首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
MD DFT:B3LYP (6-31G** basis set, T = 310 K) method is used to study interactions [singlet (S) and triplet (T) reaction paths] between adenosinetriphosphate, ATP4−, and [Mg(H2O)6]2+ in water environment, modeled with 78 water molecules. Computations reveal the appearance of low and high-energy states (stable, quasi-stable, and unstable), assigned to different spin symmetries. At the initial stage of interaction, ATP donates a part of its negative charge to the Mg complex making the Mg slightly charged. As a result, the original octahedral Mg complex loses two (S state) or four (T state) water molecules. Moving along S or T potential energy surfaces (PESs), Mg(H2O)4 or Mg(H2O)2 display different ways of complexation with ATP. S path favors the formation of a stable chelate with the O1–O2 fragment of ATP triphosphate tail, whereas T path favors producing a single-bonded complex with the O2. The latter, being unstable, undergoes a further conversion into a spin-separated complex, also unstable, and two metastable S complexes, which finally arise in two stable, low-energy and high-energy, chelates. The spin-separated complex experiences rapid decomposition resulting in the production of a highly reactive adenosinemonophosphate ion-radical •AMP, early observed in the CIDNP experiment (Tulub 2006). Biological consequences of the findings are discussed.  相似文献   

2.
Tulub AA 《Biofizika》2008,53(5):778-786
The molecular dynamics method DFT:B3LYP (6-31G** basis set, T = 310 K) was used to study interactions between adenosinetriphosphate (ATP), ATP subsystem, and magnesium cofactor [Mg(H2O)6]2+, Mg subsystem, in water environment modeled with 78 water molecules in singlet (S) and triplet (T) states. The lowest in energy singlet (S) and triplet (T) potential energy surfaces, PESs, are remarkably separated in space and direct the Mg cofactor towards the gamma-beta-phosphate oxygens (O1-O2), S path, or towards the beta-alpha-phosphate oxygens (O2-O3), T path. Chelation of the gamma-beta-phosphates and beta2-alpha-phosphates ends, respectively, in the formation of stable, low-energy, ([Mg(H2O)4-(O1-O2)ATP]2-) and metastable, high-energy, ([Mg(H2O)2-(O2-O3)ATP]2-) chelates, differing in the number of water molecules around the Mg. Intersection between the two T PESs produces an unstable state, a result of spin redistribution between the Mg and ATP subsystems. This state, which is sensitive to a hyperfine interaction with the Mg nuclear spin, 25Mg, reveals an unpaired electron spin and initiates the ATP cleavage along the ion-radical path, yielding a highly reactive adenosinemonophosphate ion-radical, *AMP-, earlier observed in the CIDNP (Chemically Induced Dynamic Nuclear Polarization) experiment (A.A. Tulub, 2006). Biological consequences of the findings are discussed.  相似文献   

3.
A. A. Tulub 《Biophysics》2011,56(2):200-205
The Car-Parrinello Molecular Dynamics (CPMD) has been used to study the ion-radical (IR) polymerization (triplet (T) and singlet (S/T0) states) of adenine mononucleotides upon interaction with Mg2+(H2O)2-ATP4−. It has been found that the IR polymerization occurs only upon Mg2+(H2O)2-ATP4− excitation into a T state (the Franck-Condon or femtosecond laser excitation); it naturally occurs in the dark with DNA polymerase or another Mg-holoenzyme upon interaction of Mg with two Asp residues. The IR path affects only the HO-C3′ group of ribose, leaving the HO-C2′ group inactive. The IR polymerization starts with the homolytic removal of the hydrogen atom from the HO-C3′ group and its transfer onto the hydroxyl radical ·OH, a product of the ATP cleavage, which yields a water molecule. A further progress of the reaction involves interaction between two ion-radicals ·ATP. The reaction is sensitive to the recombination of ·OH and ·ATP. It is mostly suppressed by the appearance of identically directed electron spins on both radicals (the radical pair in the T0 state) in the vicinity of the HO-C3′ group and not suppressed in the vicinity of the HO-C2′ group (the spins in the radical pair are oppositely directed, the radical pair in the T0 state), making the latter inert on the IR polymerization, but allowing it to be active in the ionic (hydrolytic) polymerization.  相似文献   

