首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We assessed how backpack carriage influences the gait initiation (GI) process in high school students, who extensively use backpacks. GI involves different dynamics from gait itself, while the excessive use of backpacks can result in adverse effects. 117 high school students were evaluated in three experimental conditions: no backpack (NB), bilateral backpack (BB), and unilateral backpack (UB). Two force plates were used to acquire ground reaction forces (GRFs) and moments for each foot separately. Center of pressure (COP) scalar variables were extracted, and statistical parametric mapping analysis was performed over the entire COP/GRFs time series. GI anticipatory postural adjustments (APAs) were reduced and were faster in backpack conditions; medial–lateral COP excursion was smaller in this phase. The uneven distribution of the extra load in the UB condition led to a larger medial–lateral COP shift in the support-foot unloading phase, with a corresponding vertical GRF change that suggests a more pronounced unloading swing foot/loading support foot mechanism. The anterior–posterior GRFs were altered, but the COP was not. A possible explanation for these results may be the forward trunk lean and the center of mass proximity of the base of support boundary, which induced smaller and faster APA, increased swing foot/support foot weight transfer, and increased load transfer to the first step.  相似文献   

2.
Spatiotemporal characteristics of gait such as step time and length are often associated with overall physical function in clinical populations, but can be difficult, time consuming and obtrusive to measure. This study assessed the concurrent validity of overground walking spatiotemporal data recorded using a criterion reference – a marker-based three-dimensional motion analysis (3DMA) system – and a low-cost, markerless alternative, the automated skeleton tracking output from the Microsoft Kinect™ (Kinect). Twenty-one healthy adults performed normal walking trials while being monitored using both systems. The outcome measures of gait speed, step length and time, stride length and time and peak foot swing velocity were derived using supervised automated analysis. To assess the agreement between the Kinect and 3DMA devices, Bland–Altman 95% bias and limits of agreement, percentage error, relative agreement (Pearson's correlation coefficients: r) overall agreement (concordance correlation coefficients: rc) and landmark location linearity as a function of distance from the sensor were determined. Gait speed, step length and stride length from the two devices possessed excellent agreement (r and rc values >0.90). Foot swing velocity possessed excellent relative (r=0.93) but only modest overall (rc=0.54) agreement. Step time (r=0.82 and rc=0.23) and stride time (r=0.69 and rc=0.14) possessed excellent and modest relative agreement respectively but poor overall agreement. Landmark location linearity was excellent (R2=0.991). This widely available, low-cost and portable system could provide clinicians with significant advantages for assessing some spatiotemporal gait parameters. However, caution must be taken when choosing outcome variables as some commonly reported variables cannot be accurately measured.  相似文献   

3.
John J. Gilbert 《Oecologia》1985,66(3):322-331
Summary Cinefilms of unconstrained P. vulgaris at 17°C were taken at a low magnification (2x) and 120–200 fps to analyze body movements during swimming and escape responses mediated by movements of the 12 lateral, bladelike appendages or paddles. Cinefilms of partially constrained P. vulgaris and P. dolichoptera at 16°C were taken at a higher magnification (10x) and 300 fps, using interference contrast optics, to resolve paddle movements during escape responses. When swimming, P. vulgaris moved at a velocity of 0.348±0,025 (S.E.) mm·s-1 (2.64 body lenghs·s-1), having a Reynolds number of 0.05. During escape responses, P. vulgaris traveled 1.947±0.124 (S.E.) mm (15 body lengths) during 0.0564±0.0038 (S.E.) s, continuously moving at a velocity of 35.7±1.2 (S.E.) mm·s-1 (270 body lengths·s-1) and having a Reynolds number of 5. During these responses, P. vulgaris tumbled sinuously but mostly-88.9±2.3 (S.E.) %-in a constant direction; the angular change in direction from one frame to the next was 28±2 (S.E.) degrees, but the sign of the change in direction frequently alternated. Escape responses are caused by 1–3 cycles of paddle movements. In each cycle, the rigid paddles move up asynchronously until they are all directly overhead, and then they move downwards to their original resting positions, again asynchronously. Polyarthra's body moves along the flight path during all phases of this cycle. A single cycle may take as little as 26 ms, 13 ms for the paddles to elevate and 13 ms for them to descend. The asynchronous upward and downward movements of each of the 12 paddles explain why Polyarthra's body tumbles continuously through its low Reynolds number, viscous environment. Escape responses generally were initiated by contact with another rotifer. In one P. dolichoptera response, the time lag between such contact and the initiation of paddle elevation was about 7 ms. The very short lag time, great velocity, considerable displacement, and unpredictable directionality of Polyarthra's escape response make it a very effective defense against capture by some invertebrate predators.  相似文献   

