首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examined habitat use patterns by adult whiteflies, Bemisia argentifolii Bellows and Perring, in response to predators, Delphastus catalinae (Horn), at different spatial scales. When female whiteflies were confined to small arenas with leaf discs from which they could not escape, whiteflies significantly delayed settling on leaf discs when predators were present compared to when no predators were introduced. The presence of D. catalinae altered the vertical distribution of adult whiteflies (sex ratio = 1:1) on cucumber plants; adult whiteflies moved upward faster over time within the plant canopy when predators were present mainly on the lower leaves of the plants compared to whiteflies on plants without predators. Most D. catalinae remained in the lower parts of the plants during the experiment. Therefore, we inferred that female whiteflies more quickly moved to the upper plant strata to reduce the risk of predation of their progeny; this would induce subsequent movement of males seeking mates. Introduction of D. catalinae onto a cucumber plant with high whitefly density did not cause increased dispersal of adult whiteflies (sex ratio = 1:1) into neighboring uninfested plants. The results indicate that predator-avoidance behaviors by adult B. argentifolii differed at different spatial scales. The predator-avoidance behavior may have a negative impact at the within-plant scale by inducing more whiteflies to move into upper plant strata. However, the effect of predators on the among-plant dispersal of whiteflies was not significant.  相似文献   

2.
The effectiveness of inundative releases of the parasitoidEncarsia formosafor control ofBemisia argentifoliion poinsettia was determined in replicated experimental greenhouses. We evaluated two release rates ofE. formosa:a low release rate (1 wasp/plant/week, released in two greenhouses, in spring 1995) and a high release rate (3 wasps/plant/week, released in two greenhouses, in fall 1993), each over a 14-week growing season. Each release trial had one or two control greenhouses in whichB. argentifoliideveloped on poinsettia in the absence ofE. formosa.Life-tables were constructed forB. argentifoliiin the presence and absence ofE. formosaby using a photographic technique to follow cohorts of whiteflies on poinsettia leaves. Weekly population counts of the whitefly were also made. In the absence ofE. formosa,egg to adult survivorship ofB. argentifoliion poinsettia was 75–81%. At the low release rate, egg to survivorship ofB. argentifoliiwas 5% and parasitism was 13%. At the high release rate, egg to adult survivorship forB. argentifoliiwas 8% and parasitism was 23%. The net reproductive rates (R0) forB. argentifoliipopulations in the absence ofE. formosaranged from 18.01–26.12, indicating a rapidly increasing population. Net reproductive rates for whitefly populations subject to wasp releases were 1.54 for the low release rate greenhouses and 2.11 for the high release rate greenhouses, indicating substantially reducedB. argentifoliipopulation growth. The low release rate provided better control ofB. argentifoliithan the high release rate. This difference was attributed to higher levels of mortality of whiteflies at the low release rate in the first 5–6 weeks of the growing period. We suggest that mutual interference may also have affected observed levels of mortality and parasitism.  相似文献   

