首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Escherichia coli, Bacillus stearothermophilus, and human manganese-containing superoxide dismutases (MnSODs) and the E. coli iron-containing superoxide dismutase (FeSOD) are extensively inactivated by treatment with phenylglyoxal, an arginine-specific reagent. Arg-189, the only conserved arginine in the primary sequences of these four enzymes, is also conserved in the three additional FeSODs and five of the six additional MnSODs sequenced to date. The only exception is Saccharomyces cerevisiae MnSOD, in which it is conservatively replaced by lysine. Treatment of S. cerevisiae MnSOD with phenylglyoxal under the same conditions used for the other SODs gives very little inactivation. However, treatment with low levels of 2,4,6-trinitrobenzenesulfonate (TNBS) or acetic anhydride, two lysine-selective reagents that cause a maximum of 60-80% inactivation of the other four SODs, gives complete inactivation of the yeast enzyme. Total inactivation of yeast MnSOD with TNBS correlates with the modification of approximately five lysines per subunit, whereas six to seven acetyl groups per subunit are incorporated on complete inactivation with [14C]-acetic anhydride. It appears that the positive charge contributed by residue 189, lysine in yeast MnSOD and arginine in all other SODs, is critical for the catalytic function of MnSODs and FeSODs.  相似文献   

2.
3.
Human manganese superoxide dismutase (MnSOD) is characterized by a product inhibition stronger than that observed in bacterial forms of MnSOD. Previous studies show that the conserved, active-site residue Tyr34 mediates product inhibition; however, the protein environment of Tyr34 is different in human and Escherichia coli MnSOD. We have prepared two site-specific mutants of human MnSOD with replacements of Phe66 with Ala and Leu (F66A and F66L, respectively), altering the surroundings of Tyr34. Pulse radiolysis was used to generate superoxide, and measurements of catalysis were taken in single-turnover experiments by observing the visible absorbance of species of MnSOD and under catalytic conditions observing the absorbance of superoxide. The mutation of Phe66 to Leu resulted in a mutant of human MnSOD with weakened product inhibition resembling that of E. coli MnSOD. Moreover, the mechanism of this weakened product inhibition was similar to that in E. coli MnSOD, specifically a decrease in the rate constant for the oxidative addition of superoxide to Mn2+MnSOD leading to the formation of the peroxide-inhibited enzyme. In addition, the crystal structures of both mutants have been determined and compared to those of wild-type human and E. coli MnSOD. The crystallographic data suggest that the solvent structure and its mobility as well as side chain conformations may affect the extent of product inhibition. These data emphasize the role of residue 66 in catalysis and inhibition and provide a structural explanation for differences in catalytic properties between human and certain bacterial forms of MnSOD.  相似文献   

4.
5.
Manganese superoxide dismutase regulation and cancer   总被引:1,自引:0,他引:1  
Mitochondria are the power plants of the eukaryotic cell and the integrators of many metabolic activities and signaling pathways important for the life and death of a cell. Normal aerobic cells use oxidative phosphorylation to generate ATP, which supplies energy for metabolism. To drive ATP production, electrons are passed along the electron transport chain, with some leaking as superoxide during the process. It is estimated that, during normal respiration, intramitochondrial superoxide concentrations can reach 10?12 M. This extremely high level of endogenous superoxide production dictates that mitochondria are equipped with antioxidant systems that prevent consequential oxidative injury to mitochondria and maintain normal mitochondrial functions. The major antioxidant enzyme that scavenges superoxide anion radical in mitochondria is manganese superoxide dismutase (MnSOD). Extensive studies on MnSOD have demonstrated that MnSOD plays a critical role in the development and progression of cancer. Many human cancer cells harbor low levels of MnSOD proteins and enzymatic activity, whereas some cancer cells possess high levels of MnSOD expression and activity. This apparent variation in MnSOD level among cancer cells suggests that differential regulation of MnSOD exists in cancer cells and that this regulation may be linked to the type and stage of cancer development. This review summarizes current knowledge of the relationship between MnSOD levels and cancer with a focus on the mechanisms regulating MnSOD expression.  相似文献   