4.
The wind-orientation of carrion beetles (Necrophorus humator F.) was studied by use of a locomotion-compensator.
1.  Beetles walking on a horizontal surface for periods of several minutes in a dark environment without an air current and other orientational stimuli seldom keep straight paths. They walk along individually different circular paths (Fig. 1). The mean walking speed is 5.6±1.0 cm/s. The mean of the angular velocity reaches maximally 25 °/s for individual beetles (mean angular velocity of the analysed population of 152 beetles: 1.9±9.3 °/s). The distribution of the mean walking directions of the population shows that the beetles display no preference for one direction (Fig. 3 A). The instantaneous value of the individual angular velocity is independent of the instantaneous walking direction.
2.  During exposure to an air current the individual beetles keep straight and stable courses with any orientation relative to the direction of air flow (Fig. 4). The mean walking directions of 76 individuals point in all directions but there is a weak preference of windward tracks (Fig. 3B).
3.  Wind orientated walking starts at a threshold wind velocity of about 5 cm/s (Fig. 6). The walking tracks straighten with increasing air current velocity. This leads to a narrowing of the distribution of the instantaneous walking directions around the preferred walking direction (Fig. 7C). This narrowing is due to an increase in the slope of the characteristic curve (angular velocity as a function of walking direction) of the wind-orientation system.
4.  Twenty percent of the beetles show a spontaneous change of their anemotactic course during walks of 5 min duration. Neither the time of the change, its position on the track or the direction of the new course are predictable. There is, however, a slight preference for 90±20° changes in the walking direction (Fig. 8).
5.  The antennae (Fig. 9) act as the only sense organs responsible for the wind orientation. The capability for wind orientated walks is lost after ablation of both flagella (Fig. 10).
  相似文献   

5.
The relationship between static foot structure characteristics and knee joint biomechanics during walking, or the biomechanical response to wedged insoles are currently unknown. In this study, 3D foot scanning, dual X-ray absorptiometry and gait analysis methods were used to determine structural parameters of the foot and assess their relation to knee joint loading and biomechanical response to wedged insoles in 30 patients with knee osteoarthritis. In multiple linear regression models, foot fat content, height of the medial longitudinal arch and static hind foot angle were not associated with the magnitude of the knee adduction moment (R2 = 0.24, p = 0.060), knee adduction angular impulse (R2 = 0.21, p = 0.099) or 3D resultant knee moment (R2 = 0.23, p = 0.073) during gait. Furthermore, these foot structure parameters were not associated with the patients’ biomechanical response to medial or lateral wedge footwear insoles (all p < 0.01). These findings suggest that static foot structure is not associated with gait mechanics at the knee, and that static foot structure alone cannot be utilized to predict an individual’s biomechanical response to wedged footwear insoles in patients with knee osteoarthritis.  相似文献   

6.
The purpose of this study was to determine if excess fat negatively affects relative strength and walking gait performance in overweight, older women. Twenty-five older women (65–80 yr) were separated into normal weight (BMI < 25 kg m−2, n = 11) and overweight groups (BMI ? 25 kg m−2, n = 14). Strength and rate of torque development (RTD) of the knee extensors and flexors, ankle plantarflexors and dorsiflexors were measured. Participants walked at standard and maximal speeds during which muscle activation, spatiotemporal and kinetic gait variables were measured. Relative to mass, overweight older women had 24% lower maximal torque and 38% lower RTD than normal weight women. Maximal walking speed was slower in overweight (1.25 ± 0.22 vs. 1.54 ± 0.25 m s−1, P = 0.004) and was correlated to strength (r = 0.53, P < 0.01) and fat mass (r = −0.65, P = 0.001). At maximal speed, overweight had 11% lower vertical ground reaction force relative to mass, 8% slower stride rate, 12% shorter strides, 13% longer foot–ground contact times, 21% longer double-limb support times, 65% greater knee extensor and 78% greater plantarflexor activation (P < 0.05). Overweight, older women demonstrated altered gait and reduced walking performance related to poor relative strength and rate of torque development of lower-extremity muscles.  相似文献   