4.
Hydrazimium nitroformate ([N2H5]+[C(NO2)3], HNF) is an ionic oxidiser used in solid propellants. Its properties are easily affected by H2O because of its hygroscopicity. In this article, density functional theory (DFT) and molecular dynamics (MD) were employed to study the isolated HNF molecule and the HNF–H2O cluster in gas phase and in the aqueous solution. Three stable conformations were obtained for HNF in the gas phase and in the aqueous solution, respectively, and each conformation can form several different HNF–H2O clusters. Irrespective of whether it is in gas phase or in solution, intramolecular hydrogen bond interactions and other interactions (e.g. the binding energy, the dispersion energy, the second-order perturbation energy and the energy gap between frontier orbitals) of HNF are weaker in the clusters than in the isolated state. The initial decomposition energy of the cluster is lower than that of the isolated HNF molecule in both gaseous and aqueous phases, while the dissociation processes are the same. Molecular dynamic simulations showed that the clustered H2O elongates and weakens the C–NO2 bond in the solid HNF–H2O cluster compared with that in the solid HNF. H2O reduces and weakens intramolecular N–HΛO bonds too, and O–HΛN is the dominant intermolecular hydrogen bond between HNF and H2O.  相似文献   

5.
The eukaryotic sulfiredoxin (Srx) catalyzes the reduction of overoxidized typical 2-Cys peroxiredoxins PrxSO2 via ATP/Mg2+-dependent phosphorylation of the sulfinic acid group, followed by formation of a PrxSO-SSrx thiolsulfinate intermediate. Using real-time kinetics of wild-type and C84A Srxs, and pH-rate profiles with ATP/Mg2+ analogues, we show that the rate-limiting step of the reaction is associated with the chemical process of transfer of the γ-phosphate of ATP to the sulfinic acid, in contrast to that described by Jönsson et al. [7]. Two pKapps of 6.2 and 7.5 were extracted from the bell-shaped pH-rate profile, corresponding to the γ-phosphate of ATP, and to an acid–base catalyst, respectively.  相似文献   

6.
《BBA》1985,809(1):117-124
By employing phosphorothioate analogs of ATP in the presence of Mg2+ and Mn2+ as substrates in ATP hydrolysis, catalyzed by light and dithiothreitol-activated chloroplast ATPase, the structure of the reactive metal-nucleotide complex has been determined. Mg(SP)-ATPαS and Mn(SP)-ATPαS, in contrast to the corresponding RP-isomers, are substrates in ATP hydrolysis. No metal-dependent change of specificity was observed. Mg(SP)-ATPβS, having the Δ configuration, and Mn(SP)-ATPβS and Mn(RP)-ATPβS, consisting of a mixture of Δ and Λ configurations, were better substrates than Mg(RP)-ATPβS, the isomer with almost exclusive Λ chelate structure. The same results were obtained when the competitive effect of the analogs on hydrolysis of ATP was studied. The competitive effect of the diastereomers on tight binding of ATP by membrane-associated CF1, was investigated in the presence of Mg2+ and Cd2+. Mg(SP)-ATPβS and Cd(RP)-ATPβS, which both exhibit Δ structure, were more effective than Mg(RP)-ATPβS and Cd(SP)-ATPβS, showing the Λ configuration. No metal-dependent change of the preferred SP-ATPαS specificity was detected. These results permit the conclusion that the actual substrate used by chloroplast ATPase is the β,γ-Δ-bidentate nucleotide chelate. Moreover, a stereospecific direct ionic interaction between the protein and α-phosphate is likely.  相似文献   

7.
We have investigated the localization of a set of intrinsic ATPase activities associated with purified synaptic plasma membranes and consisting of (a) a Mg2+-ATPase; (b) an ATPase active at high concentrations of Ca2+ in the absence of Mg2+ (CaH-ATPase); (c) a Ca2+ requiring Mg2+-dependent ATPase (Ca + Mg)-ATPase, stimulated by calmodulin (Ca-CaM-ATPase); (d) a Ca2+-dependent ATPase stimulated by dopamine (DA-ATPase); and (e) the ouabain-sensitive (Na + K)-ATPase. The following results were obtained: (1) All ATPases are largely confined to the presynaptic membrane; (2) the DA-, (Ca + Mg)-, (Ca-CaM)-, and (Na + K)-ATPases are oriented with their ATP hydrolysis sites facing the synaptoplasm; (3) the Mg- and CaH-ATPases are oriented with their ATP hydrolysis sites on the junctional side of the presynaptic membrane and are therefore classified as ecto-ATPases of as yet unknown function.  相似文献   

8.
The first coordination shell of an Mg(II) ion in a model protein environment is studied. Complexes containing a model carboxylate, an Mg(II) ion, various ligands (NH3, H2S, imidazole, and formaldehyde) and water of hydration about the divalent metal ion were geometry optimized. We find that for complexes with the same coordination number, the unidentate carboxylate–Mg(II) ion is greater than 10 kcal mol?1 more stable than the bidentate orientation. Imidazole was found to be the most stable ligand, followed in order by NH3 formaldehyde, H2O, and H2S. © 1995 Wiley-Liss, Inc.  相似文献   

