase of growth as did photomixotrophic cells or chlorophyllous heterotrophic cells. The loss of Chl exhibited by the cells during adaption to heterotrophic growth could be attributed at least in part to unbalanced growth (when cell division and growth exceeds Chl accumulation). Sucrose appeared to have an inhibitory effect directly on photosynthesis independent of Chl accumulation.  相似文献   

4.
In C4 grasses belonging to the NADP-malic enzyme-type subgroup, malate is considered to be the predominant C4 acid metabolized during C4 photosynthesis, and the bundle sheath cell chloroplasts contain very little photosystem-II (PSII) activity. The present studies showed that Flaveria bidentis (L.), an NADP-malic enzyme-type C4 dicotyledon, had substantial PSII activity in bundle sheath cells and that malate and aspartate apparently contributed about equally to the transfer of CO2 to bundle sheath cells. Preparations of bundle sheath cells and chloroplasts isolated from these cells evolved O2 at rates between 1.5 and 2 mol · min–1 · mg–1 chlorophyll (Chl) in the light in response to adding either 3-phosphoglycerate plus HCO 3 or aspartate plus 2-oxoglutarate. Rates of more than 2 mol O2 · min–1 · mg–1 Chl were recorded for cells provided with both sets of these substrates. With bundle sheath cell preparations the maximum rates of light-dependent CO2 fixation and malate decarboxylation to pyruvate recorded were about 1.7 mol · min–1 · mg–1 Chl. Compared with NADP-malic enzyme-type grass species, F. bidentis bundle sheath cells contained much higher activities of NADP-malate dehydrogenase and of aspartate and alanine aminotransferases. Time-course and pulse-chase studies following the kinetics of radiolabelling of the C-4 carboxyl of C4 acids from 14CO2 indicated that the photosynthetically active pool of malate was about twice the size of the aspartate pool. However, there was strong evidence for a rapid flux of carbon through both these pools. Possible routes of aspartate metabolism and the relationship between this metabolism and PSII activity in bundle sheath cells are considered.Abbreviations DHAP dihydroxyacetone phosphate - NADP-ME(-type) NADP-malic enzyme (type) - NADP-MDH NADP-malate dehydrogenase - OAA oxaloacetic acid - 2-OG 2-oxoglutarate - PEP phosphoenolpyruvate - PGA 3-phosphoglycerate - Pi orthophosphate - Ru5P ribulose 5-phosphate  相似文献   

5.
G. C. Whitelam  G. A. Cold 《Planta》1983,157(6):561-566
We have examined characteristics of the photoinhibition of photosynthesis which occur in the unicellular cyanobacterium Microcystis aeruginosa, following exposure to photon fluence rates in excess of those required for growth. Photoinhibition occurs following exposure of cells to a photon fluence rate of 1,000 μmol m-2 s-1, which is manifested as a decrease in either light-limited CO2 fixation or light-saturated CO2-dependent O2 evolution. The extent and rapidity of this photoinhibition is greatly enhanced under CO2-depleted conditions. Experiments in which cultures were sparged with different gases indicate that photoinhibition is not an obvious consequence of elevated O2 tensions, unlike the photooxidative bleaching of photosynthetic pigments. Comparative studies on the photoinactivation of CO2-dependent O2 evolution and of the methyl viologen-dependent Mehler reaction, in whole cells, indicate that a primary site of light damage is within the photosynthetic electron-transport reactions and that carbon fixation is initially unaffected.  相似文献   