3.
We investigated the searching behaviour of two species of predatory mites, Typhlodromips swirskii (Athias-Henriot) and Euseius scutalis (Athias-Henriot), both known to feed on immature stages of the whitefly Bemisia tabaci Gennadius. When released in a greenhouse inside a circle of cucumber plants that were alternatingly clean or infested with immature whiteflies, the mites took several days to find plants. Both species were recaptured significantly more on plants with whiteflies. This suggests that the mites are able to discriminate between plants with and without whiteflies. The predators may either have been attracted to plants with whiteflies from a distance or arrested on plants with whiteflies. Typhlodromips swirskii that had previously fed on whitefly immatures on cucumber leaves were significantly attracted by volatiles from cucumber plants with whiteflies in a Y-tube olfactometer. This suggests that the mites use volatile cues to discriminate between infested and clean plants. However, this response waned rapidly; if predators, experienced as above, were starved for 3–4 h in absence of cucumber leaves, they no longer preferred volatiles of infested plants to clean plants. Furthermore, T. swirskii that had no experience with immature whiteflies on cucumber plants also did not prefer odours of infested plants to those of clean plants. Because the release experiment with this species in the greenhouse was done with inexperienced predators, this suggests that the aggregation of mites on plants with whiteflies was mainly caused by differential arrestment of mites on plants with prey and clean plants. For T. swirskii, this was in agreement with the finding that the fraction of predators on plants with prey increased with time to levels higher than 70%. A less clear trend was found for E. scutalis, for which the fraction of predators on plants with prey stabilized soon after release to levels from 54–70%. Hence, the predatory mites may find plants with prey by random searching, but they are subsequently arrested on these plants. An earlier study showed that 87% of all whiteflies released in a set-up as used here were recaptured within 1 day. Hence, the effectiveness with which predatory mites locate plants with whiteflies is low compared with that of their prey. We expect this to generate spatial patterns in the dynamics of predator and prey and this may have consequences for biological control of whiteflies with predatory mites.  相似文献   

4.
Trap cropping, though promising, has had little evaluation in greenhouses. This study evaluated eggplant, Solanum melongena L. (Solanaceae), as a trap crop for two whitefly species, Trialeurodes vaporariorum (Westwood) and Bemisia argentifolii Bellows & Perring (both Hemiptera: Aleyrodidae), on greenhouse poinsettia, Euphorbia pulcherrima Willd. ex Koltz (Euphorbiaceae). Because the two whitefly species co‐occur in greenhouses, a common trap crop for both whiteflies is desirable. When adults were provided a choice between eggplant and poinsettia in a cage, 60% of B. argentifolii and 98% of T. vaporariorum were observed on eggplant after 3 days. However, when adults were given eggplant after first settling on poinsettia, only 38% of B. argentifolii were later found on eggplant, whereas 95% of T. vaporariorum moved to eggplant. In a greenhouse experiment, eggplant did not affect either the spatial distribution or density of adult B. argentifolii on poinsettias. In contrast, eggplant changed the spatial distribution of T. vaporariorum within 3 days by attracting and retaining the adults. However, the attractiveness of eggplant did not result in a reduced number of T. vaporariorum on poinsettias compared with poinsettias in monoculture. Adult T. vaporariorum mortality was high on poinsettias and this likely caused adult density on poinsettias in monoculture to decrease as fast as that under trap cropping. A simulation model was developed to examine how adult whitefly mortality on poinsettia influences trap cropping effectiveness. When whitefly mortality was high, simulated densities were similar to the experimental data. This reveals an unexpected factor, pest mortality on the main crop, that can influence the relative effectiveness of trap cropping. Our results indicate that eggplant will not work unilaterally as a trap crop for B. argentifolii. For T. vaporariorum, attraction to eggplant might be useful as a trap crop system when whitefly mortality on the main crop is not high.  相似文献   

5.
We studied the capacity of one species of predator to control two major pests of greenhouse crops, Western flower thrips (Frankliniella occidentalis (Pergande)) and the greenhouse whitefly (Trialeurodes vaporariorum (Westwood)). In such a one-predator–two-prey system, indirect interactions can occur between the two pest species, such as apparent competition and apparent mutualism. Whereas apparent competition is desired because it brings pest levels down, apparent mutualism is not, because it does the opposite. Because apparent competition and apparent mutualism occurs at different time scales, it is important to investigate the effects of a shared natural enemy on biological control on a time scale relevant for crop growth. We evaluated the control efficacy of the predatory mites Amblyseius swirskii (Athias-Henriot) and Euseius ovalis (Evans) in cucumber crops in greenhouse compartments with only thrips, only whiteflies or both herbivorous insects together. Each of the two predators controlled thrips, but A. swirskii reduced thrips densities the most. There was no effect of the presence of whiteflies on thrips densities. Whitefly control by each of the two predators in absence of thrips was not sufficient, yet better with E. ovalis. However, whitefly densities in presence of thrips were reduced dramatically, especially by A. swirskii. The densities of predators were up to 15 times higher in presence of both pests than in the single-pest treatments. Laboratory experiments with A. swirskii suggest that this is due to a higher juvenile survival and developmental rate on a mixed diet. Hence, better control may be achieved not only because of apparent competition, but also through a positive effect of mixed diets on predator population growth. This latter phenomenon deserves more attention in experimental and theoretical work on biological control and apparent competition.  相似文献   