9.
Summary The discrimination between the isotopes of hydrogen in the reaction catalyzed by yeast phosphoglucoisomerase is examined by NMR, as well as by spectrofluorometric or radioisotopic methods. The monodirectional conversion of D-glucose 6-phosphate to D-fructose 6-phosphate displays a lower maximal velocity with D-[2-2H]glucose 6-phosphate than unlabelled D-glucose 6-phosphate, with little difference in the affinity of the enzyme for these two substrates. About 72% of the deuterium located on the C2 of D-[1-13C,2-2H]glucose 6-phosphate is transferred intramolecularly to the C1 of D-[1-13C,1-2H]fructose 6-phosphate. The velocity of the monodirectional conversion of D-[U-14C]glucose 6-phosphate (or D-[2-3H]glucose 6-phosphate) to D-fructose 6-phosphate is virtually identical in H2O and D2O, respectively, but is four times lower with the tritiated than 14C-labelled ester. In the monodirectional reaction, the intramolecular transfer from the C2 of D-[2-3H]glucose 6-phosphate is higher in the presence of D2O than H2O. Whereas prolonged exposure of D-[1-13C]glucose 6-phosphate to D2O, in the presence of phosphoglucoisomerase, leads to the formation of both D-[1-13C,2-2H]glucose 6-phosphate and D-[1-13C,1-2H]fructose 6-phosphate, no sizeable incorporation of deuterium from D2O on the C1 of D-[1-13C]fructose 1,6-bisphosphate is observed when the monodirectional conversion of D-[1-13C]glucose 6-phosphate occurs in the concomitant presence of phosphoglucoisomerase and phosphofructokinase. The latter finding contrasts with the incorporation of hydrogen from 1H2O or tritium from 3H2O in the monodirectional conversion of D-[2-3H]glucose 6-phosphate and unlabelled D-glucose 6-phosphate, respectively, to their corresponding ketohexose esters.  相似文献   

10.
Summary The exchange of protons and deuterons by phosphoglucoisomerase during the single passage conversion of D-[2-13C,1-2H]fructose 6-phosphate in H2O or D-[2-13C]fructose 6-phosphate in D2O to D-[2-13C]glucose 6-phosphate, as coupled with the further generation of 6-phospho-D-[2-13C]gluconate in the presence of excess glucose-6-phosphate dehydrogenase was investigated by 13C NMR spectroscopy of the latter metabolite. In H2O, the intramolecular deuteron transfer from the C1 of D-fructose 6-phosphate to the C2 of D-glucose 6-phosphate amounted to 65%, a value only slightly lower than the 72% intramolecular proton transfer in D2O. Both percentages, especially the latter one, were lower than those previously recorded during the single passage conversion of D-[1-13C,2-2H]glucose 6-phosphate in H2O or D-[1-13C]glucose 6-phosphate in D2O to D-fructose 6-phosphate and then to D-fructose 1,6-bisphosphate. These differences indicate that the sequence of interactions between the hexose esters and the binding sites of phosphoglucoisomerase is not strictly in mirror image during, respectively, the conversion of the aldose phosphate to ketose phosphate and the opposite process.  相似文献   

11.
Synthesis and characterization of two new cobalt(II) complexes, namely monomeric [Co(2-MeSnic)2(H2O)4] · 4H2O (2-MeSnic is 2-methylthionicotinate) and polymeric {[{2,6-(MeO)2nic}2(H2O)2Co(μ-H2O)Co(H2O)4(μ-H2O)]{2,6-(MeO)2nic}2 · 6H2O}n (2,6-(MeO)2nic is 2,6-dimethoxynicotinate), are reported. The characterizations were based on elemental analysis, infrared and electronic spectra as well as magnetic measurements. Crystal structures of both complexes have been determined. In both of them - ([Co(2-MeSnic)2(H2O)4] · 4H2O and {[{2,6-(MeO)2nic}2(H2O)2Co(μ-H2O)Co(H2O)4(μ-H2O)]{2,6-(MeO)2nic}2 · 6H2O}n) - the CoII atom is six-coordinated. In the 2nd complex, there are two nonequivalent CoII central atoms, involved in forming a linear polymeric chain with alternating cationic and neutral part. One of them is octahedrally coordinated by a carboxyl oxygen atom of 2,6-(MeO)2nic, two water molecules and the corresponding centrosymmetrically located atoms. The second CoII atom is also octahedrally coordinated by six water molecules. Both coordination polyhedra are bridged by a water molecule. The charge of the cationic part is compensated for by two independent anionic 2,6-(MeO)2nic units. The structure is held together by a complicated system of hydrogen bonds.  相似文献   