6.
Photosynthetic activity, chloroplast enzymes, and poly-peptides were compared in green and red (ketocarotenoid-containing) cultures of the microalga Haematococcus pluvialis Flotow. Green cultures, grown at 80 μmol pho-tons.m-2. s-1 in an acetate-containing medium, had a mean generation time of 27 h. Ketocarotenoid accumulation was induced by transfer of green cultures to PO4-deficient medium and exposure to 250 μmol photons.m-2. s-1. Under these conditions, there was no increase in cell number, and the cultures turned red. Relative amounts of enzymes and thylakoid polypeptides in red and green cells were ascertained by immunoprobing with standardization on a chlorophyll (Chl) basis. In red cultures, the level of cytochrome f was greatly decreased (< 1% of green cell level), which is expected to greatly impair the linear electron flow from photosystem (PS) II to PS I. Also, the levels of apoproteins in red cells, namely, of CPI, D2, CP47, LHC I, and ribulose-1, 5-bisphosphate carboxylase were reduced to 15, 18, 29, 48, and 80%, respectively, of those in green cells. Only adenosine triphosphate syn-thase exhibited no significant change in the two types of cultures. The respiration rate of red cultures was much higher (100 μmoles O2. mg Chl-1.h-1) than that of green cells (16 μmoles O2. mg Chl-1.h-1). Conversely, net O2 evolution (at Pmax in green cultures was 80 μmoles O2. mg Chl-1.h-1 but was —40 μmoles O2. mg Chl-1.h-1 in red cultures. PS II activity was demonstrated in broken cells of both green and red cultures, showing activity of 40 and 15 μmoles DCPIP-mg Chl-1.h-1 (with DPC as electron donor), respectively. In contrast, PS I activity measured by the Mehler reaction showed that red rather than green cells had a greater activity (64 vs. 46 μmoles O2. mg Chl-1.h-1, respectively). Thus, in spite of the decline of O2 evolution in red cells, the photosystems were still functional. We postulate that the decline of O2, evolution in red cells is largely attributable to an increase in the respiration rate and the impairment of linear electron flow from PS II to PS I and, to some extent, to a decrease in components of the photosystems.  相似文献   

7.
Response of Aphanizomenon ovalisporum to certain environmental parameters was studied to gain a better understanding of the conditions which may have stimulated its autumnal bloom in Lake Kinneret. Optimal temperature for A. ovalisporum growth was 26–30?°C, resulting in growth rates of 0.2–0.3?day?1, similar to those observed in the lake. Maximal rate of CO2 fixation (assimilation numbers of 6–8?μg?C?μg?1?Chl?h?1) was obtained at low irradiances (I k of 40–100?μmol?photons?m?2?s?1), 200?μM Pi and low N:Pi ratios. Growth was strongly affected by phosphorus availability, reaching a maximum at Pi concentrations above 40?μM. The high demand for phosphorus was indicated by an increase in alkaline phosphatase activity. The relative abundance of Pi in the cells increased by 4-fold in Pi-rich compared with Pi-limited cultures. Uptake of Pi was faster in Pi-depleted compared with Pi-sufficient cells. Maximal photosynthetic rates and K1/2(HCO3 ?) were 140–220?μmol?O2?mg?1?Chl?h?1 and 10–24?μM, respectively. At pH 7.0 the K 1/2(CO2) was 2.2 and fell to 0.04?μM at pH 9.0. These data indicated that A. ovalisporum is a HCO3 ? user, and can explain its high photosynthetic rates during the bloom, under high pH and low dissolved CO2 conditions. Na+ concentrations of about 5?mM were essential for A. ovalisporum growth at high pH approaching values in the lake.  相似文献   

8.
《Plant science》1986,45(3):179-187
A method is described for rapid enzymatic isolation of protoplasts from the Crassulacean acid metabolism (CAM) plant Kalanchoe blossfeldiana cv. Tom Thumb. Young leaves were sampled at low, middle or full CAM levels induced by increasing number of short-days (14, 31 and 49 SD). Maximum O2 exchange in light or dark and maximum CO2 fixation in light occur with protoplasts obtained at 1730 (end of the day) for all CAM levels. Dark CO2 fixation, typical of CAM, is performed by protoplasts isolated in the middle of the night from plants having received at least 31 SD. Rates of dark CO2 fixation by these protoplasts are of the same order as those of intact leaves. The capacity for O2 exchange and CO2 fixation increases with the level of CAM. These protoplasts retain characteristics typical of CAM, such as diurnal oscillations in phosphoenolpyruvate carboxylase (EC 4.1.1.31; PEPC) capacity and malate content.  相似文献   