6.
Several studies have shown that biological control of pests can be improved by supplying extra food to natural enemies. This increases population levels of the enemies, resulting in decreases in pest densities. In theory, however, supplying food can also have negative effects on biological control. We specifically tested for such negative effects, using a predator–prey system consisting of the whitefly Bemisia tabaci (Gennadius) and a predatory mite Amblyseius swirskii (Athias-Henriot). This predator attacks eggs and young instars of the whitefly, but also feeds on pollen. We added pollen to populations of predators and whiteflies on isolated cucumber plants. Although the set-up of our experiments would favour the occurrence of a negative effect of the addition of pollen on biological control, we found increased control throughout the experiment. This shows that the control of whiteflies by A. swirskii can be improved by supplementing the predators with pollen.  相似文献   

7.
Phytoseiids are known to attack whiteflies, but it is an open question whether they can be used for biological control of these pest insects. Preselection experiments in the laboratory showed that two out of five phytoseiid species tested, Euseius scutalis and Typhlodromips swirskii, stood out in terms of their ability to develop and reproduce on a diet of Bemisia tabaci immatures. In this paper, we show that both predators are able to suppress whitefly populations on isolated cucumber plants in a greenhouse. Predatory mites were released 2 weeks in advance of the release of B. tabaci. To enable their survival and promote their population growth, they were provided weekly with alternative food, that is, Typha sp. pollen. A few weeks after whitefly introduction, the numbers of adult whiteflies on plants with predators were consistently lower than on plants without predators, where B. tabaci populations grew exponentially. After 9 weeks, this amounted to a 16- to 21-fold difference in adult whitefly population size. This shows that the two phytoseiid species are promising biocontrol agents of B. tabaci on greenhouse cucumber. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Predator diet is known to influence antipredator behaviour in prey. Yet, it is not clear how antipredator behaviour is affected by diet changes of the predator. We studied the effect of previous and present diet of a predatory mite Typhlodromips swirskii on the antipredator response of its prey, the whitefly Bemisia tabaci. An earlier study showed that adult female whiteflies that had experienced predators, had learned to avoid ovipositing on plants with predators whose previous and present diet consisted of whitefly eggs and immatures. Here, we investigate whether adult whiteflies also avoid plants with predators whose present and/or previous diet consisted of a non-whitefly food source. Adult whiteflies were found not to avoid plants with predators whose present diet consisted of pollen and whose previous diet had consisted of either pollen or whitefly eggs and larvae. They did avoid plants with predators whose present diet consisted of whiteflies and whose previous diet had consisted of pollen, but to a lesser extent than when previous and present diet consisted of whiteflies. In a choice experiment, whiteflies discriminated between plants with predators whose present diet consisted of whiteflies, but that differed in previous diet. Our results show that both previous and present diets of predators are important in eliciting antipredator behaviour.  相似文献   

