首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mile-a-minute weed, Persicaria perfoliata (L.) H. Gross, is an invasive annual vine of Asian origin that has developed extensive monocultures, especially in disturbed open areas in the Mid-Atlantic region of the United States. A host-specific Asian weevil, Rhinoncomimus latipes Korotyaev, was approved for release in North America in 2004, and weevils have been reared at the New Jersey Department of Agriculture Beneficial Insect Laboratory since then. By the end of 2007 more than 53,000 weevils had been reared and released, mostly in New Jersey, but also in Delaware, Maryland, Pennsylvania, and West Virginia. The beetles established at 63 out of 65 sites (96.9%) where they were released between 2004 and 2007, with successful releases consisting of as few as 200 weevils. Weevils were recorded at 30 additional non-release sites in New Jersey, where they had dispersed at an average rate of 4.3 km/year. Standardized monitoring of fixed quadrats was conducted in paired release and control sites at eight locations. Significant differences in mile-a-minute weed populations in the presence and absence of weevils were found at three locations, with reduction in spring densities to 25% or less of what they had been at the start within 2–3 years at release sites, while weed densities at control sites were largely unchanged. Mile-a-minute weed populations at a fourth site were similarly reduced at the release site, but without control data for comparison due to rapid colonization of the paired control site. At the other four locations, all on islands, mile-a-minute weed populations were reduced at both release and control sites without large weevil populations developing, apparently due to environmental conditions such as late frost and extreme drought.  相似文献   

2.
We assessed the effect of two biological control agents, the mirid Eccritotarsus catarinensis (Carvalho) and the weevil Neochetina eichhorniae (Warner), singly or in combination, on the competitive ability of their host plant, water hyacinth, Eichhornia crassipes (Mart.) Solms-Laub., grown in a screen house, in competition with another aquatic plant (Pistia stratiotes L.). Water hyacinth plant growth characteristics measured included fresh weight, leaf and petiole lengths, number of inflorescences produced, and new shoots. Without herbivory, water hyacinth was 18 times more competitive than water lettuce (across all experimental combinations of initial plant densities), as estimated from fresh weights. Both insect species, singly or in combination, reduced water hyacinth plant growth characteristics. E. catarinensis alone was less damaging than the weevil and under normal conditions, i.e., floating water hyacinth, is not expected to increase control of water hyacinth beyond that of the weevil. When combined with the weevil, half the inoculum of weevils and half the inoculum of mirids produced the same growth reduction as the full inoculum of the weevil. Under conditions where the weevils are not effective because water hyacinths are seasonally rooted in mud, the mirid, which lives entirely on leaves, should become a useful additional biological control agent. Handling Editor: John Scott.  相似文献   

3.
Invasion of native plant communities by the Australian paperbark tree (“melaleuca”), Melaleuca quinquenervia, complicates restoration of the Florida Everglades. Biological control, within the context of a comprehensive management program, offers a means to suppress regeneration of melaleuca after removal of existing trees and a mechanism to forestall reinvasion. To meet this need, a biological control program commenced in 1997 upon the release of an Australian weevil (Oxyops vitiosa [Pascoe] [Coleoptera: Curculionidae]). Release of a second biological control agent, the melaleuca psyllid (Boreioglycaspis melaleucae Moore), followed in February 2002 at field sites containing mixed age-class melaleuca stands or coppicing stumps. Each site was inoculated with 7000–10,000 adult psyllids, with one exception where 2000 nymphs were released on seedlings the following December. Psyllid populations established everywhere irrespective of colony source, site conditions, or the quantity released, although numbers released and, to a lesser degree, colony age influenced the numbers of colonies produced. Quantity included in the release was the major determinant of the resultant number of colonies, although the duration of their tenure in quarantine culture may have also influenced this. One site, comprised mainly of coppicing stumps, contained 3.3 million psyllids per ha within 3 months after release. Less than 1% of the coppices at a similar site harbored psyllid colonies 2 months after release (May 2002), but this rose to 75% in October then to 100% by December. The census population exceeded 715,000 adults and nearly 11 million nymphs by late January 2003. Psyllid populations dispersed 2.2–10.0 km/year, with the slower rates in dense, continuous melaleuca stands and faster rates in fragmented stands. Over 1 million psyllids had been redistributed to 100 locations as of December 2005. This species now occurs throughout much of the range of melaleuca in south Florida due to natural range expansion as well as anthropogenic dissemination.  相似文献   