9.
Isolated mesophyll protoplasts, and protoplast extracts containing intact chloroplasts, from the C4 species Digitaria sanguinalis have been used to study Compartmentation and export of C4 acids, using different C3 precursors as substrate for 14CO2 fixation. Mg2+ was necessary for maximum 14CO2 fixation rates with both protoplasts and protoplast extracts, whereas Mg2+ was inhibitory for oxaloacetate and phosphoglycerate reduction. This inhibition could be overcome by preincubating the materials in the light with excess of EDTA before addition of Mg2+. Under these conditions pyruvate as substrate for 14CO2 fixation induced mainly malate formation, whereas phosphoglycerate as substrate induced oxaloacetate formation, indicating competition for available NADPH between oxaloacetate and phosphoglycerate reduction. Oxaloacetate could be exported from the protoplasts at rates comparable to the rates of 14CO2 fixation in intact leaves (200 μmol/mg Chl × h). This product probably passed the plasma membrane by simple diffusion, whereas the export of malate and aspartate seemed to be regulated, with the size of the intraprotoplast pool being relatively independent of the export rate. It is concluded that transport via the plasma membrane-cell wall path may play a role in metabolite flow during photosynthesis in C4 plants.  相似文献   

10.
Abstract A simple mechanical method for the rapid isolation of chloroplasts with high rates of photosynthesis from young leaves of oat (Avena sativa L.) was described. The photosynthetic activity of these chloroplasts was stable for at least 2 h with rates of CO2-dependent O2 evolution of 30–40 μmol g 1 Chl s 1. The photosynthetic properties of these chloroplasts were similar to those reported for spinach and pea chloroplasts isolated by mechanical disruption. The pH optimum for photosynthetic O2 evolution was pH 7.6. The induction time was 0.5–2 min. Maximal rates of photosynthetic O2 evolution in these chloroplast preparations were obtained in the absence of both divalent cations and EDTA. Addition of divilent cations strongly inhibited photosynthesis which could be partially restored by the subsequent addition of EDTA. But when these cations were not present in the assay medium the addition of EDTA greater than 1 mol m 3 decreased photosynthetic activity. The optimal orthophosphate concentration required for photosynthesis in these chloroplast preparations was 0.2–0.3 mol m 3. In contrast, the addition of pyrophosphate either in the light or dark inhibited photosynthesis. In a comparative study, chloroplasts were also isolated from oat and wheat (Triticum aestivum L., cultivar Hybrid C306) protoplasts. These chloroplast preparations were found to have properties similar to those determined for oat chloroplasts isolated by the mechanical method reported above.  相似文献   

11.
Spring wheat cv. Minaret was grown to maturity under three carbon dioxide (CO2) and two ozone (O3) concentrations in open-top chambers (OTC). Green leaf area index (LAI) was increased by elevated CO2 under ambient O3 conditions as a direct result of increases in tillering, rather than individual leaf areas. Yellow LAI was also greater in the 550 and 680 μmol mol–1 CO2 treatments than in the chambered ambient control; individual leaves on the main shoot senesced more rapidly under 550 μmol mol–1 CO2, but senescence was delayed at 680 μmol mol–1 CO2. Fractional light interception (f) during the vegetative period was up to 26% greater under 680 μmol mol–1 CO2 than in the control treatment, but seasonal accumulated intercepted radiation was only increased by 8%. As a result of greater carbon assimilation during canopy development, plants grown under elevated CO2 were taller at anthesis and stem and ear biomass were 27 and 16% greater than in control plants. At maturity, yield was 30% greater in the 680 μmol mol–1 CO2 treatment, due to a combination of increases in the number of ears per m–2, grain number per ear and individual grain weight (IGW). Exposure to a seasonal mean (7 h d–1) of 84 nmol mol–1 O3 under ambient CO2 decreased green LAI and increased yellow LAI, thereby reducing both f and accumulated intercepted radiation by ≈ 16%. Individual leaves senesced completely 7–28 days earlier than in control plants. At anthesis, the plants were shorter than controls and exhibited reductions in stem and ear biomass of 15 and 23%. Grain yield at maturity was decreased by 30% due to a combination of reductions in ear number m–2, the numbers of grains per spikelet and per ear and IGW. The presence of elevated CO2 reduced the rate of O3-induced leaf senescence and resulted in the maintenance of a higher green LAI during vegetative growth under ambient CO2 conditions. Grain yields at maturity were nevertheless lower than those obtained in the corresponding elevated CO2 treatments in the absence of elevated O3. Thus, although the presence of elevated CO2 reduced the damaging impact of ozone on radiation interception and vegetative growth, substantial yield losses were nevertheless induced. These data suggest that spring wheat may be susceptible to O3-induced injury during anthesis irrespective of the atmospheric CO2 concentration. Possible deleterious mechanisms operating through effects on pollen viability, seed set and the duration of grain filling are discussed.  相似文献   

