首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present an endoscopic probe that combines three distinct optical fibre technologies including: A high-resolution imaging fibre for optical endomicroscopy, a multimode fibre for time-resolved fluorescence spectroscopy, and a hollow-core fibre with multimode signal collection cores for Raman spectroscopy. The three fibers are all enclosed within a 1.2 mm diameter clinical grade catheter with a 1.4 mm end cap. To demonstrate the probe's flexibility we provide data acquired with it in loops of radii down to 2 cm. We then use the probe in an anatomically accurate model of adult human airways, showing that it can be navigated to any part of the distal lung using a commercial bronchoscope. Finally, we present data acquired from fresh ex vivo human lung tissue. Our experiments show that this minimally invasive probe can deliver real-time optical biopsies from within the distal lung - simultaneously acquiring co-located high-resolution endomicroscopy and biochemical spectra.  相似文献   

2.
Electric field-induced charge recombination in Photosystem II (PS II) was studied in osmotically swollen spinach chloroplasts (blebs) by measurement of the concomitant chlorophyll luminescence emission (electroluminescence). A pronounced dependence on the redox state of the two-electron gate QB was observed and the earlier failure to detect it is explained. The influence of the QB/QB oscillation on electroluminescence was dependent on the redox state of the oxygen evolving complex; at times around one millisecond after flash illumination a large effect was observed in the states S2 and S3, but not in the state S4 (actually Z+S3). The presence of the oxidized secondary electron donor, tyrosine Z+, appeared to prevent expression of the QB/QB effect on electroluminescence, possibly because this effect is primarily due to a shift of the redox equilibrium between Z/Z+ and the oxygen evolving complex.Abbreviations BSA bovine serum albumin - EDTA ethylene-diaminetetraacetic acid - EL electroluminescence - FCCP carbonylcyanide p-trifluoromethyloxyphenyl-hydrazone - HEPESI 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - I primary electron acceptor - MOPS 3-(N-morpholino) propane sulfonic acid - P680 primary electron donor of Photosystem II - P700 primary electron donor of Photosystem I - QA and QB secondary and tertiary electron acceptors of Photosystem II - Z secondary electron donor (D1 Tyr 161)  相似文献   

3.
The pathway for the in vitro equilibrium unfolding of the tubulin heterodimer by guanidinium chloride (GdmCl) has been studied using several spectroscopic techniques, specifically circular dichroism (CD), two-photon Fluorescence Correlation Spectroscopy (FCS), and time-resolved fluorescence, including lifetime and dynamic polarization. The results show that tubulin unfolding is characterized by distinct processes that occur in different GdmCl concentration ranges. From 0 to 0.5 M GdmCl, a slight alteration of the tubulin heterodimer occurs, as evidenced by a small, but reproducible increase in the rotational correlation time of the protein and a sharp decrease in the secondary structure monitored by CD. In the range 0.5-1.5 M GdmCl, significant decreases in the steady-state anisotropy and average lifetime of the intrinsic tryptophan fluorescence occur, as well as a decrease in the rotational correlation time, from 48 to 26 nsec. In the same GdmCl range, the number of protein molecules (labeled with Alexa 488), as determined by two-photon FCS measurements, increases by a factor of two, indicating dissociation of the tubulin dimer into monomers. From 1.5 to 4 M GdmCl, these monomers unfold, as evidenced by the continual decrease in the tryptophan steady-state anisotropy, average lifetime, and rotational correlation time, concomitant with secondary structural changes. These results help to elucidate the unfolding pathway of the tubulin heterodimer and demonstrate the value of FCS measurements in studies on oligomeric protein systems.  相似文献   