4.
Glasshouse trials were performed to investigate the control of the parasitic weed Striga hermonthica by Fusarium nygamai and the performance of the host plant sorghum (Sorghum bicolor) using different inoculum substrates and inoculum amounts of the fungus. Optimal constant and alternating temperatures for the growth of the fungus were 25°C and 30/20°C, respectively. Striga incidence was decreased up to 100% when the fungus was incorporated into the soil preplanting. Emerged Striga plants at different stages of growth up to the flowering stage were killed by the fungus when the fungus was applied postemergent. In root-chamber trials none of the Striga seeds germinated when 10 ml inoculum suspension of 8 × 106 spores/ml of F. nygamai was applied on seeds of the parasitic weed sprinkled on the surface of filter paper. F. nygamai has potential as a bioherbicide for Striga control. Further studies regarding its performance under field conditions and its safety to the environment and humans should be assessed.  相似文献   

5.
The cost of rearing the root-feeding weevil, Mogulones cruciger Herbst, to control the invasive weed houndstongue (Cynoglossum officinale L.) was determined for two managed production methods. Production in an insectary setting provides control over rearing and all adult weevils that emerge can be collected, but required facility investment and high labor input. Mass-rearing in a managed ‘field crop’ setting required less facilities and labor while the insects were multiplying, but capture of the emerged adults was challenging and labor intensive. Estimated per adult weevil production costs were $CDN 2.65 for the insectary approach, and from $CDN 0.10 to $CDN 0.14 for mass-rearing in the managed field crop setting. Even though collection of adult weevils in the field crop production system was challenging, commercial production of M. cruciger should consider use of this mass-rearing method because of its lower cost.  相似文献   

6.
Bernd Blossey 《Oecologia》1993,94(3):380-387
The life history of the root-boring weevil Hylobius transversovittatus was studied in north and central Europe. The weevil develops on Lythrum salicaria, a perennial marshland plant that has become a problem weed in North America. It was found in all habitats of its host plant with the exception of permanently flooded sites. It also attacked L. salicaria in an early successional stage, devastating large parts of the storage tissue. The beetle was found in two-thirds of the field populations examined with a mean attack rate of 76.3%. Larvae developed according to a 1- or 2-year generation cycle depending on the time of oviposition. Adult beetles developing within 1 year emerged between July and October, whereas beetles with a 2-year larval period emerged within 3 weeks in July and August. Adults were long-lived and could hibernate several times. Beetles of the new generation mated right on the spot and some oviposited prior to overwintering. Hibernated females had an oviposition period from May to early September and produced 3–4 eggs/day during the peak oviposition period. Specific mortality factors were scarce. Dispersal flights ensure the regular occurrence of H. transversovittatus in scattered L. salicaria populations. The severe impact of the weevil is expected to reduce the competitive ability of its host plant after introduction into North America.  相似文献   

7.
Ceutorhynchus assimilis has been selected as a potential biological control agent of Lepidium draba, which is a Eurasian invasive weed in North America. Preliminary studies indicated specificity of this weevil collected in southern France on L. draba. This result was in discord with the pest status of C. assimilis found in the literature. Host-specificity tests based both on field and laboratory experiments showed heterogeneity in the host spectrum of the weevils reared from different host-plants as determined by larval development. However, no distinguishable morphological differences could be visually detected between the populations feeding on different host-plants. All sampled populations of weevils were polyphagous as adults. Weevils reared from L. draba were specific to this plant for their complete larval development. Conversely, populations living on other wild and cultivated Brassicaceae species were not able to use L. draba as a host plant. Such differentiation is further highlighted by other biological aspects such as plant infestation rates, sex-ratio, duration of larval development, and differences in the timing of their life cycles. These results demonstrate that C. assimilis, an insect species formerly considered as a pest of Brassicaceae, is characterized by its host-range variability, with one population being potentially useful in the biological control of L. draba. Moreover, this example points to the need to test multiple populations of biological control agents in assessing risk.  相似文献   