12.
Reaction of FeSO4 · 7H2O with trans-1,2-bis(4-pyridyl)ethylene (tvp) and NaNCS in the mixed solvent of water and ethanol gave rise to the formation of different coordination polymers. One (Fe(tvp)2(NCS)2(H2O)2) is hydrogen bonded and π-π interacted structure, while the other ([Fe(tvp)2(NCS)2][0.5(tvp · 2EtOH)]) is 2D grid structure, which enclathrates tvp · 2EtOH. This enclathrated tvp · 2EtOH interacts with the two 2D grid sheets to form 3D structure. The same reaction was carried out with KNCSe instead of NaNCS (Fe(tvp)2(NCSe)2(H2O)2). 57Fe Mössbauer spectra revealed that all the present assembled complexes are in the FeII high-spin state. The dissociation behavior of enclathrated molecule and ligand was investigated by TG, and the resultant electronic state of iron atom was studied by 57Fe Mössbauer spectroscopy.  相似文献   

13.
Vitamin E is localized in membranes and functions as an efficient inhibitor of lipid peroxidation in biological systems. In this study, we measured the reaction rates of vitamin E (α-, β-, γ-, δ-tocopherols, TocH) and tocol with aroxyl radical (ArO) as model lipid peroxyl radicals in membranes by stopped-flow spectrophotometry. Egg yolk phosphatidylcholine (EYPC) vesicles were used as a membrane model. EYPC vesicles were prepared in the aqueous methanol solution (MeOH:H2O = 7:3, v/v) that gave the lowest turbidity in samples. The second-order rate constants (ks) for α-TocH in MeOH/H2O solution with EYPC vesicles were apparently 3.45 × 105 M−1 s−1, which was about 8 times higher than that (4.50 × 104 M−1 s−1) in MeOH/H2O solution without EYPC vesicles. The corrected ks of α-TocH in vesicles, which was calculated assuming that the concentration of α-TocH was 133 times higher in membranes of 10 mM EYPC vesicles than in the bulk MeOH/H2O solution, was 2.60 × 103 M−1 s−1, which was one-seventeenth that in MeOH/H2O solution because of the lower mobility of α-TocH in membranes. Similar analyses were performed for other vitamin E analogues. The ks of vitamin E in membranes increased in the order of tocol < δ-TocH < γ-TocH ∼ β-TocH < α-TocH. There was not much difference in the ratios of reaction rates in vesicles and MeOH/H2O solution among vitamin E analogues [ks(vesicle)/ks (MeOH/H2O) = 7.7, 10.0, 9.5, 7.4, and 5.1 for α-, β-, γ-, δ-TocH, and tocol, respectively], but their reported ratios in solutions of micelles and ethanol were quite different [ks(micelle)/ks(EtOH) = 100, 47, 41, 15, and 6.3 for α-, β-, γ-, δ-TocH, and tocol, respectively]. These results indicate that the reaction sites of vitamin E analogues were similar in vesicle membranes but depended on hydrophobicity in micelle membranes, which increased in the order of tocol < δ-TocH < γ-TocH ∼ β-TocH < α-TocH.  相似文献   

14.
A rapid method for the preparation of [β-32P]ribonucleoside-5′-triphosphates is described. The method involves the incubation of a ribonucleoside triphosphate with 32Pi and E. coli cells made permeable to nucleotides. The labeled triphosphates can be isolated by preparative thin layer chromatography on poly(ethylene)imine cellulose plates. Labeled GTP, CTP, and UTP obtained by this method are more than 99% pure [β-32P]compounds. Labeled ATP contains about equal amounts of label in the β- and γ-phosphate position. Pure [β-32P]ATP can be obtained from this preparation by exchanging the γ-32P against unlabeled Pi and reisolating the labeled ATP by charcoal adsorption and elution.  相似文献   

15.