9.
Western flower thrips, Frankliniella occidentalis, and onion thrips, Thrips tabaci, are both important polyphagous pests of vegetables and ornamentals in greenhouses. Difficulties in biological control of these pests have prompted a search for new natural enemies. Most recently, the predatory mite Amblyseius swirskii has been commercialised as biological control agent of whiteflies and thrips. However, little is known about the suitability of thrips as prey for A. swirskii. We therefore assessed prey acceptance and life history of A. swirskii when feeding on F. occidentalis and T. tabaci at 25±1°C. Amblyseius swirskii juveniles preyed upon first larval instars of both F. occidentalis and T. tabaci but suffered from high mortality (67 and 78%). Developmental time (egg to adult) of A. swirskii was 7.8 days with either prey species. Adult A. swirskii females readily accepted first larval instars of both thrips species, which were attacked in <20 min on a leaf and <10 min in an artificial cage. Oviposition rates (0.92 and 0.99 eggs/female/day) and offspring sex ratios (63 and 70% females) were similar with F. occidentalis and T. tabaci as prey. Less than one-third of juveniles reaching adulthood and oviposition rates below one egg/female per day resulted in relatively low intrinsic rates of increase (r m) (0.056 and 0.024 per day with F. occidentalis and T. tabaci, respectively). Altogether, our study suggests that the recently reported superiority of A. swirskii to the widely used Neoseiulus cucumeris in suppression of thrips is due to other traits than its population growth capacity with thrips as prey.  相似文献   

10.
Laboratory evaluations of five natural enemies of the silverleaf whitefly, Bemisia argentifolii Bellows and Perring, n. sp., were conducted to determine their potential as biological control agents in greenhouse poinsettia ranges. Adult longevity, prey consumption or host feeding and parasitism rates, and parasitoid emergence were measured for one predator, Delphastus pusillus LeConte, and four parasitoids, Encarsia formosa Gahan, Encarsia luteola Howard, Encarsia pergandiella Howard, and Encarsia transvena (Timberlake), as possible indicators of efficacy. Characterization of each parameter was performed on two poinsettia cultivars: the first, ′Annette Hegg Brilliant Diamond,′ has trichome densities on the leaf undersurfaces approximately 15% less than the trichome densities on the leaf undersurfaces of the second cultivar, ′Lilo.′ Adult longevity varied significantly between natural enemies (ranging from an average high of 85.2 days for female D. pusillus feeding on B. argentifolii nymphs to an average low of 2.8 days for the Canada colony of E. formosa), but not between cultivar. Prey consumption and oviposition by D. pusillus varied between prey type (nymphs consumed > eggs consumed) and poinsettia cultivar (′Annette Hegg Brilliant Diamond′ > ′Lilo′). Host feeding, parasitism and total number of B. argentifolii nymphs killed varied significantly among Encarsia spp., but no single wasp performed better than the rest across all three parameters. Host feeding, parasitism, and total number of nymphs killed were greater on ′Annette Hegg Brilliant Diamond′ than on ′Lilo′ and this difference was consistent among the four parasitoid species. Among parasitoid species differences in percentage emergence were consistent between the two poinsettia cultivars with emergence from parasitized nymphs on ′Lilo′ being greater than emergence on ′Annette Hegg Brilliant Diamond.′ Results from these evaluations suggest that the probability of achieving successful augmentative biological central will be greater on poinsettia cultivars with fewer trichomes. In addition, achieving biological control is likely to be difficult with releases of E. transvena, but a greater chance for success may be possible through releases of D. pusillus when whitefly densities are high or through releases of E. formosa (Beltsville colony) or mated E. pergandiella independent of whitefly densities.  相似文献   