4.
The oxygen production of dark-adapted Photosystem II upon illumination by a series of single-turnover flashes shows a damped period four oscillation with flash number. The damping is attributed to `misses' resulting from a statistical probability that a reaction center fails to produce a stable charge separation after a saturating flash. The origin of misses is of interest because its probable dependence on flash number, in principle, affects the quantitative interpretation of all measurements on phenomena associated with the period four oscillation. We show that the kinetics of chlorophyll fluorescence yield transients induced by a flash series can be used to estimate the relative amplitudes of the miss probability on each flash. It is concluded that a major part of the misses must be caused by failure of the reduction of the oxidized primary electron donor chlorophyll P680+ by the secondary donor tyrosine YZ before the charge separation is lost by recombination. The probability of this failure is found to increase with the oxidation state of the oxygen-evolving complex: more than half of it occurs upon charge separation in the S3 state, which is attributed to the presence of YZ ox S2 in Boltzmann equilibrium with YZS3. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Chloride ions are essential for proper function of the photosynthetic oxygen-evolving complex (OEC) of Photosystem II (PS II). Although proposed to be directly ligated to the Mn cluster of the OEC, the specific structural and mechanistic roles of chloride remain unresolved. This study utilizes X-ray absorption spectroscopy (XAS) to characterize the Mn–Cl interaction in inorganic compounds that contain structural motifs similar to those proposed for the OEC. Three sets of model compounds are examined; they possess core structures MnIV3O4X (X=Cl, F, or OH) that contain a di--oxo and two mono--oxo bridges or MnIV2O2X (X=Cl, F, OH, OAc) that contain a di--oxo bridge. Each set of compounds is examined for changes in the XAS spectra that are attributable to the replacement of a terminal OH or F ligand, or bridging OAc ligand, by a terminal Cl ligand. The X-ray absorption near edge structure (XANES) shows changes in the spectra on replacement of OH, OAc, or F by Cl ligands that are indicative of the overall charge of the metal atom and are consistent with the electronegativity of the ligand atom. Fourier transforms (FTs) of the extended X-ray absorption fine structure (EXAFS) spectra reveal a feature that is present only in compounds where chloride is directly ligated to Mn. These FT features were simulated using various calculated Mn–X interactions (X=O, N, Cl, F), and the best fits were found when a Mn–Cl interaction at a 2.2–2.3 Å bond distance was included. There are very few high-valent Mn halide complexes that have been synthesized, and it is important to make such a comparative study of the XANES and EXAFS spectra because they have the potential for providing information about the possible presence or absence of halide ligation to the Mn cluster in PS II.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00775-003-0520-1Abbreviations bpea N,N-bis(2-pyridylmethyl)ethylamine - EXAFS extended X-ray absorption fine structure - FT Fourier transform - IPE inflection point energy - OEC oxygen evolving complex - PS II Photosystem II - tacn 1,4,7-triazacyclononane - XANES X-ray absorption near edge structure - XAS X-ray absorption spectroscopy - XRD X-ray diffraction  相似文献   

6.
The light-induced chlorophyll (Chl) fluorescence decline at 77 K was investigated in segments of leaves, isolated thylakoids or Photosystem (PS) II particles. The intensity of chlorophyll fluorescence declines by about 40% upon 16 min of irradiation with 1000 μmol m−2 s−1 of white light. The decline follows biphasic kinetics, which can be fitted by two exponentials with amplitudes of approximately 20 and 22% and decay times of 0.42 and 4.6 min, respectively. The decline is stable at 77 K, however, it is reversed by warming of samples up to 270 K. This proves that the decline is caused by quenching of fluorescence and not by pigment photodegradation. The quantum yield for the induction of the fluorescence decline is by four to five orders lower than the quantum yield of QA reduction. Fluorescence quenching is only slightly affected by addition of ferricyanide or dithionite which are known to prevent or stimulate the light-induced accumulation of reduced pheophytin (Pheo). The normalised spectrum of the fluorescence quenching has two maxima at 685 and 695 nm for PS II emission and a plateau for PS I emission showing that the major quenching occurs within PS II. ‘Light-minus-dark’ difference absorbance spectra in the blue spectral region show an electrochromic shift for all samples. No absorbance change indicating Chl oxidation or Pheo reduction is observed in the blue (410–600 nm) and near infrared (730–900 nm) spectral regions. Absorbance change in the red spectral region shows a broad-band decrease at approximately 680 nm for thylakoids or two narrow bands at 677 and 670–672 nm for PS II particles, likely resulting also from electrochromism. These absorbance changes follow the slow component of the fluorescence decline. No absorbance changes corresponding to the fast component are found between 410 and 900 nm. This proves that the two components of the fluorescence decline reflect the formation of two different quenchers. The slow component of the light-induced fluorescence decline at 77 K is related to charge accumulation on a non-pigment molecule of the PS II complex. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
Photosystem I particles devoid of the secondary electron acceptor A1 were studied by nanosecond flash absorption. The primary radical pair (P-700+, A0 -) decays with a half-time of 35 ns. The difference spectrum was measured (400–870 nm). After subtraction of the P-700+/P-700 difference spectrum, the A0 -/A0 was obtained. It includes bleachings centered at 690 and 430 nm, and broad positive bands in the near infra-red and the blue-green. This spectrum is consistent with A0 being chlorophyll a absorbing at 690 nm.  相似文献   