8.
Several Australian Acacia species have become highly invasive in a number of ecologically sensitive areas of South Africa. Many have useful attributes that, to an extent, have hampered biocontrol efforts by restricting potential agents to those reducing seed production whilst not affecting vegetative growth. The outcome of the introduction of a seed-feeding weevil, Melanterius servulus, against Acacia cyclops in 1994, was assessed by investigating the plant’s reproductive phenology, as well as levels of damage caused by the beetles. The study provided essential information on host/agent interactions and, on the build up and spread of populations of the agent. Seed damage is commonly as high as 90% (exceptionally it reaches 100%), and dispersal rates of the beetles on average is almost 2 km per year. The consistently high levels of seed damage achieved hold promise for the future of the program, however, its ultimate success will be further enhanced through the integration of biological control with other manual clearing operations that are currently employed on a large scale in South Africa.  相似文献   

9.
In weed biological control, insect damage to target weeds can be simulated in invaded habitats to study potential responses of the plant to introduced natural enemies. In the present study, we investigated the impact of two levels of manual flower-shoot damage (shoots cut at tip or base) on Alliaria petiolata (garlic mustard) survival, size, and reproduction. Experiments were conducted in 2002 and 2003 using invasive field populations of A. petiolata under naturally varying plant densities. Plant survival was recorded, and size and reproduction parameters were measured. Manual flower-shoot damage had a significant effect on plant survival. In both years, fewer plants survived in the basal-cut treatment than in either the control (un-cut) or tip-cut treatment. Plant size and reproductive output were likewise reduced in the basal-cut treatment. In both years, total seed production was significantly lower in the basal-cut treatment than either the control or tip-cut treatment. When combined, increased mortality and reduced seed production of basal-cut plants greatly reduced the contribution these plants made to the seed bank. Plant density did not affect reproduction or plant size. The impacts of cutting were consistent across years and sites with distinct biotic and abiotic conditions, and A. petiolata densities. We anticipate that herbivore damage to A. petiolata populations by introduced biological control agents will likewise remain consistent under varying biotic and abiotic conditions if the agents are equally adapted to these.  相似文献   

10.
The egg parasitoid Gonatocerus ashmeadi Girault (Hymenoptera: Mymaridae), was introduced into French Polynesia as a biological control agent to control the invasive plant feeding pest Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae). The short-distance dispersal of G. ashmeadi was monitored as part of the biological control program. G. ashmeadi showed exponential dispersal capacity with 47 m/day being a minimum estimate of its natural rate of spread at high host densities (>150 nymphs per minute of sweep net sampling) in urbanized areas at sea level, which were characterized by a high diversity of exotic ornamental plants. This rate of spread contrasted starkly with almost nonexistent establishment and dispersal where host densities were very low (<2 nymphs per minute of sweep net sampling) at high elevation (800 m) with relatively undisturbed native vegetation. Survey results across different altitudes revealed an effect of vegetative diversity and host density on the measurable mobility and establishment of G. ashmeadi. In contrast, no significant influence of wind direction was found on G. ashmeadi dispersal rate or direction. Survey results for G. ashmeadi from French Polynesia suggest that the best release establishment strategies for classical biological control of H. vitripennis are: (1) many small releases where host density is high, or (2) larger and fewer releases where host densities are low.  相似文献   

