首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plantago media L. and Plantago maritima L. differ in their strategy toward salt stress, a major difference being the uptake and distribution of ions. Patch clamp techniques were applied to root cell vacuoles to study the tonoplast channel characteristics. In both species the major channel found was a 60 to 70 picosiemens channel with a low ion selectivity. The conductance of this channel for Na+ was the same as for K+, PK+/PNa+ = 1, whereas the cation/anion selectivity (PK+/Pc1) was about 5. Gating characteristics were voltage and calcium dependent. An additional smaller channel of 25 picosiemens was present in P. maritima. In the whole vacuole configuration, the summation of the single channel currents resulted in slowly activated inward currents (t½ = 1.2 second). Inwardly directed, ATP-dependent currents could be measured against a ΔpH gradient of 1.5 units over the tonoplast. This observation strongly indicated the physiological intactness of the used vacuoles. The open probability of the tonoplast channels dramatically decreased when plants were grown on NaCl, although single channel conductance and selectivity were not altered.  相似文献   

2.
The wheat root high-affinity K+ transporter HKT1 functions as a sodium-coupled potassium co-uptake transporter. At toxic millimolar levels of sodium (Na+), HKT1 mediates low-affinity Na+ uptake while potassium (K+) uptake is blocked. In roots, low-affinity Na+ uptake and inhibition of K+ uptake contribute to Na+ toxicity. In the present study, the selectivity among alkali cations of HKT1 expressed in Xenopus oocytes and yeast was investigated under various ionic conditions at steady state. The data show that HKT1 is highly selective for uptake of the two physiologically significant alkali cations, K+ and Na+ over Rb+, Cs+ and Li+. In addition, Rb+ and Cs+, and an excess of extracellular K+ over Na+, are shown to partially reduce or block HKT1-mediated K+-Na+ uptake. Furthermore, K+, Rb+ and Cs+ also effectively reduce outward currents mediated by HKT1, thereby causing depolarizations. In yeast, HKT1 can produce high-affinity Rb+ uptake at approximately 15-fold lower rates than for K+. Rb+ influx in yeast can be mediated by the ability of the yeast plasma membrane proton pump to balance the 35-fold lower HKT1 conductance for Rb+. A model for HKT1 activity is presented involving a high-affinity K+ binding site and a high-affinity Na+ binding site, and competitive interactions of K+, Na+ and other alkali cations for binding to these two sites. Possible implications of the presented results for physiological K+ and Na+ uptake in plants are discussed.  相似文献   

3.
A phosphorescent trivalent cation, terbium [Tb(III)], has been used to study the binding of different polyvalent cations to the proteins of wheat (Triticum aestivum L.) root plasma membranes. The phosphorescence emission intensity of Tb(III) was enhanced after Tb(III) binding to wheat root plasma membranes as a result of nonradiative resonance energy transfer from the membrane protein tyrosine and phenylalanine residues. Complex, saturable Tb(III) binding was observed, suggesting multiple binding sites. Bound Tb(III) could be displaced by divalent cations in the general order: Mn(II) > Ca(II) > Mg(II). Al(III) was very effective in reducing the protein-enhanced Tb(III) phosphorescence at pH values below 5. Al(III) also altered the Tb(III) phosphorescence lifetime, suggesting Al(III)-induced changes in membrane protein conformation. The more Al(III)-sensitive wheat cultivar (Anza) bound Al(III) with higher affinity than the more tolerant cultivar (BH 1146). At pH 5.5 where Al(III) did not displace bound Tb(III), low levels of Al(III) reduced the ability of Mn(II) to decrease Tb(III) phosphorescence. The significance of these results is discussed with respect to the mechanisms of Al(III) tolerance in wheat and the potential beneficial effects of Al(III) in reducing Mn(II) phytotoxicity.  相似文献   

