首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mile-a-minute weed, Persicaria perfoliata (L.) H. Gross, is an invasive annual vine of Asian origin that has developed extensive monocultures, especially in disturbed open areas in the Mid-Atlantic region of the United States. A host-specific Asian weevil, Rhinoncomimus latipes Korotyaev, was approved for release in North America in 2004, and weevils have been reared at the New Jersey Department of Agriculture Beneficial Insect Laboratory since then. By the end of 2007 more than 53,000 weevils had been reared and released, mostly in New Jersey, but also in Delaware, Maryland, Pennsylvania, and West Virginia. The beetles established at 63 out of 65 sites (96.9%) where they were released between 2004 and 2007, with successful releases consisting of as few as 200 weevils. Weevils were recorded at 30 additional non-release sites in New Jersey, where they had dispersed at an average rate of 4.3 km/year. Standardized monitoring of fixed quadrats was conducted in paired release and control sites at eight locations. Significant differences in mile-a-minute weed populations in the presence and absence of weevils were found at three locations, with reduction in spring densities to 25% or less of what they had been at the start within 2–3 years at release sites, while weed densities at control sites were largely unchanged. Mile-a-minute weed populations at a fourth site were similarly reduced at the release site, but without control data for comparison due to rapid colonization of the paired control site. At the other four locations, all on islands, mile-a-minute weed populations were reduced at both release and control sites without large weevil populations developing, apparently due to environmental conditions such as late frost and extreme drought.  相似文献   

2.
《Biological Control》2010,52(3):450-457
Mile-a-minute weed, Persicaria perfoliata (L.) H. Gross, is an invasive annual vine of Asian origin that has developed extensive monocultures, especially in disturbed open areas in the Mid-Atlantic region of the United States. A host-specific Asian weevil, Rhinoncomimus latipes Korotyaev, was approved for release in North America in 2004, and weevils have been reared at the New Jersey Department of Agriculture Beneficial Insect Laboratory since then. By the end of 2007 more than 53,000 weevils had been reared and released, mostly in New Jersey, but also in Delaware, Maryland, Pennsylvania, and West Virginia. The beetles established at 63 out of 65 sites (96.9%) where they were released between 2004 and 2007, with successful releases consisting of as few as 200 weevils. Weevils were recorded at 30 additional non-release sites in New Jersey, where they had dispersed at an average rate of 4.3 km/year. Standardized monitoring of fixed quadrats was conducted in paired release and control sites at eight locations. Significant differences in mile-a-minute weed populations in the presence and absence of weevils were found at three locations, with reduction in spring densities to 25% or less of what they had been at the start within 2–3 years at release sites, while weed densities at control sites were largely unchanged. Mile-a-minute weed populations at a fourth site were similarly reduced at the release site, but without control data for comparison due to rapid colonization of the paired control site. At the other four locations, all on islands, mile-a-minute weed populations were reduced at both release and control sites without large weevil populations developing, apparently due to environmental conditions such as late frost and extreme drought.  相似文献   

3.
Mile-a-minute weed, Persicaria perfoliata (L.) H. Gross (Polygonaceae), an aggressive annual vine native to Asia, has invaded forest edges, light gaps, open fields, and riparian borders in eastern North America. It was accidentally introduced into Pennsylvania in the 1930s and has since expanded its range north to Massachusetts, south to North Carolina, and west to Ohio. A biological control program was initiated in 1996, and in 2004, a permit was issued for release of Rhinoncomimus latipes Korotyaev (Coleoptera: Curculionidae), a host-specific weevil initially collected in China. Since 2004, the biology of the weevil in its introduced range has been studied, along with its impact on P. perfoliata, which can be substantial. Weevils have been released in ten states through 2010, and populations have increased considerably at many sites. Although P. perfoliata continues to expand its North American range, natural and human-assisted dispersal of R. latipes is reducing its negative effects. Here we review and assess the current status of the biological control program.  相似文献   