11.
Bemisia tabaci Genn. (Hemiptera: Aleyrodidae) and Frankliniella occidentalis (Thysanoptera: Thripidae) are major pests in greenhouse grown cucumber crops. Recently, Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae) was shown an effective biological control agent of both pests. Hence, perhaps both pests can be controlled simultaneously by this predator. However, with simultaneous infestation of both pests, synergistic effects, or interference could affect biological control and perhaps require changes in release rates of the predator. Thus, the aim of the present study was to evaluate different release rates of A. swirskii to control both pests under a worst case scenario of rapid immigration into a cucumber greenhouse. Two experiments were conducted, one simulating the influx of whiteflies alone (whitefly experiment) and the other immigration of whiteflies and thrips together (whitefly plus thrips experiment). Three treatments were compared in the whitefly experiment: (1) B. tabaci alone, (2) B. tabaci + 25 A. swirskii m−2 and (3) B. tabaci + 75 A. swirskii m−2. The high release rate was more effective than the low rate in controlling B. tabaci alone. The high rate was subsequently tested against B. tabaci and F. occidentalis for the whitefly and thrips experiment in which five treatments were compared: (1) B. tabaci alone, (2) F. occidentalis alone, (3) B. tabaci + 75 A. swirskii m−2, (4) F. occidentalis + 75 A. swirskii m−2 and (5) B. tabaci + F. occidentalis + 75 A. swirskii m−2. This rate of A. swirskii controlled whiteflies and thrips either alone or together. Therefore, 75 A. swirskii m−2 should be an adequate rate for controlling both pests either alone or simultaneously in cucumber greenhouses.  相似文献   

12.
Bemisia tabaci, that were flown for varying lengths of time (1 min-2.5 h), exhibited behavioral, morphological, and physiological differences. When whiteflies that were engaging in phototactic orientation in a vertical flight chamber were presented with a visual cue simulating their host plant (550-nm narrowband interference filter), 76% landed on this cue within three presentations. Another 18% of the whiteflies displayed an intermittent attraction to the host cue, and 6% displayed a response that, historically, has been considered to be indicative of migration. These individuals failed to respond to the target until they had flown for at least 15 min. These three categories of response were observed in both sexes, in all flight-capable individuals from 1 to 5 days old and in two groups of whiteflies that were exhibiting distinct behaviors prior to our tests (i.e., they were either settled on poinsettia or engaging in phototactic orientation). There was a trend for males that engaged in long-distance flight to have smaller wing dimensions than males that engaged in shorter flights; no trend was evident in female whiteflies. High levels of vitellogenin and vitellin did not inhibit flight activity. In fact, we generally found higher levels of egg proteins in long-distance fliers and in premigratory individuals than in short-duration fliers and settled individuals.  相似文献   

13.
Dispersal of natural enemies through a crop is a key component of biological control. The release strategy should optimize the number of predators that are released, the release frequency and number of release sites throughout a crop with regards to the distance that natural enemies can disperse from their release point. In this study, dispersal rate and behaviour of Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae) was investigated in potted greenhouse chrysanthemums in the presence or absence of prey (Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Results demonstrate that A. swirskii did not disperse far from the release site. Presence of prey did not influence dispersal, but had an effect on predator survival in one experiment. Only a quarter of the A. swirskii eventually attempted to disperse by going down to the ground. The presence of inter-plant contact greatly improved movement of A. swirskii between plants. It is concluded that good coverage with predators of the crop is needed when using A. swirskii in a biological control program. Having a continuous crop canopy will promote dispersal.  相似文献   

14.
Ten predatory mite species, all phytoseiids, were evaluated for control of western flower thrips (WFT), Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), on greenhouse cucumber. This study was done to further improve biological control of thrips on this crop. Neoseiulus cucumeris (Oudemans) is at present used for biological control of thrips in greenhouses. Compared to this species, Typhlodromalus limonicus (Garman & McGregor), Typhlodromips swirskii (Athias-Henriot) and Euseius ovalis (Evans) reached much higher population levels resulting in a significantly better control of thrips. T. limonicus was clearly the best predator of WFT. Also Euseius scutalis (Athias-Henriot) increased to higher populations levels than N. cucumeris, but without controlling the thrips, probably because of an unequal distribution of this predator on the plant. Iphiseius degenerans (Berlese), Neoseiulus barkeri (Hughes), Euseius finlandicus (Oudemans) and Typhlodromus pyri (Scheuten) did not establish better than N. cucumeris. A non-diapausing exotic strain of N. cucumeris did not differ from the North European strain. The best performers in this study were all of sub-tropical origin. T. limonicus, T. swirskii and E. ovalis have good potentials for controlling not only thrips but also whiteflies. Factors affecting the efficacy of phytoseiids on greenhouse cucumbers are discussed.  相似文献   