7.
The foot progression angle is an important measurement related to knee loading, pain, and function for individuals with knee osteoarthritis, however current measurement methods require camera-based motion capture or floor-embedded force plates confining foot progression angle assessment to facilities with specialized equipment. This paper presents the validation of a customized smart shoe for estimating foot progression angle during walking. The smart shoe is composed of an electronic module with inertial and magnetometer sensing inserted into the sole of a standard walking shoe. The smart shoe charges wirelessly, and up to 160 h of continuous data (sampled at 100 Hz) can be stored locally on the shoe. For validation testing, fourteen healthy subjects were recruited and performed treadmill walking trials with small, medium, and large toe-in (internal foot rotation), small, medium, and large toe-out (external foot rotation) and normal foot progression angle at self-selected walking speeds. Foot progression angle calculations from the smart shoe were compared with measurements from a standard motion capture system. In general, foot progression angle values from the smart shoe closely followed motion capture values for all walking conditions with an overall average error of 0.1 ± 1.9 deg and an overall average absolute error of 1.7 ± 1.0 deg. There were no significant differences in foot progression angle accuracy across the seven different walking gait patterns. The presented smart shoe could potentially be used for knee osteoarthritis or other clinical applications requiring foot progression angle assessment in community settings or in clinics without specialized motion capture equipment.  相似文献   

8.
Summary In the dna G t.s. strain BT 308, made lysogenic for the phage , nascent DNA was labelled by short pulses of 3H-thymidine, isolated and separated as a function of size by alkaline sucrose gradient sedimentation. The molecular polarity of the labelled DNA was then determined by hybridization to the separated strands of DNA.At 30° C, strand r DNA, made in the direction opposite that of fork movement, is synthesized in the form of short pieces. The first observable consequences of a shift to 42° C are the preferential inhibition of strand r synthesis and the small amount of strand r DNA which is made is recovered in long pieces of DNA rather than in short fragments. This indicates that the t.s. product, in strain BT 308, may be involved in the synthesis of the strand growing in the direction opposite that of replication fork movement.Newly synthesized strand l DNA, made in the same direction as replication fork movement, is found in long pieces in wild-type bacteria; it is found in pieces of intermediate size in strain BT 308 at 30° C as well as at 42° C. This indicates additional differences in the replication machinery between strain BT 308 and wild-type bacteria.  相似文献   

9.
The purpose of this study was to determine the contribution of individual ankle muscles to the net ankle power and to examine each muscle’s role in propulsion or support of the body during normal, self-selected-speed walking. An EMG-to-force processing (EFP) model was developed which scaled muscle tendon unit force output to gait EMG, with that muscle’s power output being the product of muscle force and contraction velocity. Net EFP power was determined by summing individual ankle muscle power. Net ankle power was also calculated for these subjects via inverse dynamics. Closeness of fit of the power curves of the two methods was used to validate the model. The curves were highly correlated (r2 = .91), thus the model was deconstructed to analyze the power contribution and role of each ankle muscle during normal gait. Key findings were that the plantar flexors control tibial rotation in single support, and act to propel the entire limb into swing phase. The dorsiflexors provide positive power for swing phase foot clearance, negative power to control early stance phase foot placement, and a second positive power burst to actively advance the tibia in the transition from double to single support. Co-contraction of agonists and antagonists was limited to only a small percentage of the gait cycle.  相似文献   

10.

Corpus callosum trauma has long been implicated in mild traumatic brain injury (mTBI), yet the mechanism by which forces penetrate this structure is unknown. We investigated the hypothesis that coronal and horizontal rotations produce motion of the falx cerebri that damages the corpus callosum. We analyzed previously published head kinematics of 115 sports impacts (2 diagnosed mTBI) measured with instrumented mouthguards and used finite element (FE) simulations to correlate falx displacement with corpus callosum deformation. Peak coronal accelerations were larger in impacts with mTBI (8592 rad/s2 avg.) than those without (1412 rad/s2 avg.). From FE simulations, coronal acceleration was strongly correlated with deep lateral motion of the falx center (r = 0.85), while horizontal acceleration was correlated with deep lateral motion of the falx periphery (r > 0.78). Larger lateral displacement at the falx center and periphery was correlated with higher tract-oriented strains in the corpus callosum body (r = 0.91) and genu/splenium (r > 0.72), respectively. The relationship between the corpus callosum and falx was unique: removing the falx from the FE model halved peak strains in the corpus callosum from 35% to 17%. Consistent with model results, we found indications of corpus callosum trauma in diffusion tensor imaging of the mTBI athletes. For a measured alteration of consciousness, depressed fractional anisotropy and increased mean diffusivity indicated possible damage to the mid-posterior corpus callosum. Our results suggest that the corpus callosum may be sensitive to coronal and horizontal rotations because they drive lateral motion of a relatively stiff membrane, the falx, in the direction of commissural fibers below.