4.
The selectivity filter of the cation channel TRPM4   总被引:5,自引:0,他引:5  
Transient receptor potential channel melastatin subfamily (TRPM) 4 and its close homologue, TRPM5, are the only two members of the large transient receptor potential superfamily of cation channels that are impermeable to Ca(2+). In this study, we located the TRPM4 selectivity filter and investigated possible structural elements that render it Ca(2+)-impermeable. Based on homology with known cation channel pores, we identified an acidic stretch of six amino acids in the loop between transmembrane helices TM5 and TM6 ((981)EDMDVA(986)) as a potential selectivity filter. Substitution of this six-amino acid stretch with the selectivity filter of TRPV6 (TIIDGP) resulted in a functional channel that combined the gating hallmarks of TRPM4 (activation by Ca(2+), voltage dependence) with TRPV6-like sensitivity to block by extracellular Ca(2+) and Mg(2+) as well as Ca(2+) permeation. Neutralization of Glu(981) resulted in a channel with normal permeability properties but a strongly reduced sensitivity to block by intracellular spermine. Neutralization of Asp(982) yielded a functional channel that exhibited extremely fast desensitization (tau < 5 s), possibly indicating destabilization of the pore. Neutralization of Asp(984) resulted in a non-functional channel with a dominant negative phenotype when coexpressed with wild type TRPM4. Combined neutralization of all three acidic residues resulted in a functional channel whose voltage dependence was shifted toward very positive potentials. Substitution of Gln(977) by a glutamate, the corresponding residue in divalent cation-permeable TRPM channels, altered the monovalent cation permeability sequence and resulted in a pore with moderate Ca(2+) permeability. Our findings delineate the selectivity filter of TRPM channels and provide the first insight into the molecular basis of monovalent cation selectivity.  相似文献   

5.
Summary Wound stress activated wheat root cells to produce oxygen radicals. The production was accompanied by an increased permeability for potassium ions and a depolarization of the plasma membrane. Various electron donors, such as the nonpenetrating donor potassium ferrocyanide as well as NADH and NADPH, caused the amplification of superoxide production by root cells. The -generating system in wheat root cells was found to be considerably sensitive to diphenylene iodonium, which is generally considered as a suicide inhibitor of neutrophil NADPH oxidase, and to other inhibitors of flavoprotein activity, chlorpromazine and quinine. The xenobiotic compound amidopyrine caused activation of the -generating system, which was depressed by DPI. The -generating system in root cells was shown to be significantly dependent on calcium content. Calcium loading of the root cells induced a powerful increase of the superoxide release. Data obtained indicate that superoxide generation is one of the early events of the wound stress response. Redox systems of the plasma membrane may be involved in the superoxide production in response to wound stress and detoxification of xenobiotic compounds in root cells.Abbreviations DPI diphenylene iodonium - MP membrane potential - superoxide anion radical - ROS reactive-oxygen species - SOD superoxide dismutase  相似文献   

6.

Background  

The cyclic nucleotide-gated ion channels (CNGCs) maintain cation homeostasis essential for a wide range of physiological processes in plant cells. However, the precise subcellular locations and trafficking of these membrane proteins are poorly understood. This is further complicated by a general deficiency of information about targeting pathways of membrane proteins in plants. To investigate CNGC trafficking and localization, we have measured Atcngc5 and Atcngc10 expression in roots and leaves, analyzed AtCNGC10-GFP fusions transiently expressed in protoplasts, and conducted immunofluorescence labeling of protoplasts and immunoelectron microscopic analysis of high pressure frozen leaves and roots.  相似文献   

7.
The pharmacology of the maxi cation channel in the plasma membraneof rye (Secale cereale L.) root cells was studied followingits incorporation into planar lipid bilayers. The channel wasinhibited by ruthenium red, diltiazem, verapamil, and quinineat micromolar concentrations and TEA+ at millimolar concentrations. Key words: Calcium (Ca2+, cation channel, inhibitors, planar lipid bilayer, plasma membrane  相似文献   