12.
Manfred Kluge 《Planta》1971,98(1):20-30
Summary The distribution of radioactivity between the products of 14CO2 light fixation in phyllodia of Bryophyllum tubiflorum could be influenced experimentally by manipulating the malic acid content of the cells. Accelerating the deacidification of the tissue during the light period by application of higher light intensities accelerated the increase of malate labelling and the decrease of the sucrose labelling after 14CO2 light fixation under our standard conditions (10 min preillumination, 15 min 14CO2 light fixation, 8000 lux).In other experiments different malate contents of the tissues were induced by treating the phyllodia with different temperatures during the night period. In the morning, phyllodia with low malate content transferred most of the label into malate, and phyllodia with high malate content incorporated most of the 14C radioactivity into sugars. However, this was true only after preillumination of 1 hour. When the phyllodia fixed 14CO2 without preillumination, no differences in the labelling patterns between acidified and non-acidified phyllodia could be observed.In experiments using leaf tissue slices of Bryophyllum daigremontianum we could again observe that malate was labelled more heavily in the deacidified tissue than in the acidified controls, with less radioactivity being transferred into phosphate esters and sugars. The rates of 14CO2 light fixation were identical in tissue slices with high and low malate content. However, the rates of CO2 dark fixation in the acidified samples were clearly lower than those in the deacidified ones. The low rate of CO2 dark fixation in acidified samples could not be inhibited by an inhibitor of PEP-carboxylase as the high CO2 dark fixation rate of the deacidified tissue could be inhibited.The results are discussed in relation to the feed back inhibition of PEP-carboxylase in vivo by malate. Compartmentation also seemed to be involved in controlling the flow of carbon during CO2 light fixation in succulent tissue.  相似文献   

13.
Abstract. Environment and plant measurements were made to determine what factors may limit growth of deepwater and floating rice plants during partial or complete submergence. Field surveys included measurements of temperature, pH, light, O2 and CO2 in floodwater in Thailand. In addition, measurements were made of O2 and CO2 concentrations inside internodal lacunae of deepwater and floating rice growing at 0.5–2.0 m water depths. The bulk of measurements were taken during periods when the changes in water level were less than 50 mm d?1. In the 0–0.02 m surface layer of floodwater at any location there were large changes in oxygen concentrations over diurnal cycles: there were decreases during the night down to 0.02–0.18 mol m?3 O2 at 0600 h and increases during the day to 0.13–0.28 mol m?3 O2 at 1500 h (0.28 mol m?3 being 120% of the O2 concentration of air saturated water at 30°C). During the day oxygen concentrations decreased with increasing water depth; concentrations just above the soil surface were occasionally zero. Most of this gradient disappeared during the night, and at dawn the 0.6 m surface layer of water had uniform low O2 concentrations. O2 concentrations were also measured during flash floods in Thailand. In contrast to the conditions with only small increases in water level, the O2 concentrations in the water during flash floods were more uniform with depth and changed little over a diurnal cycle, the O2 ranging between 0.14–0.19 mol m?3. In most locations floodwater contained 0.2–1.9 mol m?3 CO2 and 0.7–1.6 mol m?3 bicarbonate; however, in a location with acid sulphate soil CO2 was only 0.05–0.2 mol m?3, and bicarbonate concentrations were several fold lower. Concentrations of CO2 in floodwater increased with increasing water depth. O2 and CO2 concentrations inside internodal lacunae of rice were determined in the field when water depth were 1–2 m. Concentrations of O2 in internodes at the water surface were 16–20%, and decreased to 10% and 5% at 0.8 and 1.8 m water depth respectively. There was no diurnal cycle in O2 concentrations inside internodes. In contrast, CO2 concentrations in the lacunae increased with water depth and ranged from 1–3% in internodes at the water surface to 5–10% in internodes at 1.8 m water depth. There was evidence for a diurnal cycle in CO2 concentrations in the basal internode near the soil surface, CO2 increased during the day and decreased during the night. The above data are used to show that there is little or no relationship between gas concentrations in floodwater and internodal lacunae of rice plants. Results are discussed in relation to O2 supply to submerged portions of rice and metabolism of these tissues at low O2 concentrations.  相似文献   