6.
A novel thermostable MnSOD was purified to electrophoretic homogeneity from the fungal strain Humicola lutea 110. The preparation of the pure metalloenzyme was performed using treatment with acetone followed by ion exchange and gel permeation chromatography. We found that the activity of this enzyme comprises about 80% of the total superoxide dismutase activity in the crude extract, containing two proteins: MnSOD and Cu/ZnSOD. The MnSOD has a molecular mass of approximately 76 kDa and 7200 U/mg protein specific activity. It is a tetrameric enzyme with four identical subunits of 18 860 Da each as indicated by SDS-PAGE, amino acid analysis and mass spectrometry. N-terminal sequence analysis of MnSOD from the fungal strain revealed a high degree of structural homology with enzymes from other eukaryotic sources. Physicochemical properties were determined by absorption spectroscopy and circular dichroism measurements. The UV absorption spectrum was typical for an MnSOD enzyme, but displayed an increased absorption in the 280 nm region (epsilon280 = 10.4 mM(-1). cm(-1)), attributed to aromatic amino acid residues. The CD data show that MnSOD has two negative Cotton effects at 208 and 222 nm allowing the calculation of its helical content. The ellipticity at 222 nm is 6800 deg. x m(2) x dmol(-1) and thus similar to the values reported for other MnSODs. The MnSOD from H. lutea 110 is stable over a wide range of pH (4.5-8), even in the presence of EDTA. The enzyme is thermostable at 70-75 degrees C, and more stable than MnSODs from other sources.  相似文献   

7.
A manganese superoxide dismutase from the thermophilic fungus Chaetomium thermophilum (CtMnSOD) was expressed in Pichia pastoris and purified to homogeneity. Its optimal temperature was 60 °C with approximately 75% of its activity retained after incubation at 70 °C for 60 min. Recombinant yeast cells carrying C. thermophilum mnsod gene exhibited higher stress resistance to salt and oxidative stress-inducing agents than control yeast cells. In an effort to provide structural insights, CtMnSOD was crystallized and its structure was determined at 2.0 Å resolution. The overall architecture of CtMnSOD was found similar to other MnSODs with highest structural similarities obtained against a MnSOD from the thermotolerant fungus Aspergillus fumigatus. In order to explain its thermostability, structural and sequence analysis of CtMnSOD with other MnSODs was carried out. An increased number of charged residues and an increase in the number of intersubunit salt bridges and the Thr:Ser ratio were identified as potential reasons for the thermostability of CtMnSOD.  相似文献   

8.
A novel manganese superoxide dismutase (MnSOD) was cloned from bay scallop Argopecten irradians by 3' and 5' rapid amplification of cDNA ends (RACE) PCR. The full-length cDNA of MnSOD was of 1207bp with a 678bp open reading frame encoding 226 amino acids. The deduced amino acid sequence contained a putative signal peptide of 26 amino acids. Sequence comparison showed that the MnSOD of A. irradians shared high identity with MnSOD in invertebrates and vertebrates, such as MnSOD from abalone Haliotis discus discus (ABG88843) and frog Xenopus laevis (AAQ63483). Furthermore, the 3D structure of bay scallop MnSOD was predicted by SWISS-MODEL Protein Modelling Server and compared with those of other MnSODs. The overall structure of bay scallop MnSOD was similar to those of zebrafish Danio rerio, fruit fly Drosophila melanogaster, Chinese shrimp Fenneropenaeus chinensis, human Homo sapiens, and had the highest similarity to scallop Mizuhopecten yessoensis and abalone H. discus discus. A quantitative real-time PCR (qRT-PCR) assay was developed to detect the mRNA expression of MnSOD in different tissues and the temporal expression in haemocytes following challenge with the bacterium Vibrio anguillarum. A higher-level of mRNA expression of MnSOD was detected in gill and mantle. The expression of MnSOD reached the highest level at 3h post-injection with V. anguillarum and then slightly recovered from 6 to 48h. The results indicated that bay scallop MnSOD was a constitutive and inducible protein and thus could play an important role in the immune responses against V. anguillarum infection.  相似文献   