15.
Biological characteristics (oviposition and survival rates) and esterase banding patterns in native PAGE were investigated to evaluate variation among three populations of Bemisia tabaci Gennadius (Homoptera: Aleyrodidae). Reproductive capabilities of whiteflies from cotton (Gossypium hirsutum L.) and pumpkin (Cucurbita maxima Duchesne) populations were similar on the three host plant species tested. These populations, which had the same wild-type field origin, reproduced better on either cotton and pumpkin than on poinsettia (Euphorbia pulcherrima Willdenow). In contrast, poinsettia whiteflies exhibited relatively similar reproductive capabilities for the three host species tested. Pumpkin and cotton whiteflies had similar esterase banding patterns (A type), while poinsettia whiteflies yielded a different banding pattern (B type). In transmission studies, whiteflies from cotton or pumpkin sources did not induce silverleaf (SSL) or white stem (WS) symptoms in Cucurbita spp. tested. In contrast, poinsettia whiteflies were associated routinely with SSL and WS symptoms in Cucurbita spp. following colonization by whitefly adults. From these data, it was possible to correlate a specific esterase banding pattern (A or B) with reproductive capabilities and the ability to induce SSL and WS symptoms.  相似文献   

16.
We investigated the impact of inundative releases of the parasitoid, Encarsia formosa Gahan (Hymenoptera: Aphelinidae), for control of greenhouse whitefly, Trialeurodes vaporariorum (Westwood), on cut gerbera (Gerbera jamesonii L.) under controlled greenhouse conditions. Experimental units consisted of ten plants covered and separated from other units by gauze tents. We assessed three release rates of the aphelinid parasitoid: a 7-week experiment with a standard release rate (10 m−2/14 days), and a subsequent 3-month trial with high (100 m−2/week) and very high (1,000 m−2/week) release rates. Experimental units without release of parasitoids served as control treatment. Gerbera plants were infested initially with 50–100 juvenile and 50–70 adult whiteflies in the first experiment, and in the second experiment with less than 50 juveniles per plant and 50–70 adults. Whitefly and parasitoid population density were assessed in weekly intervals using infestation and activity categories. Results show that parasitized whiteflies were present in all treatments within 2 weeks after initial release. Unfortunately, it was not possible to control whiteflies with standard release rates of E. formosa. Although parasitism rates slightly increased, the effect on whitefly populations was negligible. Large amounts of honeydew and growth of sooty mold fungi caused the termination of the first experiment. In a second experiment, E. formosa was tested at 10–100 times higher release densities. In contrast to the first experiment, whitefly densities increased steadily during the first 8 weeks, but remained constant until the end of the experiment in both treatments. Parasitism by E. formosa reached its maximum after 8 weeks. We discuss possible reasons for the low efficiency of E. formosa as a whitefly antagonist in greenhouse production of gerbera.  相似文献   

17.
More wasps of Encarsia formosa Gahan (Hymenoptera: Aphelinidae) were found on fertilized poinsettias, Euphorbia pulcherrima (Willd.) (Euphorbiaceae), than on non-fertilized plants. Parasitization of Bemisia argentifolii Bellows & Perring (Homoptera: Aleyrodidae) by E. formosa was higher on plants treated with calcium nitrate than with ammonium nitrate or on control plants. In a no-choice test, host feeding by E. formosa was higher when hosts were on fertilized plants than when hosts were on control plants. The nitrogen content of whitefly pupae reared on plants treated with ammonium nitrate was higher than those on calcium nitrate-treated plants.Variability in the parasitization of B. argentifolii by E. formosa appears to be due to host plant-mediated differences in the whiteflies. E. formosa may be influenced by the nutritional suitability of the host, which influences whether wasps continue to oviposit, feed, or disperse.  相似文献   