4.
Native to Asia, mile-a-minute Persicaria perfoliata, is an invasive weed in North America, and the weevil Rhinoncomimus latipes is a host-specific insect agent which occurs widely in China. We conducted a common garden experiment to compare P. perfoliata plant responses of native and invasive populations to herbivory by the weevils from different origins. We found weevils from Hunan, Hubei and Heilongjiang Provinces had strong, moderate and weak ability to suppress host plant, respectively. Weevils from Hunan and Hubei Provinces had stronger impact on the growth of both native and invasive plant populations than the weevil from Heilongjiang Province. The losses in seed output of invasive plants were also significantly greater than natives in the weevil treatments. Our results suggested that the weevil population from Hunan Province may be the most suitable for the control of mile-a-minute, while the population from Heilongjiang Province may be the least suitable due to climate matching.  相似文献   

5.
《Biological Control》2011,56(3):234-240
The safe practice of biological control relies, in part, on an accurate evaluation of a potential agent’s host-specificity via testing through a “filter of safety”. The results of laboratory tests may differ from those obtained in open field host-specificity tests, where agents are able to use their full range of host-selection behaviors. It was hypothesized that Rhinoncomimus latipes (Coleoptera: Curculionidae), the biological control agent released against mile-a-minute weed, Persicaria perfoliata (Polygonaceae), would not feed or oviposit on nontarget plants in a two-phase, open field setting. Ten weevils were placed at the base of each of 13 test plant species in a randomized complete block design with six replicates. Weevils placed at the base of mile-a-minute weed were marked with yellow fluorescent dust, and yellow weevils were subsequently found only on mile-a-minute. Weevils placed at the base of nontarget plants (marked with red fluorescent dust) rapidly colonized mile-a-minute weed. Three hours after release, the number of R. latipes found on mile-a-minute weed was significantly higher than predicted by a random distribution of weevils on all test plants. The likelihood of finding more weevils on mile-a-minute compared to nontarget plant species was 31.0% at 3 h and increased to 96.5% at 44 h after release. Whereas prerelease studies showed feeding at low levels on 9 of the 13 plant species tested here, under open field conditions R. latipes did not feed on any nontarget plant species and dispersed from these plants. In an open field setting, where the weevil was able to use its full range of host-selection behaviors, there was no observed risk of nontarget effects for any species tested.  相似文献   

6.
The combined effects of herbivory and water stress on growth and reproduction of mile-a-minute weed (Persicaria perfoliata (L.) H. Gross) were investigated in greenhouse trials over two years, with well-watered or water-limited plants either exposed or not exposed to herbivory by the mile-a-minute weevil (Rhinoncomimus latipes Korotyaev). Moisture limitation and weevil herbivory significantly reduced the number of seeds produced by P. perfoliata, with the fewest seeds produced when both factors were present. Seed weight was reduced by moisture limitation and weevil herbivory the second year, and seed viability was reduced by herbivory both years. Plant biomass was lower both years under conditions of water limitation, with an additional effect of herbivory the second year. Well-watered plants the second year also produced substantially more weevils than water-limited plants by the end of the season. Results are consistent with field observations suggesting that years of high rainfall allow resurgence of P. perfoliata plant populations that were previously suppressed by R. latipes. An additional environmental chamber trial assessed the interaction between the weed and weevil at two different temperatures. Here, plant mortality occurred only at the higher temperature with weevil herbivory, suggesting that herbivory has a greater negative effect on P. perfoliata under warm conditions. Additional studies on temperature effects are needed for a more complete understanding of interactions between P. perfoliata and R. latipes under different abiotic conditions.  相似文献   