8.
The fluorescence behavior of adenosine in neutral solution has been studied by time-resolved spectroscopy using synchrotron excitation and timecorrelated single photon counting, and by decay time measurements. Three emissions have been identified and correlated with three excitation spectra. The assignment of these transitions has been made by comparison with similar measurements on 6N, 6N-dimethyladenosine (6 DMA), and on adenosine in acid solution (ADO H+). It is proposed that two of the transitions of adenosine which correlate with 6DMA originate from coplanar and orthogonal rotational conformers of the amino group. The other transition, correlating with ADO H+ may originate either from the 3H-imino tautomer, or from a differently solvated rotational conformer.A partial presentation of this work has been made at the Second Congress of the European Society for Photobiology Padova, Italy, 6–10 September 1987  相似文献   

9.
Isolated trimeric Photosystem I complexes of the cyanobacterium Synechococcus elongatus have been studied with absorption spectroscopy and site-selective polarized fluorescence spectroscopy at cryogenic temperatures. The 4 K absorption spectrum exhibits a clear and distinct peak at 710 nm and shoulders near 720, 698 and 692 nm apart from the strong absorption profile located at 680 nm. Deconvoluting the 4 K absorption spectrum with Gaussian components revealed that Synechococcus elongatus contains two types of long-wavelength pigments peaking at 708 nm and 719 nm, which we denoted C-708 and C-719, respectively. An estimate of the oscillator strengths revealed that Synechococcus elongatus contains about 4–5 C-708 pigments and 5–6 C-719 pigments. At 4 K and for excitation wavelengths shorter than 712 nm, the emission maximum appeared at 731 nm. For excitation wavelengths longer than 712 nm, the emission maximum shifted to the red, and for excitation in the far red edge of the absorption spectrum the emission maximum was observed 10–11 nm to the red with respect to the excitation wavelength, which indicates that the Stokes shift of C-719 is 10–11 nm. The fluorescence anisotropy, as calculated in the emission maximum, reached a maximal anisotropy of r=0.35 for excitation in the far red edge of the absorption spectrum (at and above 730 nm), and showed a complicated behavior for excitation at shorter wavelengths. The results suggest efficient energy transfer routes between C-708 and C-719 pigments and also among the C-719 pigments.Abbreviations Chl chlorophyll - FWHM full width at half maximum - PS I Photosystem I  相似文献   

10.
There is presently a debate concerning the number of phases in fluorescence induction and on the identification of the several possible heterogeneities in PS II centres. However, the usual methods of analysis present numerical problems, including a lack of robustness (robustness being defined as the ability to give the correct answer in the presence of distortions or artefacts). We present here the adaptation of the method of moments, which was developed for robustness, to the analysis of fluorescence induction. We were thus able to identify three phases in the fluorescence induction in the presence of DCMU. The slowest phase was attributed to the centres inactive in plastoquinone reduction by using duroquinone as electron acceptor. In order to compare fluorescence with and without DCMU, we introduced the rate of photochemistry, defined as the product of the area times the rate constant of an exponential. This quantity is invariant for a given centre no matter what the size of the electron acceptor pool is. The two fastest phases in the presence of DCMU were attributed to active centres because their rate of photochemistry was the same as that of the plastoquinone-reducing phases in the absence of DCMU. Because their reduction of plastoquinone showed different kinetics, these two types of active centres were either separated by more than 250 nm or were associated with discrete plastoquinone pools having restricted diffusion domains.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DMBQ 2,5-dimethyl-p-benzoquinone - MOPS 3-[N-Morpholino]propanesulphonic acid - PpBQ Phenyl-p-benzoquinone  相似文献   