  相似文献   

11.
This study examined the effects of reduced plantar cutaneous afferent feedback on predictive and feedback adaptive locomotor adjustments in dynamic stability during perturbed walking. Twenty-two matched participants divided between an experimental-group and a control-group performed a gait protocol, which included surface alterations to one covered exchangeable gangway-element (hard/soft). In the experimental-group, cutaneous sensation in both foot soles was reduced to the level of sensory peripheral neuropathy by means of intradermal injections of an anaesthetic solution, without affecting foot proprioception or muscles. The gait protocol consisted of baseline trials on a uniformly hard surface and an adaptation phase consisting of nineteen trials incorporating a soft gangway-element, interspersed with three trials using the hard surface-element (2nd, 8th and 19th). Dynamic stability was assessed by quantifying the margin of stability (MS), which was calculated as the difference between the base of support (BS) and the extrapolated centre of mass (CM). The horizontal velocity of the CM and its vertical projection in the anterior-posterior direction and the eigenfrequency of an inverted pendulum determine the extrapolated-CM. Both groups increased the BS at the recovery step in response to the first unexpected perturbation. These feedback corrections were used more extensively in the experimental-group, which led to a higher MS compared to the control-group, i.e. a more stable body-position. In the adaptation phase the MS returned to baseline similarly in both groups. In the trial on the hard surface directly after the first perturbation, both groups increased the MS at touchdown of the disturbed leg compared to baseline trials, indicating rapid predictive adjustments irrespective of plantar cutaneous input. Our findings demonstrate that the locomotor adaptational potential does not decrease due to the loss of plantar sensation.  相似文献   

12.
We evaluated the combined effects of food (0.5 × 106, 1.0 × 106 and 2.0 × 106 cells ml−1 of Chlorella vulgaris) and temperature (15, 20 and 25 °C) on life history variables of B. havanaensis. Regardless of Chlorella density there was a steep fall in the survivorship of B. havanaensis at 25 °C. Both food level and temperature affected the fecundity of B. havanaensis. At any given food level, rotifers cultured at 15 °C showed extended but low offspring production. At 25 °C, offspring production was elevated, the duration of egg laying reduced and the fecundity was higher during the latter part of the reproductive period. The effect of food level was generally additive, at any given temperature, and higher densities of Chlorella resulted in higher offspring production. Average lifespan, life expectancy at birth and generation time were 2–3 times longer at 15 °C than at 25 °C. At 20 °C, these remained at intermediate levels. The shortest generation time (about 4 days) was observed at 25 °C. Gross and net reproductive rates and the rate of population increase (r) increased with increasing temperature and generally, at any given temperature, higher algal food levels contributed to higher values in these variables. The r varied from 0.11 to 0.66. The survival patterns and lower rates of reproduction at 15 °C suggest that the winter temperatures (10–15 °C) prevailing in many waterbodies in Mexico City allow this species to sustain throughout the year under natural conditions.  相似文献   

13.
Technical advancements in instrumentation and analytical methods have improved the ability of assessing balance control. This study investigated the effects of early stages of aging on postural sway using traditional and contemporary postural indices from different domains. Eleven healthy young adults and fourteen healthy non-faller older adults performed two postural tasks: (a) functional limits of stability and (b) unperturbed bipedal stance for 120 s. Postural indices from spatial, temporal, frequency, and structural domains were extracted from the body’s center of pressure (COP) signals and its Rambling and Trembling components. Results revealed a preservation of functional limits of upright stability in older adults accompanied by larger, faster, and shakier body sway in both anterior-posterior and medio-lateral directions; increased medio-lateral sway frequency; increased irregularity of body sway pattern in time in both directions; and increased area, variability, velocity, and jerkiness of both rambling and trembling components of the COP displacement in the anterior-posterior direction (p < 0.02). Such changes might be interpreted as compensatory adjustments to the age-related decline of sensory, neural, and motor functions. In conclusion, balance assessment using postural indices from different domains extracted from the COP displacement was able to capture subtle effects of the natural process of aging on the mechanisms of postural control. Our findings suggest the use of such indices as potential markers for postural instability and fall risk in older adults.  相似文献   