18.
Colonization of tomato greenhouses by native predatory mirid bugs at the end of the spring cycle is common in the western Mediterranean area when no broad-spectrum insecticides are applied. Due to their polyphagy, these predators interact with pest populations and also with other natural enemies present in the crop. In this work we evaluate the abundance and timing of greenhouse colonization by these predators and their interaction with the greenhouse whitefly Trialeurodes vaporariorum, a key crop pest, and its introduced parasitoid Encarsia formosa. Although quite unpredictable, natural colonization of greenhouses by Macrolophus caliginosus and Dicyphus tamaninii, the two predominant species in our location, usually leads to the establishment of predator populations in the crop that subsequently prey on greenhouse whitefly. No preference for parasitized pupae was observed in greenhouse samples, while laboratory experiments revealed a marked tendency to avoid parasitoid pupae. In our area, IPM programs for greenhouse tomatoes and other vegetables should take advantage of the presence of this predator complex by allowing the immigration and establishment of its populations without disturbing them with highly toxic and non-selective insecticides.  相似文献   

19.
One of the factors that may complicate biological control of the greenhouse whitefly on Gerbera jamesonii by Encarsia formosa is the rosette shape of this ornamental, which differs from the vertical shape of most vegetable plants (cucumber, egg plant, tomato, etc.). Therefore, host-habitat location and the behaviour prior to landing on uninfested and infested leaves was studied. Attraction of E. formosa from a short distance by infested leaves could not be detected: the parasitoid females landed at random on uninfested and infested leaves. After the first landing, a redistribution of the wasps occurred on the leaves. After 24 h three times as many wasps were found on the infested leaves than on uninfested ones. In a dispersal experiment with four plants, E. formosa appeared to have no preference for landing on leaves of the medium age class, which is the age class on which most of the whiteflies in a suitable stage for parasitism occur. Twenty percent of the parasitoids were found on the plants 20 min after releasing them. These results were independent of the plant cultivar and the host density on the plants. In the course of 8 h, the number of E. formosa females recovered from plants increased linearly, and this increase was greater on plants where hosts were present and also greater on the plant cultivar with the lowest trichome density. After 24 h, the percentage of females was highest (56%) on plants with the highest host density. E. formosa females were arrested on leaves where hosts were present. Contrary to our expectation, the results from the two G. jamesonii cultivars that differed strongly in leaf hairiness were not significantly different in most experiments. Only at the high host density was parasitism found to be lower on the cultivar with the higher hair density. Parasitoids may walk on top of the `hair coverlet' of cultivars with high trichome density and, therefore, be hampered less than expected.  相似文献   

20.
Mites of the family Phytoseiidae are known to be predators of whiteflies in several agroecosystems, especially of Bemisia tabaci Gennadius, a pest with high resistance to chemical insecticides that occurs in greenhouses in temperate regions. We collected predatory mites that were found to co-occur with whiteflies in the Middle East for control of B. tabaci: Typhlodromus athiasae (Porath and Swirski), Neoseiulus barkeri Hughes, Typhlodromips swirskii (Athias-Henriot), Euseius scutalis (Athias-Henriot), Phytoseius finitimus Ribaga. As a first step in the evaluation of these species as biological control agents, we measured their life-history traits when feeding on whiteflies. The intrinsic rates of increase (r m) of the predatory mite species ranged between 0.131 and 0.215 per day and E. scutalis had the highest r m estimated. Comparisons with the r m of B. tabaci indicate that some of the species should be capable of suppressing local populations of whitefly. The ability of predators to use alternative food was also tested, since it facilitates the setup of mass cultures and it can promote their persistence in the crop, even if the prey is scarce. All predatory mite species tested were able to survive and reproduce on a diet of broad bean pollen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号