11.
Direct measurements of the intrinsic rate of primary charge separation in the isolated Photosystem II (PS II) reaction center complex had to await the availability of suitable, stabilized reaction center materials as well as sophisticated femtosecond transient absorption spectroscopic techniques. The events that led to the first direct measurements of the primary charge separation act in PS II and discussions of the results thereafter are chronicled in this brief historical review. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
The dynamics of energy and charge transfer in the Photosystem II reaction center complex is an area of great interest today. These processes occur on a time scale ranging from femtoseconds to tens of picoseconds or longer. Steady-state and ultrafast spectroscopy techniques have provided a great deal of quantitative and qualitative data that have led to varied interpretations and phenomenological models. More recently, microscopic models that identify specific charge separated states have been introduced, and offer more insight into the charge transfer mechanism. The structure and energetics of PS II reaction centers are reviewed, emphasizing the effects on the dynamics of the initial charge transfer. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Michael Bradbury  Neil R. Baker 《BBA》1981,635(3):542-551
An analysis of the photo-induced decline in the in vivo chlorophyll a fluorescence emission (Kautsky phenomenon) from the bean leaf is presented. The redox state of PS II electron acceptors and the fluorescence emission from PS I and PS II were monitored during quenching of fluorescence from the maximum level at P to the steady state level at T. Simultaneous measurement of the kinetics of fluorescence emission associated with PS I and PS II indicated that the ratio of PS I/PS II emission changed in an antiparallel fashion to PS II emission throughout the induction curve. Estimation of the redox state of PS II electron acceptors at given points during P to T quenching was made by exposing the leaf to additional excitation irradiation and determining the amount of variable PS II fluorescence generated. An inverse relationship was found between the proportion of PS II electron acceptors in the oxidised state and PS II fluorescence emission. The interrelationships between the redox state of PS II electron acceptors and fluorescence emission from PS I and PS II remained similar when the shape of the induction curve from P to T was modified by increasing the excitation photon flux density. The contributions of photochemical and non-photochemical quenching to the in vivo fluorescence decline from P to T are discussed.  相似文献   

14.
Fluorescence and absorption spectra were used to study the temperature effect on theconformation of bacteriorhodopsin (bR) in the blue and purple membranes (termed as bRb and bRprespectively).The maximum emission wavelengths of tryptophan fluorescence in both proteins at roomtemperature are 340 nm,and the fluorescence quantum yield of bRb is about 1.4 fold higher than that of bRp.As temperature increases,the tryptophan fluorescence of bRb decreases,while the tryptophan fluorescenceof bRp increases.The binding study of extrinsic fluorescent probe bis-ANS indicated that the probe can bindonly to bRb,but not to bRp.These results suggest that significant structural difference existed between bRband bRp.It was also found that both kinds of bR are highly thermal stable.The maximum wavelength of theprotein fluorescence emission only shifted from 340 nm to 346 nm at 100℃.More interestingly,as tempera-ture increased,the characteristic absorption peak of bRb at 605 nm decreased and a new absorption peak at380 nm formed.The transition occurred at a narrow temperature range (65℃-70℃).These facts indicatedthat an intermediate can be induced by high temperature.This phenomenon has not been reported before.  相似文献   