14.
Summary Triatoma bugs turn away from a vertical black stripe on the inner surface of a rotating or oscillating drum by keeping it in the lateral visual field at an angle relative to the long axis of the body. The value of depends on the angular velocity w of the drum. Below w=5° s–1, increases with increasing w, and the stripe can lie to either side of the animal. Occasionally, the bugs switch between these two tracking modes. Above w=5° s–1, remains nearly constant at about 120° and the stripe lags behind the animal. We call this lateral tracking. At velocities over 5° s–1 the animals track the leading edge of a wide black stripe in the same manner as they track a narrow stripe. Below 5° s–1 they walk towards the centre of the stripe (skototaxis). Objects moving towards the insect above the horizon are also fixated at an angle of about 120°. Lateral tracking is mediated mainly by the dorsal part of the visual field, as can be shown by occluding either the dorsal or ventral halves of the eyes. The walking speed of the bugs increases significantly during lateral tracking of an oscillating stripe compared with that during frontal fixation of a stationary one. We therefore interpret lateral tracking as an escape response.  相似文献   

15.
Summary Four 1,3--glucanases GI, GII, GIV and GVIII from a culture filtrate ofStreptomyces sp. 1228 were purified by anion exchange chromatography using DEAE-Sepharose Cl-6B or DEAE-Cellulose, gel filtration on Bio-Gel P-200 or Sephacryl S-200, Amicon ultrafiltration and preparative PAGE. The Mr of these enzymes were 19000, 74000, 78000 and 56000 respectively. The glucanase GVIII consisted of two subunits. The optimal catalytic activity of the purified preparations was at 50–55°C and pH 5.5–6.0. The enzymes were also most stable at this pH. Both glucanases GI and GVIII were characterized by high thermostability. The glucanases showed different affinities towards laminarin with Km values of 6.65 x 10–5 mol/l for GI, 2.35 x 10–4 mol/l for GII, 8.1 x 10–5mol/l for GIV and 8.1 x 10–4mol/l for GVIII. The presence of metal ions was not required for activity of these enzymes but thiol groups increased their activity. D-glucono--lactone did not inhibit the enzymes.  相似文献   

16.
A runaway vector for mammalian cells was constructed from the simian virus 40 (SV40) genome with a temperature-sensitive mutation of the large T antigen and bacterial neo r gene. Replication of this plasmid was repressed above 39°C and vigorous DNA propagation was observed below 33°C in simian CV-1 cells. The human erythropoietin gene was inserted downstream of the SV40 late promoter of the plasmid and the recombinant plasmid was introduced into CV-1 cells. By a temperature shift from 37 to 33°C, the plasmid copy number increased from 5 × 102 to 5 × 103 copies per cell and the specific production rate of erythropoietin increased more than ten-fold. The bacterial-derived sequences such as the neo r gene and vector pUC sequences were prone to delete but the main body of the recombinant plasmid such as SV40 and the erythropoietin-coding sequences were stably maintained at either 33 or 37°C.  相似文献   

17.
Summary In protein synthesis, the incorporation of an N-terminal formylmethionine residue is directed by an initiation codon. The most frequently used codon is AUG, although initiation at GUG and UUG codons has also been observed. The HD263 mutation is an AUG to AUA change in the rIIB initiation codon. Evidence is presented here that wild type and HD263 rIIB proteins, whether synthesized in vivo or in vitro, have identical fmet peptides. It is concluded that translation began at the AUA mutant initiation codon in vitro and in phage T4 infected cells.In the in vitro translation system used in these studies, the rIIB protein synthesized at 25° no longer contains the N-terminal formyl group whereas a large proportion of the formyl group is retained at 37°.Abbreviations used tss-mutation temperature-sensitive, synthesis mutation - PrIIB protein product of gene rIIB - PrIIB+ PHD263 and PHE122, rIIB proteins synthesized by rIIB+ phage, tss-mutant HD263 and amber mutant HE122 - fmet-tRNA N-formylmethionyl-tRNA inf met  相似文献   