9.
The superoxide dismutase (SOD) gene of Methanobacterium thermoautotrophicum (Takao, M., Oikawa, A., and Yasui, A. (1990) Arch. Biochem. Biophys. 283, 210-216), a strictly anaerobic archaebacterium, was expressed in Escherichia coli. The gene product accounted for more than 30% of the host's soluble protein. The purified protein was an active iron-containing tetrameric SOD with specific activity similar to known manganese-containing SODs (MnSODs) of aerobic archaebacteria. Although M. thermoautotrophicum SOD is an iron-containing SOD (FeSOD), it resembles MnSODs in amino acid sequence as judged by criteria distinguishing FeSODs from MnSODs. Moreover, M. thermoautotrophicum SOD is resistant to azide and hydrogen peroxide as MnSODs are, suggesting that its evolution is distinct from known eubacterial FeSODs.  相似文献   

10.
The filamentous cyanobacterium Anabaena PCC 7120 (now renamed Nostoc PCC 7120) possesses two genes for superoxide dismutase (SOD). One is an iron-containing (FeSOD) whereas the other is a manganese-containing superoxide dismutase (MnSOD). Localization experiments and analysis of the sequence showed that the FeSOD is cytosolic, whereas the MnSOD is a membrane-bound homodimeric protein containing one transmembrane helix, a spacer region, and a soluble catalytic domain. It is localized in both cytoplasmic and thylakoid membranes at the same extent with the catalytic domains positioned either in the periplasm or the thylakoid lumen. A phylogenetic analysis revealed that generally the highly homologous MnSODs of filamentous cyanobacteria are unique in being membrane-bound. Two recombinant variants of Anabaena MnSOD lacking either the hydrophobic region (MnSOD(Delta 28)) or the hydrophobic and the linker region (MnSOD(Delta 60)) are shown to exhibit the characteristic manganese peak at 480 nm, an almost 100% occupancy of manganese per subunit, a specific activity using the ferricytochrome assay of (660 +/- 90) unit mg-1 protein and a dissociation constant for the inhibitor azide of (0.84 +/- 0.05) mm. Using stopped-flow spectroscopy it is shown that the decay of superoxide in the presence of various (MnSOD(Delta 28)) or (MnSOD(Delta 60)) concentrations is first-order in enzyme concentration allowing the calculation of catalytic rate constants which increase with decreasing pH: 8 x 10(6) m-1 s-1 (pH 10) and 6 x 10(7) m-1 s-1 (pH 7). The physiological relevance of these findings is discussed with respect to the bioenergetic peculiarities of cyanobacteria.  相似文献   

11.
Superoxide dismutases are enzymes that defend against oxidative stress through decomposition of superoxide radical. Escherichia coli contains two highly homologous superoxide dismutases, one containing manganese (MnSOD) and the other iron (FeSOD). Although E. coli Mn and FeSOD catalyze the dismutation of superoxide with comparable rate constants, it is not known if they are physiologically equivalent in their protection of cellular targets from oxyradical damage. To address this issue, isogenic strains of E. coli containing either Mn or FeSOD encoded on a plasmid and under the control of tac promoter were constructed. SOD specific activity in the Mn and FeSOD strains could be controlled by the concentration of isopropyl beta-thiogalactoside in the medium. The tolerance of these strains to oxidative stress was compared at equal Mn and FeSOD specific activities. Our results indicate that E. coli Mn and FeSOD are not functionally equivalent. The MnSOD is more effective than FeSOD in preventing damage to DNA, while the FeSOD appears to be more effective in protecting a cytoplasmic superoxide-sensitive enzyme. These data are the first demonstration that Mn and FeSOD are adapted to different antioxidant roles in E. coli.  相似文献   