15.
The efficiency of oxidized endogenous plastoquinone-9 (PQ-9) as a non-photochemical quencher of chlorophyll fluorescence has been analyzed in spinach thylakoids and PS II membrane fragments isolated by Triton X-100 fractionation of grana stacks. The following results were obtained: (a) After subjection of PS II membrane fragments to ultrasonic treatment in the presence of PQ-9, the area over the induction curve of chlorophyll fluorescence owing to actinic cw light increases linearly with the PQ-9/PS II ratio in the reconstitution assay medium; (b) the difference of the maximum fluorescence levels, Fmax, of the induction curves, measured in the absence and presence of DCMU, is much more pronounced in PS II membrane fragments than in thylakoids; (c) the ratio Fmax(-DCMU)/Fmax(+DCMU) increases linearly with the content of oxidized PQ-9 that is varied in the thylakoids by reoxidation of the pool after preillumination and in PS II membrane fragments by the PQ-9/PS II ratio in the reconstitution assay; (d) the reconstitution procedure leads to tight binding of PQ-9 to PS II membrane fragments, and PQ-9 cannot be replaced by other quinones; (e) the fluorescence quenching by oxidized PQ-9 persists at low temperatures, and (f) oxidized PQ-9 preferentially affects the F695 of the fluorescence emission spectrum at 77 K. Based on the results of this study the oxidized PQ-9 is inferred to act as a non-photochemical quencher via a static mechanism. Possible implications for the nature of the quenching complex are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Weak red light-induced changes in chlorophyll fluorescence parameters and in the distribution of PS I and PS II in thylakoid membranes were measured in wheat leaves to investigate effective ways to alter the excitation energy distribution between the two photosystems during state transition in vivo. Both the chlorophyll fluorescence parameter Fm/Fo and F685/F735, the ratio of fluorescence yields of the two photosystems at low temperature (77 K), decreased when wheat leaves were illuminated by weak red light of 640 nm, however, Fm/Fo decreased to its minimum in a shorter time than F685/F735. When Photosystem (PS II) thylakoid (BBY) membranes from adequately dark-adapted leaves (control) and from red light-illuminated leaves were subjected to SDS-polyacrylamide gel electrophoresis under mildly denaturing conditions, PS I was almost absent in the control, but was present in the membranes from the leaves preilluminated with the weak red light. In consonance with this result, the content of Cu, measured by means of the energy dispersive X-ray microanalysis (EDX), increased in the central region, but decreased in the margin of the grana stacks from the leaves preilluminated by the red light as compared with the control. It is therefore suggested that: (i) both spillover and absorption cross-section changes are effective ways to alter the excitation energy distribution between the two photosystems during state transitions in vivo, and the change in spillover has a quicker response to the unbalanced light absorption of the two photosystems than the change in light absorption cross-section, and (ii) the migration of PS I towards the central region of grana stack during the transition to state 2 leads to the enhancement of excitation energy spillover from PS II to PS I.  相似文献   

17.
Simultaneous fluorescence and photoacoustic measurements have been used to study the effects of metal ions (copper, lead, and mercury) during dark incubation of thylakoid membranes. The values of the chlorophyll fluorescence parameters Fo (initial fluorescence yield with the reaction centers in the open state), Fm (maximal fluorescence yield), Ft (steady state fluorescence yield) and the calculated parameters, o (maximal quantum yield of Photosystem II photochemistry) and t (actual quantum yield of Photosystem II photochemistry), strongly decreased in the presence of the metal ions coinciding with an increase in the non-photochemical deexcitation rate constant k(N). It was observed that photosynthetic energy storage measured by photoacoustic spectroscopy also decreased but a large portion of energy storage remained unaffected even at the highest metal ion concentrations used. A maximal inhibition of photosyntheti c energy storage of 80% and 50% was obtained with Hg2+ and Cu2+-treated thylakoids, respectively, while energy storage was insensitive to Pb2+. The results are consistent with the known predominant inhibition of the donor side of Photosystem II by the metal ions. The insensitive portion of energy storage is attributed to the possible recurrence of cyclic electron transport around Photosystem II that would depend on the extent of inhibition produced on the acceptor side by the metal ion used.  相似文献   

18.
Extraction with EDTA of lyophilized and lysozyme treated preparations of the blue-green algae Anacystis nidulans resulted in loss of the capacity for photoevolution of O2. Reactivation was achieved by the addition of both cations: Mn2+ and Ca2+ (or to a smaller extent by Mn2+ and Sr2+). The dual requirement for Mn2+ and Ca2+ could be demonstrated when the O2 evolution under short saturating light flashes and the variable chlorophyll fluorescence associated with the reduction of the primary acceptor of Photosystem II was examined. The fluorescence experiments in addition showed that incorporation of the cations was a light dependent step, since the fluorescence rise only started after a lag period.  相似文献   