18.
The purpose of this study was to examine the age-related predictive and feedback adaptive locomotor improvements in the components of dynamic stability control during disturbed walking. Thirteen old (62–74 yrs) and ten young (23–30 yrs) male subjects performed a gait protocol on a gangway, which included one covered element. By exchanging this element, the subjects walked either solely over hard surface or experienced a perturbation of the gait on the soft surface element. The gait protocol consisted of a baseline on hard surface and an adaptation phase with 19 trials on soft or hard (2nd, 8th and 19th) surface. The investigation of dynamic stability was made by using the margin of stability (MS), which was calculated as the difference between the base of support and the extrapolated center of mass (CM). Horizontal velocity of CM and its vertical projection in anterior–posterior direction as well as the eigenfrequency of an inverted pendulum generate the extrapolated CM. As a result of the first unexpected disturbance, MS was decreased in the step following the perturbation compared to baselines in both age-groups. This decrease was higher for the old participants compared to the young ones, indicating a more unstable position in the step after the perturbation for the elderly. In the following adaptation phase, MS returned to baseline values in both age-groups. In the hard trial after the first unexpected perturbation, both age-groups increased MS at touchdown of the disturbed leg compared to baseline, reflecting fast predictive adjustments. Our findings show that the well-known age-related biological impairments did not inhibit the adaptive improvements in the components of dynamic stability in the elderly. However, the feedback corrections after the first unexpected perturbation were less effective for the elderly. This may increase the risk of falling.  相似文献   

19.
The gaits of the adult SWISS mice during treadmill locomotion at velocities ranging from 15 to 85 cm s–1 have been analysed using a high-speed video camera combined with cinefluoroscopic equipment. The sequences of locomotion were analysed to determine the various space and time parameters of limb kinematics. We found that velocity adjustments are accounted for differently by the stride frequency and the stride length if the animal showed a symmetrical or an asymmetrical gait. In symmetrical gaits, the increase of velocity is provided by an equal increase in the stride length and the stride frequency. In asymmetrical gaits, the increase in velocity is mainly assured by an increase in the stride frequency in velocities ranging from 15 to 29 cm s–1. Above 68 cm s–1, velocity increase is achieved by stride length increase. In velocities ranging from 29 to 68 cm s–1, the contribution of both variables is equal as in symmetrical gaits. Both stance time and swing time shortening contributed to the increase of the stride frequency in both gaits, though with a major contribution from stance time decrease. The pattern of locomotion obtained in a normal mouse should be used as a template for studying locomotor control deficits after lesions or in different mutations affecting the nervous system.  相似文献   

20.
The estimated lower limb length (0.761–0.793 m) of the partial skeleton of Australopithecus afarensis from Woranso‐Mille (KSD‐VP‐1/1) is outside the previously known range for Australopithecus and within the range of modern humans. The lower limb length of KSD‐VP‐1/1 is particularly intriguing when juxtaposed against the lower limb length estimate of the other partial skeleton of A. afarensis, AL 288‐1 (0.525 m). A sample of 36 children (age, >7 years, trochanteric height = 0.56–0.765 m) and 16 adults (trochanteric height = 0.77–1.00 m) walked at their self‐selected slow, preferred, and fast walking velocities, while their oxygen consumption was monitored. Lower limb length and velocity were correlated with slow (P < 0.001, r2 = 0.44), preferred (P < 0.001, r2 = 0.55), and fast (P < 0.001, r2 = 0.69) walking velocity. The relationship between optimal velocity and lower limb length was also determined and lower limb length explained 47% of the variability in optimal velocity. The velocity profile for KSD‐VP‐1/1 (slow = 0.73–0.75 m/s, preferred = 1.08–1.11 m/s, and fast = 1.48–1.54 m/s) is 36–44% higher than that of AL 288‐1 (slow = 0.53 m/s, preferred = 0.78 m/s, and fast = 1.07 m/s). The optimal velocity for AL 288‐1 is 1.04 m/s, whereas that for KSD‐VP‐1/1 is 1.29–1.33 m/s. This degree of lower limb length dimorphism suggests that members of a group would have had to compromise their preferences to walk together or to split into subgroups to walk at their optimal velocity. Am J Phys Anthropol, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号