7.
Azolla filiculoides (red waterfern) is a small, floating fern native to South America, that has invaded aquatic habitats, predominantly water resevoirs in southern Africa. A frond-feeding weevil, Stenopelmus rufinasus Gyllenhal (Coleoptera: Curculionidae), was imported from Florida, USA, and released as a biological control agent against this weed in South Africa at the end of 1997. To date, 24,700 weevils have been released, which has resulted in local extinction of red waterfern at 81% of the 112 release sites. The weevil has not failed to control a single site. Several sites were, however, lost due to flooding or drainage of dams. The surface area of weed controlled totalled 203.5 ha. On average, A. filiculoides was controlled in infested sites in 6.9 (±4.3) months. The weed recolonized at 22 of the sites (through either spore germination or dispersal by waterfowl), but the weevils subsequently spread to all of these sites and successfully caused local extinction of the weed at 18 of the sites. Five years after the release of the weevil, the weed no longer poses a threat to aquatic systems in southern Africa. In comparison to other biological control programs of aquatic weeds, the program against A. filiculoides in southern Africa ranks among the most successful cases anywhere in the world.  相似文献   

8.
The monophagous weevil Rhinoncomimus latipes Korotyaev (Coleoptera: Curculionidae) has been introduced into North America as a biological control agent for the invasive vine mile-a-minute weed, Persicaria perfoliata (L.) H. Gross. This weevil has been shown to reduce the percent cover of mile-a-minute and the number of seed clusters produced, as well as altering the phenology of seed production. However, prior work has not examined the potential impact of the weevil on seed viability and numbers of seeds per cluster. When both adult and larval weevils fed on whole plants in the greenhouse, seed production and fruit maturation were delayed and both the total number of seeds and number of seeds per cluster were reduced. Overall, weevils in greenhouse cages reduced the reproductive potential of P. perfoliata by 35%. When adult weevils were confined on developing seed clusters in the field, the number of seeds produced per cluster, the weight of seeds produced, and seed viability all decreased. Overall, the number of viable seeds per cluster was reduced by 37% in the presence of adult weevils. Taken together, these findings demonstrate that this biological control agent can have important impacts on the reproductive potential of its target weed through mechanisms that have not previously been shown.  相似文献   

9.
Plant populations often exist in spatially heterogeneous environments with varying light levels, which can affect plant growth directly through resource availability or indirectly by altering behavior or success of herbivores. The plant vigor hypothesis predicts that herbivores are more likely to attack vigorously growing plants than those that are suppressed, for example in more shaded conditions. Plant tolerance of herbivory can also vary under contrasting resource availability. Observations suggest that damage by Rhinoncomimus latipes Korotyaev (Coleoptera: Curculionidae), introduced into the United States in 2004 as a biological control agent for mile-a-minute weed (Persicaria perfoliata [L.] H. Gross), is greater in the sun than in shade. We compared weevil densities and plant growth in paired plots in full sun or under shade cloth; a second experiment included insecticide-treated plots in sun and shade, to assess the ability of the plant to compensate for herbivore damage. Greater density of weevils and more node damage (indicating internal larval feeding) were found on P. perfoliata plants growing in sun than on those in shade. Nodes were 14% thicker in the sun, which may have provided better larval habitat. Biomass produced by plants without weevils in the sun was about twice that produced in any other treatment. Herbivory had a greater effect on plant growth in the high-light environment than in the shade, apparently because of movement into the sun and increased feeding there by the monophagous herbivore, R. latipes. Results support the plant vigor hypothesis and suggest that high weevil densities in the sunny habitats favored by P. perfoliata can suppress plant growth, negating the resource advantage to plants growing in the sun.  相似文献   

10.
Efforts to suppress an invasive weed are often undertaken with the goal of facilitating the recovery of a diverse native plant community. In some cases, however, reduction in the abundance of the target weed results in an increase in other exotic weeds. Mile‐a‐minute weed (Persicaria perfoliata (L.) H. Gross (Polygonaceae)) is an annual vine from Asia that has invaded the eastern United States, where it can form dense monocultures. The host‐specific Asian weevil Rhinoncomimus latipes Korotyaev (Coleoptera: Curculionidae) was first released in the United States in 2004 as part of a classical biological control program. At three sites invaded by mile‐a‐minute weed, biological control was integrated with pre‐emergent herbicide use and two densities of native plantings. After 2 years, native plant cover differed significantly and was greater than 80% in the plots with plantings and pre‐emergent herbicide but less than 30% in the planting treatments without herbicide. Where mile‐a‐minute cover decreased at the two sites with the greatest pressure from exotic plants, plots were dominated by another exotic weed, Microstegium vimineum (Trin.) A. Camus, Japanese stiltgrass. The combination of biocontrol, pre‐emergent herbicide, and revegetation with native plants suppressed mile‐a‐minute weed, prevented invasion by Japanese stiltgrass, and increased the abundance of native plants. The selection of the management strategies used to control mile‐a‐minute weed determined the extent of recovery of the native plant community.  相似文献   