14.
W. Hüsemann  A. Plohr  W. Barz 《Protoplasma》1979,100(1):101-112
Summary Cell suspension cultures ofChenopodium rubrum have been grown for more than 2 years photoautotrophically with CO2 as sole carbon source. Average increase in fresh weight is appr. 600% within 14 days. The chlorophyll content of photoautotrophic cells (200 g/g fresh weight) is much higher than of photomixotrophic cells (50 g/g fresh weight). The photosynthetic activity of the cells (190 moles CO2×mg–1 chlorophyllXh–1) is comparable to the values found with intact leaves. As shown by short-term14CO2 photosynthesis, both, the photomixotrophic and the photoautotrophic cell suspension cultures assimilate CO2 predominantly via the Calvin pathway.Major differences were found with cells from either exponential or stationary phase of growth with regard to differential labelling of 3-phosphoglyceric acid, malate, sucrose and glucose/fructose.In vitro measurements of carboxylation reactions only partially corroborate our findings with14CO2 incorporation. The ratio of ribulosebisphosphate to phosphoenolpyruvate carboxylase activity is 4.7 for leaves of C.rubrum, 1.2 for photoautotrophic cells during stationary growth and 0.5 for cells during exponential growth phase, however, 0.18 was found for photomixotrophic cells. Though the14CO2 incorporation into 3-phosphoglyceric acid is clearly higher than into malate, thein vitro activity of phosphoenolpyruvatecarboxylase is 2–6 fold higher than that of ribulosebisphosphate carboxylase. We postulate that anaplerotic reactions of the tricarboxylic acid cycle are involved in the regulation of phosphoenolpyruvate carboxylase.Abbreviations 2,4-D didilorophenoxyacetic acid - EDTA ethylene-diamine-tetraacetic acid - fr. w. fresh weight - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - PGA 3-phosphoglyceric acid - PPO 2,5-diphenyloxazole - PEP phosphoenolpyruvate - RuBP nbulosebisphosphate  相似文献   

15.
Abstract Crassulacean acid metabolism (CAM) was studied in mixotrophic callus tissue cultures of Kalanchoë blossfeldiana hybr. Montezuma and compared with plants propagated from the calli. The ultrastructural properties of the green callus cells are similar to mesophyll cells of CAM plants except that occasionally abnormal mitochondria were observed. There was permanent net CO2 output by the calli in light and darkness, which was lower in darkness than in light. The calli exhibited a diurnal rhythm of malic acid, with accumulation during the night and depletion during the day. 14C previously incorporated by dark CO2 fixation into malate was transferred upon subsequent illumination into end products of photosynthesis. All these data indicate that CAM operates in the calli tissue. The results revealed that the capacity for CAM is obviously lower in the calli compared with plantlets developing from the calli, or with ‘adult’ plants. The data suggest also that CAM in the calli was not limited by the activities of CAM enzymes.  相似文献   