11.
Xubida infusella (Walker) (Lepidoptera: Pyralidae) is potentially a useful biological control agent targeting Eichhornia crassipes (waterhyacinth) in the USA but many regions infested with waterhyacinth are also inhabited by an alternative native host, Pontederia cordata (pickerelweed). Experiments were conducted in Australia to assess the impact of X. infusella on pickerelweed compared to waterhyacinth where both these plants were available and X. infusella had already been released. Overall X. infusella had a greater impact on pickerelweed than on waterhyacinth. More than one larva per plant was required to reduce the total shoot dry weight of waterhyacinth but only one larva per plant reduced the total shoot dry weight of pickerelweed. Insect feeding caused the number of secondary shoots (daughter plants) of pickerelweed to double whereas the number of daughter plants produced by waterhyacinth remained unchanged. We suggest this indicates a considerable impact on pickerelweed rather than effective compensation for insect damage because the shoots produced were very small. Waterhyacinth produced a constant number of daughter plants when fed on by up to three larvae per plant. Higher nitrogen status of both species of host plant increased the rate of larval development and pupal weight of X. infusella. The weight and fecundity of X. infusella reared on pickerelweed were lower than those reared on waterhyacinth but large numbers of progeny were produced on both plant species. This experiment demonstrates a considerable impact of X. infusella on pickerelweed suggesting this plant is at risk from this agent if released in the USA where pickerelweed is present. The considerable impact on waterhyacinth demonstrates the potential for this insect to contribute to waterhyacinth control in countries where risk assessment favours release.  相似文献   

12.
Two European gall-producing insects,Urophora affinisFrfld. (Diptera: Tephritidae) andMetzneria paucipunctella(Zeller) (Lepidoptera: Gelechiidae) were introduced into Virginia in 1986 for biological control of spotted knapweed (Centaurea maculosaLam.). Adults ofU. affinis(n = 2625) andM. paucipunctella(n = 450) were released at two sites in Montgomery County, Virginia, and their populations were monitored yearly by dissecting spotted knapweed flower heads. Beginning in 1992, knapweed samples collected at various distances from the release sites were checked for dispersal.U. affinisis well established and is spreading slowly. The number of larvae per flower head and the seed numbers are inversely related as plants with the greatest number of larvae per spotted knapweed head had the lowest number of seeds. Knapweed density has declined at one of the release sites which had the highest rate of infestation byU. affinis.Establishment of the moth,M. paucipunctella,is less certain as it has been recovered at a very low level from only one site.  相似文献   

13.
A strain of Ulocladium botrytis isolated from diseased Orobanche crenata shoots caused disease on the parasitic weed in pathogenicity tests. The potential of the fungus to be developed as a mycoherbicide for Orobanche spp. was further investigated. Although the fungus significantly decreased O. crenata germination in vitro by 80%, it did not generally lead to a decreased number of O. crenata shoots or tubercles in inoculated root chambers or pots. However, the number of diseased or dead tubercles and underground shoots was significantly increased compared to the noninoculated treatments. Postemergence inoculation of O. crenata shoots with a conidial suspension resulted in the death of almost all inoculated plants 14 days after application under greenhouse conditions. In preliminary host-range studies, the pathogen caused disease on Orobanche cumana on sunflower whereas on Orobanche aegyptiaca shoots parasitizing tomato only minimal disease symptoms could be detected after postemergence inoculation. Based on the results of our investigations, we conclude that Ulocladium botrytis has only a limited potential to be used as a biocontrol agent against Orobanche spp.  相似文献   