8.
We isolated cDNAs for Na(+)/H(+) antiporter genes (PhaNHA1s) from salt-sensitive and salt-tolerant reed plants. A phylogenetic analysis and localization analysis using yeast strains expressing PhaNHA1-GFP protein showed that PhaNHA1s were plasma membrane Na(+)/H(+) antiporters. Yeast strains expressing PhaNHA1 from salt-tolerant reed plants (PhaNHA1-n) grew well than yeast strains expressing PhaNHA1 from salt-sensitive reed plants (PhaNHA1-u) in the presence of 100mM NaCl. Furthermore, Na(+) contents of yeast cells expressing PhaNHA1-n were less than half of those of yeast cells expressing PhaNHA1-u. These results suggest that PhaNHA1-n is more efficient at excluding Na(+) from the cells than PhaNHA1-u.  相似文献   

9.
A dimeric alamethicin analog with lysine at position 18 in the sequence (alm-K18) was previously shown to form stable anion-selective channels in membranes at pH 7.0 [Starostin, A. V., R. Butan, V. Borisenko, D. A. James, H. Wenschuh, M. S. Sansom, and G. A. Woolley. 1999. Biochemistry. 38:6144-6150]. To probe the charge state of the conducting channel and how this might influence cation versus anion selectivity, we performed a series of single-channel selectivity measurements at different pH values. At pH 7.0 and below, only anion-selective channels were found with P(K(+))/P(Cl(-)) = 0. 25. From pH 8-10, a mixture of anion-selective, non-selective, and cation-selective channels was found. At pH > 11 only cation-selective channels were found with P(K(+))/P(Cl(-)) = 4. In contrast, native alamethicin-Q18 channels (with Gln in place of Lys at position 18) were cation-selective (P(K(+))/P(Cl(-)) = 4) at all pH values. Continuum electrostatics calculations were then carried out using an octameric model of the alm-K18 channel embedded in a low dielectric slab to simulate a membrane. Although the calculations can account for the apparent pK(a) of the channel, they fail to correctly predict the degree of selectivity. Although a switch from cation- to anion-selectivity as the channel becomes protonated is indicated, the degree of anion-selectivity is severely overestimated, suggesting that the continuum approach does not adequately represent some aspect of the electrostatics of permeation in these channels. Side-chain conformational changes upon protonation, conformational changes, and deprotonation caused by permeating cations and counterion binding by lysine residues upon protonation are considered as possible sources of the overestimation.  相似文献   

10.
Growth responses of the moderately salt-tolerant velvet ash (Fraxinus velutina) and salt-sensitive poplar (Populus × euramericana) were investigated under heterogeneous root zone salinity. The salinity treatments imposed on the two root zones (lower-higher) were 137-137 (uniform), 103-171, 68-205, 34-239, and 0-273 mM NaCl for velvet ash, and 51-51 (uniform), 34-68, 17-85, and 0-103 mM NaCl for poplar. The leaf gas exchange of the plants was measured one month after these treatments were implemented, and the plants were sampled 75 d after treatment to measure other physiological parameters. Net photosynthetic rate, transpiration rate, total biomass, and fine root compensatory growth increased as the difference in salinity between the two root zones (i.e., salinity heterogeneity) increased in velvet ash. These parameters showed no significant difference among the treatments in poplar. The leaf Na+ content was lower under heterogeneous salinity than under uniform salinity in both tested species. The leaf proline content in velvet ash decreased under heterogeneous salinity compared to that under uniform salinity, whereas that of poplar increased. The soluble sugar content of velvet ash leaves increased under heterogeneous salinity, whereas no changes were observed in poplar. The increased fine root biomass in the lower salinity zone promoted velvet ash growth by decreasing the leaf Na+ and Cl- content under heterogeneous salinity. The poplar’s undifferentiated root distribution and gas exchange in response to the heterogeneous salinity were attributed to its salt sensitivity.  相似文献   

11.
R Hasterok  J Maluszynska 《Génome》2000,43(3):574-579
Using in situ hybridization and silver staining methods, the numbers of active and inactive rDNA loci have been established for three allotetraploid species of Brassica (B. napus, B. carinata, and B. juncea) and their diploid ancestors (B. campestris, B. nigra, and B. oleracea). The allotetraploid species have chromosome numbers equal to the sum of the numbers in their diploid relatives, but have fewer rDNA loci. All species investigated have lower numbers of active NORs (AgNORs, nucleolar organizer regions) compared with the numbers of rDNA sites revealed by in situ hybridization. The number of active rDNA loci of the allotetraploid species is equal to the number of AgNORs in their diploid ancestors, indicating the absence of nucleolar dominance in amphidiploid Brassica species, at least in root meristematic cells.  相似文献   