16.
One group of C4, species utilize a NAD-malic enzyme to decarboxylate C4 acids. This enzyme, together with a major isoenzyme of aspartate aminotransferase and a NAD-malate dehydrogenase, is localized in the mitochondria of the bundle sheath cells and the following pathway for C4, acid decarboxylation has been proposed: aspartate → oxaloacetate → malate → CO2 + pyruvate. The present study reports that mitochondria isolated from the bundle sheath cells of one of these species, Atriplex spongiosa, are capable of decarboxylating C4, acids at rates between 5 and 8 μmol/min/mg chlorophyll. For maximum decarboxylating activities, these particles required aspartate, 2-oxoglutarate and phosphate as well as malate; in the absence of any one of these compounds, activity was reduced to 0.3–0.8 μmol/min/mg chlorophyll. Rates for C4 acid decarboxylation were much greater than the respiratory activities of these particles, including the capacity to form citrate or to oxidize malate, succinate, pyruvate or 2-oxoglutarate (0.03–0.6 μmol/min/mg chlorophyll). A comparison of mitochondria prepared from leaves of various C4, and C3, species showed that only the mitochondria from the bundle sheath cells of plants with high NAD-malic enzyme have capacities for rapid C4 acid decarboxylation. The effects of a variety of experimental conditions on C4 acid decarboxylating activities are also reported. The role of these mitochondria in C4 photosynthesis is discussed.  相似文献   

17.
Soil water deficits are likely to influence the response of crop growth and yield to changes in atmospheric CO2 concentrations (Ca), but the extent of this influence is uncertain. To study the interaction of water deficits and Ca on crop growth, the ecosystem simulation model ecosys was tested with data for diurnal gas exchange and seasonal wheat growth measured during 1993 under high and low irrigation at Ca= 370 and 550 μmol mol?1 in the Free Air CO2 Enrichment (FACE) experiment near Phoenix, AZ. The model, supported by the data from canopy gas exchange enclosures, indicated that under high irrigation canopy conductance (gc) at Ca= 550 μmol mol?1 was reduced to about 0.75 that at Ca= 370 μmol mol?1, but that under low irrigation, gc was reduced less. Consequently when Ca was increased from 370 to 550 μmol mol?1, canopy transpiration was reduced less, and net CO2 fixation was increased more, under low irrigation than under high irrigation. The simulated effects of Ca and irrigation on diurnal gas exchange were also apparent on seasonal water use and grain yield. Simulated vs. measured seasonal water use by wheat under high irrigation was reduced by 6% vs. 4% at Ca= 550 vs. 370 μmol mol?1 but that under low irrigation was increased by 3% vs. 5%. Simulated vs. measured grain yield of wheat under high irrigation was increased by 16% vs. 8%, but that under low irrigation was increased by 38% vs. 21%. In ecosys, the interaction between Ca and irrigation on diurnal gas exchange, and hence on seasonal crop growth and water use, was attributed to a convergence of simulated gc towards common values under both Ca as canopy turgor declined. This convergence caused transpiration to decrease comparatively less, but CO2 fixation to increase comparatively more, under high vs. low Ca. Convergence of gc was in turn attributed to improved turgor maintenance under elevated Ca caused by greater storage C concentrations in the leaves, and by greater rooting density in the soil.  相似文献   