14.
The impact of a biocontrol agent spreading from a point source on crop–weed interactions was modeled. The model encompassed: (i) severity of crop–weed competition as affected by a rust pathogen, (ii) velocity of spread of the rust pathogen, and (iii) density of infected plants introduced in the weed population as starting points (inoculum sources) for an epidemic. The model was parameterized for a study system encompassing the crop Daucus carota (carrot), the weed Senecio vulgaris (common groundsel), and its antagonist Puccinia lagenophorae. The parameters of (i) were estimated in a greenhouse study using a response-surface design. Estimates of the parameter of (ii) were obtained from the literature. The density of infected plants (iii) was varied to simulate crop loss as function of density. Simulations were run for various densities of the weed and various velocities of rust pathogen spread. The results of the simulations indicated a crop-loss ranging from 5 to 10% at levels of relatively weak D. carotaS. vulgaris competition. Density of inoculum sources and velocity of P. lagenophorae spread had only minor effects on crop loss. In contrast, density of inoculum sources and velocity of spread had major effects on crop loss at levels of intermediate (range of 10–35% loss) and severe competition (range of 30–70% loss). The results are discussed both with respect to biological control of S. vulgaris using P. lagenophorae as biocontrol agent and as a general model describing the impact of the spatial dynamics of a pathogen (natural enemy) on plant competition.  相似文献   

15.
Molecular analyses can play a primary role in the process of host specificity evaluation at species and population levels. Here we present an example of their application with a promising candidate biological control agent for yellow starthistle, Centaurea solstitialis L. Although it is highly host specific, Ceratapion basicorne (Coleoptera: Apionidae) can develop on safflower in laboratory tests. A field experiment was conducted to further evaluate host plant specificity; however, it was not possible to rear all larvae to the adult stage, which was necessary for species determination. Therefore molecular genetic methods were used to identify immature specimens. A 731 bp fragment of mtDNA cytochrome C oxidase I gene (COI) was sequenced from 41 individuals of C. basicorne and four congeners: Ceratapion orientale, Ceratapion onopordi, Ceratapion penetrans and Ceratapion scalptum. Intraspecific variability ranged from 0.0% to 0.2%, and interspecific divergences ranged from 1.7% to 17.6%. All larvae that were sequenced from the field study, clearly matched one of the five species, enabling us to unambiguously identify them. Use of molecular genetics to identify larvae should also help the process of foreign exploration, enabling the identification of field-collected larvae, which often provide more reliable host plant associations than field collected adults.  相似文献   

16.
Species ofProsopis(Mimosaceae), or mesquites, are invasive rangeland weeds in South Africa's Western Cape and Northern Cape Provinces. Two bruchid seed-weevil species,Algarobius prosopis(Le Conte) andA. bottimeriKingsolver, were released for biological control in 1987 and 1990, respectively. Seed-feeding biocontrol agents were selected because mesquite pods are valued as livestock fodder. Livestock grazing of bruchid larvae developing in mesquite seeds, however, limits the effectiveness of these agents. Livestock grazing also exacerbates mesquite infestations because scarified seeds are dispersed widely in vertebrate dung. In response to the livestock grazing problem,Neltumius arizonensis(Schaeffer), a bruchid reputed to be capable of ovipositing on immature, tree-borne pods, was released at three sites in Western Cape Province in 1993 and 1994. Small populations ofN. arizonensishave become established at the release sites. Overall,N. arizonensiswas 18 times less abundant thanA. prosopis.In some monthsN. arizonensiseggs were heavily parasitized byUscanasp. (Trichogrammatidae), but the effect of this onN. arizonensispopulation dynamics is uncertain. Western CapeN. arizonensispopulations need more time to increase in size. The introduction of other, more injurious biocontrol agents such as the cecidomyiid bud feederAsphondylia prosopidisCockerell should be considered.  相似文献   