11.
Microsphaeropsis amaranthi and Phomopsis amaranthicola are potential biological control agents for several Amaranthus species. In an effort to understand the initial infection processes with these pathogens, a study was conducted of the conidial germination and germ tube length (μm) on the weed leaf surfaces at 21 °C and 28 °C. Weeds included Amaranthus rudis, A. palmeri, A. powellii, A. retroflexus, A. spinosus, A. hybridus, and A. albus. For P. amaranthicola, conidial germination and germ tube length varied among the seven weed species at both temperatures, while for M. amaranthi the differences in germ tube lengths were significant among weed species only at 21 °C. While the conidia of M. amaranthi and P. amaranthicola germinated on the leaf surfaces of all seven weed species, temperature appeared to impact the number and length of germ tubes on the leaf surfaces. The percentage of germinated conidia and the length of germ tubes at both temperatures were often greater for M. amaranthi than for P. amaranthicola. In order for the fungal pathogen to successfully infect and kill a weedy host, conidia must germinate and form a germ tube, two processes that vary with host species and temperature for M. amaranthi and P. amaranthicola. The extent to which successive infection processes, e.g., penetration, invasion and colonization, contribute to host specificity warrants study.  相似文献   

12.
Ceutorhynchus assimilis has been selected as a potential biological control agent of Lepidium draba, which is a Eurasian invasive weed in North America. Preliminary studies indicated specificity of this weevil collected in southern France on L. draba. This result was in discord with the pest status of C. assimilis found in the literature. Host-specificity tests based both on field and laboratory experiments showed heterogeneity in the host spectrum of the weevils reared from different host-plants as determined by larval development. However, no distinguishable morphological differences could be visually detected between the populations feeding on different host-plants. All sampled populations of weevils were polyphagous as adults. Weevils reared from L. draba were specific to this plant for their complete larval development. Conversely, populations living on other wild and cultivated Brassicaceae species were not able to use L. draba as a host plant. Such differentiation is further highlighted by other biological aspects such as plant infestation rates, sex-ratio, duration of larval development, and differences in the timing of their life cycles. These results demonstrate that C. assimilis, an insect species formerly considered as a pest of Brassicaceae, is characterized by its host-range variability, with one population being potentially useful in the biological control of L. draba. Moreover, this example points to the need to test multiple populations of biological control agents in assessing risk.  相似文献   

13.
《Biological Control》2008,47(3):417-423
A host-specific Asian weevil, Rhinoncomimus latipes Korotyaev, was approved in 2004 for release in North America for control of mile-a-minute weed, Persicaria perfoliata (L.) H. Gross (formerly Polygonum perfoliatum L.), an invasive annual vine from Asia. The impact of R. latipes feeding on P. perfoliata was studied in field cages over a 2-year period. In 2006, 20 weevils introduced into cages with single plants in May (when weevils first emerge from overwintering) suppressed seed production for about 9 weeks, while weevils introduced in June (when the first summer generation of adults emerge) did not affect seed phenology. Plants in all cages produced substantial numbers of seeds late in the year, but the average seed (achene) weight was reduced for plants with 20 weevils per plant introduced in May. In 2007, plants grown with some competition from other plants within field cages showed substantial mortality, with 63% of plants with 10 or 20 weevils and 75% of plants with 40 weevils per plant dead by mid-August, compared with 12.5% of control plants. Reproduction was delayed by more than a month in surviving plants with 10 or 20 weevils, and by more than 2 months in the few survivors with 40 weevils. Surviving plants with 40 weevils per plant showed loss of apical dominance, which can allow plants to compensate for herbivore damage, but in the case of a light-adapted vine like P. perfoliata may prevent the plants from achieving needed sun exposure. These results suggest that R. latipes feeding on P. perfoliata has the potential to impact plant growth and reproduction, and can put affected plants at a substantial competitive disadvantage.  相似文献   