18.
The diazotrophic cyanobacteria Trichodesmium spp. contribute approximately half of the known marine dinitrogen (N2) fixation. Rapidly changing environmental factors such as the rising atmospheric partial pressure of carbon dioxide (pCO2) and shallower mixed layers (higher light intensities) are likely to affect N2‐fixation rates in the future ocean. Several studies have documented that N2 fixation in laboratory cultures of T. erythraeum increased when pCO2 was doubled from present‐day atmospheric concentrations (~380 ppm) to projected future levels (~750 ppm). We examined the interactive effects of light and pCO2 on two strains of T. erythraeum Ehrenb. (GBRTRLI101 and IMS101) in laboratory semicontinuous cultures. Elevated pCO2 stimulated gross N2‐fixation rates in cultures growing at 38 μmol quanta · m?2 · s?1 (GBRTRLI101 and IMS101) and 100 μmol quanta · m?2 · s?1 (IMS101), but this effect was reduced in both strains growing at 220 μmol quanta · m?2 · s?1. Conversely, CO2‐fixation rates increased significantly (P < 0.05) in response to high pCO2 under mid‐ and high irradiances only. These data imply that the stimulatory effect of elevated pCO2 on CO2 fixation and N2 fixation by T. erythraeum is correlated with light. The ratio of gross:net N2 fixation was also correlated with light and trichome length in IMS101. Our study suggests that elevated pCO2 may have a strong positive effect on Trichodesmium gross N2 fixation in intermediate and bottom layers of the euphotic zone, but perhaps not in light‐saturated surface layers. Climate change models must consider the interactive effects of multiple environmental variables on phytoplankton and the biogeochemical cycles they mediate.  相似文献   

19.
A technique has been developed for the enzymatic isolation of leaf cells from the Crassulacean acid-metabolism plant Sedum telephium. The cells exhibited high activity in both 14CO2 incorporation (30–70 mol CO2 mg-1 chlorophyll h-1) and O2 evolution in the presence of bicarbonate (60–110 mol O2 mg-1 chlorophyll h-1). Half-maximum saturation of 14CO2 incorporation occurred at a bicarbonate concentration of ca. 2 mM (20 M CO2) at pH 8.4 and 30°C. Two types of light-dependent O2 evolution are reported: O2 evolution in the absence of exogenously supplied bicarbonate (endogenous O2 evolution), and bicarbonate-stimulated O2 evolution. Oxygen evolution in the presence of approximately ambient concentrations of CO2 appeared to be a combination of the endogenous O2 evolution and O2 evolution from fixation of the exogenously supplied CO2.Abbreviations CAM Crassulacean acid metabolism - cirlo chlorophyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - PEP phosphoenolpyruvate - RuDP ribulose-1,5-diphosphate  相似文献   

20.
W. Hüsemann 《Protoplasma》1981,109(3-4):415-431
Summary This communication reports the photoautotrophic growth of hormone and vitamin independent cell suspension cultures ofChenopodium rubrum. The transfer of cells from stationary growth into fresh culture medium results in a high protein formation, followed by an exponential phase of cell division, whereas the onset of rapid chlorophyll formation is delayed for 4 days. At the stage of most rapid cell division there is no net synthesis of starch and sugar. When the cells enter stationary growth, there is a progressive accumulation of chlorophyll, sugar, and starch.Photoautotrophic cell cultures assimilate about 80–90 mol CO2/mg chlorophyll X hour. Dark CO2 fixation is about 3.7% to 2.2% of the light values during exponential and stationary growth, respectively. As shown by short-term14CO2 fixation, CO2 is predominantly assimilated through ribulosebisphosphate carboxylase via the Calvin pathway. There is a significant increase in the14C label of C4 carboxylic acids in exponentially dividing cells as compared to cells from stationary growth. Thein vitro activity of phosphoenolpyruvate carboxylase and ribulosebisphosphate carboxylase is almost equal during exponential cell division. A decrease in cell division activity is accompanied by a significant change in the specific activities of both carboxylation enzymes. In non dividing cells from stationary growth the activity of ribulosebisphosphate carboxylase is greately enhanced and that of phosphoenolpyruvate carboxylase is reduced, documenting the development of carboxylation capacities typical for C3-plants.The experimental results provide evidence that phosphoenolpyruvate carboxylase activity might be regulated by ammonia and could be involved in anaplerotic CO2 fixation which supplies carbon skeletons of the citric acid cycle.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - EDTA ethylene-diamine-tetraacetic acid - FDP fructose bisphosphate - F-6-P fructose-6-phosphate - G-6-P glucose-6-phosphate - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - PGA 3-phosphoglyceric acid - PEP phosphoenolpyruvate - RuDP ribulosebisphosphate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号