17.
An invasive weed can occupy a variety of environments and ecological niches and generally no single control method can be used across all areas the weed is found. Biological control agents integrated with other methods can increase and/or improve site-specific weed control, but such combinatorial approaches have not been widely utilized. The successful leafy spurge (Euphorbia esula L.) control program provides examples for future integrated weed programs that utilize biological control agents with traditional methods. Weed control methods can be used separately, such as when the leafy spurge gall midge (Spurgia esulae Gagné) reduced seed production in wooded areas while herbicides prevented further spread outside the tree line. Traditional methods also can be used directly with biological control agents. Incorporation of Aphthona spp. with herbicides has resulted in more rapid and complete leafy spurge control than either method used alone. Also, the insect population often increased rapidly following herbicide treatment, especially in areas where Aphthona spp. were established for several years but had been ineffective. Incorporation of Aphthona spp. with sheep or goat grazing has resulted in a larger decline in leafy spurge production than insects alone and in weed density than grazing alone. Controlled burns can aid establishment of biological control agents in marginally suitable environments, but timing of the fire must be coordinated to the insect’s life-cycle to ensure survival. Integration of biological control agents with revegetation programs required the agent to be the last method introduced because the cultivation and herbicide treatments necessary to establish desirable grasses and forbs were destructive to the insect. In a practical application, herbicides were combined with Aphthona spp. to help the insect establish and control leafy spurge in the habitat of the western prairie fringed orchid (Platanthera praeclara Sheviak and Bowles), an endangered species. Several experimental designs can be used to evaluate biological control agents with cultural, mechanical, and chemical control methods or with additional biological agents.  相似文献   

18.
The relatively slow germination rate of Coniothyrium minitans limits its control efficiency against Sclerotinia sclerotiorum. Pre-germinated conidia of C. minitans enhanced its efficiency significantly: in foliar experiments with oilseed rape, hyphal extension of S. sclerotiorum was inhibited by 68%, while formation of sclerotia was completely inhibited when pre-germinated conidia were applied.Revisions requested 27 July 2004; Revisions received 7 September  相似文献   

19.
The eriophyid mite, Aceria salsolae de Lillo and Sobhian, is being evaluated as a prospective classical biological control agent of invasive alien tumbleweeds, including Salsola tragus, S. collina, S. paulsenii and S. australis, in North America. Previous laboratory experiments to determine the host specificity of the mite indicated that it could sometimes persist and multiply on some nontarget plants, including Bassia hyssopifolia and B. scoparia. These are both European plants whose geographic range overlaps that of the mite, but the mite has never been observed on them in the field. A field experiment was conducted in Italy to determine if the mite would infest and damage these plants under natural outdoor conditions. The results indicate that this mite does not attain significant populations on these nontarget plants nor does it significantly damage them. Salsola tragus was heavily infested by A. salsolae, and plant size was negatively correlated to the level of infestation. Although S. kali plants were also infested, their size did not appear to be affected by the mites. The other nontarget plants were not as suitable for the mite in the field as in previous laboratory experiments. We conclude that there would be no significant risk to nontarget plants as a result of using A. salsolae as a biological agent to control Salsola species in North America.  相似文献   

20.
Rearing methods for two coleopterous predators,Thanasimus dubius andTemnochila virescens, imported into Australia for the biological control ofIps grandicollis, were developed. Bionomic data obtained from laboratory rearings between 1982–1987 showed thatT. dubius eggs took about 7 days to hatch and that duration of the larval stage was about 42 days. Observations showed thatT. dubius had a prolonged prepupal stage (x=56.4 days, range 14–274 days), which was probably non-diapausal in nature. Mean adult longevity was 50 days (range 1–358 days).Temnochila virescens eggs took almost 9 days to hatch, and a lengthy larval stage (x=155.4 days, range 73–333 days) was observed. Mean duration of the pupal stage was 14 days (range 7–28 days). A long preoviposition period (x=141 days, range 47–206 days) was observed, and adults were very long-lived (x=232.7 days, range 14–667 days). Capacity for increase (rc) calculated from rearing data suggested that numbers ofT. dubius could be increased faster thanT. virescens. Mortality between 1982–1987 averaged about 70% for both species. However, mortality ofT. dubius in 1987 increased significantly, suggesting that inbreeding or other methodological factors could be responsible. A mass-rearing method usingIps-infested pine billets was developed as a cheaper alternative to laboratory rearing, and was shown to be effective in producing large numbers of insects for release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号