19.
Inhibition of Photosystem II (PS II) activity induced by continuous light or by saturating single turnover flashes was investigated in Ca2+-depleted, Mn-depleted and active PS II enriched membrane fragments. While Ca2+- and Mn-depleted PS II were more damaged under continuous illumination, active PS II was more susceptible to flash-induced photoinhibition. The extent of photoinactivation as a function of the duration of the dark interval between the saturating single turnover flashes was investigated. The active centres showed the most photodamage when the time interval between the flashes was long enough (32 s) to allow for charge recombination between the S2 or S3 and QB to occur. Illumination with groups of consecutive flashes (spacing between the flashes 0.1 s followed by 32 s dark interval) resulted in a binary oscillation of the loss of PS II-activity in active samples as has been shown previously (Keren N, Gong H, Ohad I (1995), J Biol Chem 270: 806–814). Ca2+- and Mn-depleted PS II did not show this effect. The data are explained by assuming that charge recombination in active PS II results in a back reaction that generates P680 triplet and thence singlet oxygen, while in Ca2+- and Mn-depleted PS II charge recombination occurs through a different pathway, that does not involve triplet generation. This correlates with an up-shift of the midpoint potential of QA in samples lacking Ca2+ or Mn that, in term, is predicted to result in the triplet generating pathway becoming thermodynamically less favourable (G.N. Johnson, A.W. Rutherford, A. Krieger, 1995, Biochim. Biophys. Acta 1229, 201–207). The diminished susceptibility to flash-induced photoinhibition in Ca2+- and Mn-depleted PS II is attributed at least in part to this mechanism. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
We tested the two empirical models of the relationship between chlorophyll fluorescence and photosynthesis, previously published by Weis E and Berry JA 1987 (Biochim Biophys Acta 894: 198–208) and Genty B et al. 1989 (Biochim Biophys Acta 990: 87–92). These were applied to data from different species representing different states of light acclimation, to species with C3 or C4 photosynthesis, and to wild-type and a chlorophyll b-less chlorina mutant of barley. Photosynthesis measured as CO2-saturated O2 evolution and modulated fluorescence were simultaneously monitored over a range of photon flux densities. The quantum yields of O2 evolution (ØO2) were based on absorbed photons, and the fluorescence parameters for photochemical (qp) and non-photochemical (qN) quenching, as well as the ratio of variable fluorescence to maximum fluorescence during steady-state illumination (F'v/F'm), were determined. In accordance with the Weis and Berry model, most plants studied exhibited an approximately linear relationship between ØO2/qp (i.e., the yield of O2 evolution by open Photosystem II reaction centres) and qN, except for wild-type barley that showed a non-linear relationship. In contrast to the linear relationship reported by Genty et al. for qp×F'v/F'm (i.e., the quantum yield of Photosystem II electron transport) and ØCO2, we found a non-linear relationship between qp×F'v/F'm and ØO2 for all plants, except for the chlorina mutant of barley, which showed a largely linear relationship. The curvilinearity of wild-type barley deviated somewhat from that of other species tested. The non-linear part of the relationship was confined to low, limiting photon flux densities, whereas at higher light levels the relationship was linear. Photoinhibition did not change the overall shape of the relationship between qp×F'v/F'm and ØO2 except that the maximum values of the quantum yields of Photosystem II electron transport and photosynthetic O2 evolution decreased in proportion to the degree of photoinhibition. This implies that the quantum yield of Photosystem II electron transport under high light conditions may be similar for photoinhibited and non-inhibited plants. Based on our experimental results and theoretical analyses of photochemical and non-photochemical fluoresce quenching processes, we conclude that both models, although not universal for all plants, provide useful means for the prediction of photosynthesis from fluorescence parameters. However, we also discuss that conditions which alter one or more of the rate constants that determine the various fluorescence parameters, as well as differential light penetration in assays for oxygen evolution and fluorescence emission, may have direct effect on the relationships of the two models.Abbreviations F0 and F'0 fluorescence when all Photosystem II reaction centres are open in dark- and light-acclimated leaves, respectively - Fm and F'm fluorescence when all Photosystem II reaction centres are closed in dark and light, respectively - Fv variable fluorescence equal to Fm-F0 - Fs steady state level of fluorescence in light - F'v and F'm variable (F'm-F'0) and maximum fluorescence under steady state light conditions - HEPES N-2-hydroxyethylpiperazine-N-2-ethane-sulphonic acid - QA the primary, stabile quinone acceptor of Photosystem II - qN non-photochemical quenching of fluorescence - qp photochemical quenching of fluorescence - ØO2 quantum yield of CO2-saturated O2 evolution based on absorbed photons  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号