12.
Superoxide dismutases (SODs) are metalloproteins that catalyse the dismutation of superoxide radicals to oxygen and hydrogen peroxide. The enzyme has been found in all aerobic organisms examined, where it plays a major role in the defence against toxic reduced oxygen species which are generated in many biological oxidations. Here we report the complete primary structure of a plant manganese superoxide dismutase (MnSOD), deduced from a cDNA clone of Nicotiana plumbaginifolia. The plant protein is highly homologous to MnSODs from other organisms and also contains an N-terminal leader sequence resembling a transit peptide for mitochondrial targeting. The location of the mature protein within the mitochondria has been demonstrated by subcellular fractionation experiments. We have analysed the expression profile of this MnSOD and found that it is dramatically induced during stress conditions, most notably in tissue culture as a result of sugar metabolism and also as part of the pathogenesis response of the plant, being induced by ethylene, salicylic acid, and Pseudomonas syringae infection. This induction is always accompanied by an increase in cytochrome oxidase activity, which suggests a specific protective role for MnSOD during conditions of increased mitochondrial respiration.  相似文献   

13.
The genome of Escherichia coli codes for two superoxide dismutases that may contain either iron (FeSOD) or manganese (MnSOD) at the active site. The crystal structures of MnSODs from two bacterial sources (but not E. coli) have been completed, and structural comparisons with the crystal structure of the FeSOD from either E. coli or Pseudomonas ovalis have been made. Despite the low degree (less than 50%) of sequence homology between the E. coli enzymes, the two proteins are suggested to be structurally homologous. Nonetheless, these enzymes exhibit absolute metal cofactor specificity in conferring enzymatic activity to the inactive apoenzyme. This observation is surprising considering the identity of the active site ligands and the similarities in their geometry and surrounding environment. Using analytical ultracentrifugation, we have determined that the solution properties of these two proteins are different. Thus dialysis of FeSOD but not of MnSOD against phosphate buffer in the presence or absence of EDTA caused dissociation of the homodimer. This dissociation appeared to be related to the loss of iron from native FeSOD. Thus, apoFeSOD but not apoMnSOD existed predominantly as a monomer at protein concentrations below 150 micrograms/mL. ApoMnSOD showed no evidence for dissociation under these conditions. Fluorescence data suggest that the tryptophan environments for the two enzymes are also different. The results of these physical measurements lead us to propose that subtle differences, perhaps at the subunit contact faces, exist in the structures of these crystallographically similar proteins.  相似文献   

14.
Manganese superoxide dismutase (MnSOD) is an integral mitochondrial protein known as a first-line antioxidant defense against superoxide radical anions produced as by-products of the electron transport chain. Recent studies have shaped the idea that by regulating the mitochondrial redox status and H2O2 outflow, MnSOD acts as a fundamental regulator of cellular proliferation, metabolism, and apoptosis, thereby assuming roles that extend far beyond its proposed antioxidant functions. Accordingly, allelic variations of MnSOD that have been shown to augment levels of MnSOD in mitochondria result in a 10-fold increase in prostate cancer risk. In addition, epidemiologic studies indicate that reduced glutathione peroxidase activity along with increases in H2O2 further increase cancer risk in the face of MnSOD overexpression. These facts led us to hypothesize that, like its Cu,ZnSOD counterpart, MnSOD may work as a peroxidase, utilizing H2O2 to promote mitochondrial damage, a known cancer risk factor. Here we report that MnSOD indeed possesses peroxidase activity that manifests in mitochondria when the enzyme is overexpressed.  相似文献   