12.
13.
The Bacillus halodurans voltage-gated sodium-selective channel (NaChBac) (Ren, D., B. Navarro, H. Xu, L. Yue, Q. Shi, and D.E. Clapham. 2001b. SCIENCE: 294:2372-2375), is an ideal candidate for high resolution structural studies because it can be expressed in mammalian cells and its functional properties studied in detail. It has the added advantage of being a single six transmembrane (6TM) orthologue of a single repeat of mammalian voltage-gated Ca(2+) (Ca(V)) and Na(+) (Na(V)) channels. Here we report that six amino acids in the pore domain (LESWAS) participate in the selectivity filter. Replacing the amino acid residues adjacent to glutamatic acid (E) by a negatively charged aspartate (D; LEDWAS) converted the Na(+)-selective NaChBac to a Ca(2+)- and Na(+)-permeant channel. When additional aspartates were incorporated (LDDWAD), the mutant channel resulted in a highly expressing voltage-gated Ca(2+)-selective conductance.  相似文献   

14.
15.
Summary The plasma membrane potential of Lettré cells has been determined with the optical indicator oxonol-V and found to be –57 mV at 37°C (range –20 to –80 mV depending on the physiological condition of the cells). Increasing extracellular K+ does not depolarize cells: even in the presence of 155mM K+ the potential is –41 mV; membrane potential is also insensitive to the chemical gradient of Na+,Mg2+, Ca2+ or Cl. Ouabain depolarizes the cells; H+ efflux from cells is stimulated by extracellular Na+. We propose that in Lettré cells the plasma membrane potential is generated by electrogenic cation pumps. The balancing fluxes of Na+ and K+ are mainly through electroneutral cation exchanges (Na+/K+ and Na+/H+) and the magnitude of the potential is limited by organic anion leaks. Such a mechanism may operate in other biological membranes also.  相似文献   

16.
This paper reports changes in ion transport and energy metabolism of plant cells during short- and long-term expositions, resp., to antibiotic nystatin, which is known to specifically bind with plasma membrane sterols to form channels. The excised roots of 5 days old wheat seedlings were used as a model system in this research. It has been shown that treatment of excised roots with nystatin leads to activation of energy metabolism expressed as an increase of respiration and heat production by root cells. Furthermore, in the presence of nystatin increased pH of incubation medium, plasma membrane depolarization and a significant loss of potassium ions were observed. Nystatin-induced stimulation of respiration was prevented by malonate, an inhibitor of succinate dehydrogenase, electron acceptor dichlorophenolindophenol, and AgNO3, an inhibitor of H(+)-ATPase. Based on the data obtained it can be suggested that nystatin-induced stimulation of respiration is related to electron transport activation via mitochondrial respiratory chain, and is connected with activation of plasmalemma proton pump. Moreover, nystatin-induced increase of oxygen consumption was prevented by cerulenin, an inhibitor of fatty acid and sterol synthesis. This indicates that additional sterols and phospholipids may be synthesized in root cells to "heal" nystatin-caused damage of plasma membrane. A supposed chain of events of cell response to nystatin action may by as following: formation of nystatin channels-influx of protons--depolarization of plasmalemma-efflux of potassium ions-disturbance of ion homeostasis--activation of H(+)-ATPase work-increase in energy "requests" for H(+)-ATPase function--increase in the rate of oxygen consumption and heat production. The increased energy production under the action of nystatin, may provide the work of proton pump and synthesis of sterols and phospholipids, which are necessary for membrane regeneration.  相似文献   