14.
The cost of rearing the root-feeding weevil, Mogulones cruciger Herbst, to control the invasive weed houndstongue (Cynoglossum officinale L.) was determined for two managed production methods. Production in an insectary setting provides control over rearing and all adult weevils that emerge can be collected, but required facility investment and high labor input. Mass-rearing in a managed ‘field crop’ setting required less facilities and labor while the insects were multiplying, but capture of the emerged adults was challenging and labor intensive. Estimated per adult weevil production costs were $CDN 2.65 for the insectary approach, and from $CDN 0.10 to $CDN 0.14 for mass-rearing in the managed field crop setting. Even though collection of adult weevils in the field crop production system was challenging, commercial production of M. cruciger should consider use of this mass-rearing method because of its lower cost.  相似文献   

15.
16.
Glasshouse trials were performed to investigate the control of the parasitic weed Striga hermonthica by Fusarium nygamai and the performance of the host plant sorghum (Sorghum bicolor) using different inoculum substrates and inoculum amounts of the fungus. Optimal constant and alternating temperatures for the growth of the fungus were 25°C and 30/20°C, respectively. Striga incidence was decreased up to 100% when the fungus was incorporated into the soil preplanting. Emerged Striga plants at different stages of growth up to the flowering stage were killed by the fungus when the fungus was applied postemergent. In root-chamber trials none of the Striga seeds germinated when 10 ml inoculum suspension of 8 × 106 spores/ml of F. nygamai was applied on seeds of the parasitic weed sprinkled on the surface of filter paper. F. nygamai has potential as a bioherbicide for Striga control. Further studies regarding its performance under field conditions and its safety to the environment and humans should be assessed.  相似文献   

17.
Marine invasions are a worldwide problem that involves changes in communities and the acclimation of organisms to them. The invasive Chlorophyte Caulerpa racemosa var. cylindracea is widespread in the Mediterranean and colonises large areas from 0 to 70 m in depth. The omnivorous fish Spondyliosoma cantharus presents a high frequency of occurrence of C. racemosa in the stomach contents at invaded areas (76.3%) while no presence of C. racemosa was detected in control areas. The isotopic composition of muscle differed significantly between invaded and non-invaded sites for δ13C (− 16.67‰ ± 0.09 and − 17.67‰ ± 0.08, respectively), δ15N (10.22‰ ± 0.22 and 9.32‰ ± 0.18, respectively) and the C:N ratio (2.01 ± 0.0002 and 1.96 ± 0.009, respectively). Despite the high frequency of occurrence of C. racemosa in the stomach contents of S. cantharus and its important contribution to the δ13C source (20.7% ± 16.2), the contribution of C. racemosa to the δ15N in S. cantharus food sources was very low (6.6% ± 5.8). Other invertebrate prey such as decapods and polychaetes were more important contributors to the δ15N source at both invaded and non-invaded sites. Activation of enzymatic pathways (catalase, superoxide dismutase, glutathione-s-tranferase, 7-ethoxy resorufin O-de-ethylase) but not a significant increase in lipid peroxidation MDA (0.49 ± 0.01 nmol/mg prot at non-invaded and 0.53 ± 0.01 nmol/mg prot at invaded sites) was observed in S. cantharus individuals living in C. racemosa-invaded sites compared with control specimens. The low δ15N contribution values of C. racemosa by S. cantharus together with the toxicity demonstrated by the activation of the antioxidant defences and the important contribution of invertebrate prey to the δ15N could mean that the ingestion of C. racemosa by S. cantharus might be unintentional during the predation of invertebrate preys living underneath the entanglement of the C. racemosa fronds and stolons mats.  相似文献   