15.
Cyanobacteria are shown to be unique in containing membrane-bound manganese superoxide dismutases (MnSOD). They are homodimeric type 2 membrane proteins that protect this phototrophic organism against oxidative stress. We have determined, for the first time, the 2.0A resolution structure of the catalytic portion of the MnSOD from the filamentous cyanobacterium Anabaena PCC 7120. Within each subunit, both the N-terminal helical hairpin (His94 and His145) and the C-terminal alpha/beta domain (His232 and Asp228) contribute ligands to the catalytic manganese site. Together with a water or hydroxide ion (OH(x)) a five-coordinated trigonal bipyramidal geometry is formed, with OH(x) and His90 forming the axial ligands and manganese shifted out of the equatorial plane in the direction of OH(x). The ligands including OH(x) are tightly constrained by hydrogen bonding with surrounding residues either from the same monomer (Tyr98, Asn144, Trp194, Gln213, Val229, Trp230) or from the neighbouring subunit (Glu231, Tyr235). This underlines the important role of the symmetric dimeric structure of MnSODs in contributing elements to both the active site and the substrate funnel. The Mn cdots, three dots, centered Mn distance (18.4A) is bridged by the hydrogen-bonded His232 of one monomer with Glu231 of the other monomer. A detailed discussion of the structure, a comparison with known structures of soluble MnSODs as well as a model of the cyanobacterial membrane-bound MnSOD is presented.  相似文献   

16.
In this study, the hypothesis that oxygen free radicals act as intracellular messengers is examined. Treatment of human oral carcinoma SCC-25 cells with 200 ng/ml human TNF-alpha for 6 h greatly increased manganese superoxide dismutase (MnSOD) gene expression as detected by western blotting, RT-PCR, and nuclear run-on experiments. In the presence of the oxygen free radical spin trapping reagent, 5,5-dimethyl pyrroline-N-oxide (DMPO), the induction of MnSOD gene expression by TNF-alpha was significantly reduced. Electron paramagnetic resonance experiments showed that the production of oxygen free radicals was enhanced in TNF-alpha treated cells. Taken together, these observations suggest that the induction of MnSOD expression by TNF-alpha is at least partially mediated by intracellular formation of oxygen free radicals, and that superoxide is most likely the initiating species involved in the mediation of MnSOD gene expression by TNF-alpha.  相似文献   

17.
18.
19.
Superoxide dismutases (SODs), which provide protection against oxidative stress, exhibit an essential role for fungal cell survival, especially during host invasion. Here, 20 partial SOD sequences from 19 pathogenic fungi were determined and aligned with 43 homologous fungal sequences from databases. All sequences encoded tetrameric manganese (Mn)-containing SODs showing predicted cytosolic or mitochondrial subcellular localization. Numerous fungi possessed both cytosolic and mitochondrial MnSODs in addition to the mainly cytosolic copper/zinc isozyme. Moreover, MnSOD sequence variability was higher than SSU rRNA and similar to ITS rRNA, suggesting MnSOD could be used to identify closely related fungal species. MnSOD- and SSU rRNA-based phylogenetic trees were constructed and compared. Despite a more complex topology of the MnSOD tree, due to several gene duplication events, all the classic fungal classes and orders were recovered. A salient point was the existence of two paralogous cytosolic and mitochondrial MnSODs in some Ascomycota. A hypothetical evolutionary scenario with an early gene duplication of the "mitochondrial" gene is proposed.  相似文献   

20.
Three forms of the dimeric manganese superoxide dismutase (MnSOD) were isolated from aerobically grown Escherichia coli which contained 2 Mn, 1 Mn and 1 Fe, or 2 Fe, respectively. These are designated Mn2-MnSOD, Mn,Fe-MnSOD, and Fe2-MnSOD. Substitution of iron in place of manganese, eliminated catalytic activity, decreased the isoelectric point, and increased the native electrophoretic anodic mobility, although circular dichroism, high performance liquid chromatography gel exclusion chromatography, and sedimentation equilibrium revealed no gross changes in conformation. Moreover, replacement of iron by manganese restored enzymatic activity. Fe2-MnSOD and the iron-superoxide (FeSOD) of E. coli exhibit distinct optical absorption spectra. These data indicate that the active site environments of E. coli MnSOD and FeSOD must differ. They also indicate that competition between iron and manganese for nascent MnSOD polypeptide chains occurs in vivo, and copurification of these variably substituted MnSODs can explain the substoichiometric manganese contents and the variable specific activities which have been reported for this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号