17.
Enveloped viruses are excellent tools for the study of the biogenesis of epithelial polarity, because they bud asymmetrically from confluent monolayers of epithelial cells and because polarized budding is preceded by the accumulation of envelope proteins exclusively in the plasma membrane regions from which the viruses bud. In this work, three different experimental approaches showed that the carbohydrate moieties do not determine the final surface localization of either influenza (WSN strain) or vesicular stomatitis virus (VSV) envelope proteins in infected Madin-Darby Canine Kidney (MDCK) cells, as determined by immunofluorescence and immunoelectron microscopy, using ferritin as a marker. Infected concanavalin A- and ricin 1-resistant mutants of MDCK cells, with alterations in glycosylation, exhibited surface distributions of viral glycoproteins identical to those of the parental cell line, i.e., influenza envelope proteins were exclusively found in the apical surface, whereas VSV G protein was localized only in the basolateral region. MDCK cells treated with tunicamycin, which abolishes the glycosylation of viral glycoproteins, exhibited the same distribution of envelope proteins as control cells, after infection with VSF or influenza. A temperature-sensitive mutant of influenza WSN, ts3, which, when grown at the nonpermissive temperature of 39.5 degrees C, retains the sialic acid residues in the envelope glycoproteins, showed, at both 32 degrees C (permissive temperature) and 39.5 degrees C, budding polarity and viral glycoprotein distribution identical to those of the parental WSN strain, when grown in MDCK cells. These results demonstrate that carbohydrate moieties are not components of the addressing signals that determine the polarized distribution of viral envelope proteins, and possibly of the intrinsic cellular plasma membrane proteins, in the surface of epithelial cells.  相似文献   

18.
Changes in superoxide radical formation and bioelectrical characteristics of excised wheat root cells under modification of plasma membrane ion permeability were studied. It was shown that a 2 h treatment of excised roots with valinomycin (Val, 20 microM), N, N'-dicyclohexylcarbodimide (DCCD, 100 microM), gramicidin S (Gr, 20 microM), chlorpromazine (CPZ, 100 microM) caused an increased loss of potassium by cells, lowering of membrane potential (MP) and electrical input resistance (Rin) of the cells. The superoxide formation by excised root cells diminished (under DCCD) or remained at the control level (under Val), which was accompanied by a minor decrease of MP and Rin of the cells, a small increase in potassium loss by excised roots, and in no change of pH of incubation medium. Significant depolarization of plasma membrane, dropping of Rin and essential loss of potassium ions by the cells correlated with a rise in the medium alkalinization and superoxide formation by excised roots (in the presence of Gr, CPZ). Ion channel blocker gadolinium (Gd3+, 200 microM) caused an increase of MP and Rin reduction of potassium loss by cells, and a decrease of pH of the incubation medium, and also enhancement of superoxide formation by excised root cells. It is suggested that upon plasma membrane ion permeability modification the activity of superoxide generating systems depends on the specificity and mechanisms of action of modulators, and is determined by their influence on redox state of plasma membrane as well as by peculiarities of ion transport disturbance.  相似文献   

19.
Aims Organisms on islands are thought to escape biotic pressure and lose defensive capabilities. However, broadscale, evidence-based tests of this idea are rare. In this study, we asked: (i) whether the proportion of spinescent plant species differed between islands and mainlands and (ii) whether the proportion of spinescent species increased with increasing island area and with decreasing island distance to mainland.  相似文献   

20.
Lophopyrum elongatum is a facultative halophyte related to wheat. Eleven unique clones corresponding to genes showing enhanced mRNA accumulation in the early stages of salt stress were previously isolated from a L. elongatum salt-stressed-root cDNA library. The chromosomal distribution of genes complementary to these clones in several genomes of the tribe Triticeae and their copy number in the L. elongatum and wheat genomes are reported. Genes complementary to clones pESI4, pESI14, pESI15, pESI28, and pESI32 were found in homoeologous group 5, those complementary to pESI18 and pESI35 in homoeologous group 6, and those complementary to pESI47, pESI48, pESI3, and pESI2 in homoeologous groups 1, 3, 4, and 7, respectively. The genes are present in a single copy per genome in L. elongatum with the exception of those complementary to pESI2 and pESI18 which are present in at least two and five copies, respectively. Since similar copy numbers per genome were found in wheat (except for pESI2), the ability of L. elongatum to accumulate higher mRNA levels than wheat in response to salt shock apears to have evolved by changes in the regulation of these genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号