18.
The insecticidal effect of the entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Hypocreaes) in combination with three diatomaceous earth (DE) formulations against adults of the granary weevil, Sitophilus granarius (L.) (Coleoptera: Curculionidae) was tested in the laboratory. The three DEs were Insecto™, SilicoSec® and PyriSec®. The fungus was applied at 400 ppm alone, or in combination with 200 ppm of each of the three DEs. Mortality was measured after 7 d of exposure. Bioassays were conducted at three temperatures 20, 25 and 30 °C and two relative humidities (rh) 55% and 75%. On wheat treated with B. bassiana alone, mortality was higher at 55% than at 75% rh. Also, the fungus alone was less effective at 20 °C than at the other two temperatures tested, but mortality did not exceed 52% for any of the conditions tested. Similar mortality levels were also noted on wheat treated with each of the three DEs alone. The simultaneous presence of B. bassiana and DE increased weevil mortality. In this combination, mortality was higher at high temperatures and low rh, and this effect was similar for all DEs tested. Progeny production on wheat treated with B. bassiana was higher that the respective progeny counts in the DE-treated wheat. The results indicate that a combination of B. bassiana and DEs is effective against S. granarius, under a broad range of temperature and rh levels in stored wheat.  相似文献   

19.
Mixed populations of Aphthona lacertosa and Aphthona czwalinae were released at more than 50 locations in Alberta in 1997. Two and 3 years post-release, beetle populations were primarily A. lacertosa, with A. czwalinae forming less than 0.5% of the sampled populations. Beetle densities were moderate (10–70 beetles per m2) or high (>70 beetles per m2) at 14% and more than 60% of the sampled sites in 1999 and 2000, respectively. Larger beetles had greater instantaneous egg loads (r2=0.424,P=0.003). In 2000, the largest beetles were found at moderate density sites and there was a significant negative relationship between beetle size and the time taken to accumulate a degree day threshold of 1230 (for females: r2=0.678,P=0.001). Sites with the most rapid accumulation of degree days have the greatest potential for beetle population growth based on potential fecundity. Changes in leafy spurge percent cover, stem density, and canopy height from 1997 to 2000 were assessed across sites with low (<10 beetles per m2), moderate, and high beetle densities in 2000. Sites with high beetle densities had significantly greater reductions of leafy spurge within 5 m of the release point than sites with low beetle densities (P<0.017). Damage caused by the beetles at high-density sites was often visible as a halo-shaped patch of dead leafy spurge stems. The significant overall reduction of leafy spurge within release patches makes A. lacertosa a promising biocontrol agent for leafy spurge in Alberta.  相似文献   

20.
Bruchid beetle larvae cause major losses in grain legume crops throughout the world. Some bruchid species, such as the cowpea weevil (Callosobruchus maculatus) and the Mexican bean weevil (Zabrotes subfasciatus), are pests that damage stored seeds. The Mediterranean flour moth (Anagasta kuehniella) is of major economic importance as a flour and grain feeder; it is often a severe pest in flour mills. Plant lectins have been implicated as antibiosis factors against insects. Bauhinia monandra leaf lectin (BmoLL) was tested for anti-insect activity against C. maculatus, Z. subfasciatus and A. kuehniella larvae. BmoLL produced ca. 50% mortality to Z. subfaciatus and C. maculatus when incorporated into an artificial diet at a level of 0.5% and 0.3% (w/w), respectively. BmooLL up to 1% did not significantly decrease the survival of A. kuehniella larvae, but produced a decrease of 40% in weight. Affinity chromatography showed that BmoLL bound to midgut proteins of the insect C. maculatus. 33 kDa subunit BmoLL was not digested by midgut preparations of these bruchids. BmoLL-fed C. maculatus larvae increased the digestion of potato starch by 25% compared with the control. The transformation of the genes coding for this lectin could be useful in the development of insect resistance in important agricultural crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号