Desensitization is a major mechanism to regulate the functional response of G protein-coupled receptors. In this work we studied whether the human histamine H3 receptor of 445 amino acids (hH3R445) experiences heterologous desensitization mediated by PKC activation. Bioinformatic analysis indicated the presence of Serine and Threonine residues susceptible of PKC-mediated phosphorylation on the third intracellular loop and the carboxyl terminus of the hH3R445. In CHO-K1 cells stably transfected with the hH3R445 direct PKC activation by phorbol 12-myristate 13-acetate (TPA, 200 nM) abolished H3R-mediated inhibition of forskolin-stimulated cAMP accumulation. Activation of endogenous purinergic receptors by ATP (adenosine 5′-triphosphate, 10 μM) increased the free calcium intracellular concentration ([Ca2+]i) confirming their coupling to phospholipase C stimulation. Incubation with ATP also abolished H3R-mediated inhibition of forskolin-induced cAMP accumulation, and this effect was prevented by the PKC inhibitors Ro-31-8220 and Gö-6976. Pre-incubation with TPA or ATP reduced H3R-mediated stimulation of [35S]-GTPγS binding to membranes from CHO-K1-hH3R445 cells by 39.7 and 54.2 %, respectively, with no change in the agonist potency, and the effect was prevented by either Ro-31-8220 or Gö-6976. Exposure to ATP or TPA also resulted in the loss of cell surface H3Rs (−30.4 and −45.1 %) as evaluated by [3H]-NMHA binding to intact cells. These results indicate that the hH3R445 undergoes heterologous desensitization upon activation of receptors coupled to PKC stimulation.

  相似文献   

16.
17.
Sugar beets (Beta vulgaris L. cv. F58-554H1) were cultured hydroponically in growth chambers at 25°C, with a photon flux density of 500 mol m-2s-1. Measurements were made of net CO2 exchange, leaf adenylates (ATP, ADP and AMP), and leaf nicotinamide nucleotides (NAD+, NADP+, NADH, NADPH), over the diurnal period (16h light/8 h dark) and during photosynthetic induction. All the measurements were carried out on recently expanded leaves from 5-week-old plants. When the lights were switched on in the growth chamber, the rate of photosynthetic CO2 uptake, and the levels of leaf ATP and NADPH increased to a maximum in 30 min and remained there throughout the light period. The increase in ATP over the first few minutes of illumination was associated with the phosphorylation of ADP to ATP and the increase in NADPH with the reduction of NADP+; subsequently, the increase in ATP was associated with an increase in total adenylates while the increase in NADPH was associated with an accumulation of NADP+ and NADPH due to the light-driven phosphorylation of NAD+ to NADP+. On return to darkness, ATP and NADPH values decreased much more slowly, requiring 2 to 4 hours to reach minimum values. From these results we suggest that (i) the total adenylate and NADPH and NADP+ (but not NAD+ and NADH) pools increase following exposure to light; (ii) the increase in pool size is not accompanied by any large change in the energy or redox states of the system; and (iii) the measured ratios of ATP/ADP and NADPH/NADP+ for intact leaves are low and constant during steady-state illumination.Abbreviations AEC adenylate energy charge - DHAP dihydroxyacetone phosphate - MTT 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide - PES phenazine ethosulfate - PEP phosphoenolpyruvate - PGA 3-phosphoglycerate - PFD photon flux density - Ru5P ribulose-5-phosphate - Rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase  相似文献   

18.
Long-time glucocorticoids (GCs) usage causes osteoporosis. In the present study, we explored the potential role of hydrogen sulfide (H2S) against dexamethasone (Dex)-induced osteoblast cell damage, and focused on the underlying mechanisms. We showed that two H2S-producing enzymes, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), were significantly downregulated in human osteonecrosis tissues as well as in Dex-treated osteoblastic MC3T3-E1 cells. H2S donor NaHS as well as the CBS activator S-adenosyl-l-methionine (SAM) inhibited Dex-induced viability reduction, death and apoptosis in MC3T3-E1 cells. NaHS activated adenosine monophosphate (AMP)-activated protein kinase (AMPK) signaling, which participated its cyto-protective activity. AMPK inhibition by its inhibitor (compound C) or reduction by targeted-shRNA suppressed its pro-survival activity against Dex in MC3T3-E1 cells. Further, we found that NaHS inhibited Dex-mediated reactive oxygen species (ROS) production and ATP depletion. Such effects by NaHS were again inhibited by compound C and AMPKα1-shRNA. In summary, we show that H2S inhibits Dex-induced osteoblast damage through activation of AMPK signaling. H2S signaling might be further investigated as a novel target for anti-osteoporosis treatment.  相似文献   

19.
The effects of cold hypoxia were examined during a time-course at 2 °C on levels of glycolytic metabolites: glycogen, glucose, glucose-1-phosphate, glucose-6-phosphate, fructose-6-phosphate, fructose-1,6-bisphosphate, phosphoenolpyruvate, pyruvate, lactate and energetics (ATP, ADP, AMP) of livers from rats and columbian ground squirrels. Responses of adenylate pools reflected the energy imbalance created during cold hypoxia in both rat and ground squirrel liver within minutes of organ isolation. In rat, ATP levels and energy charge values for freshly isolated livers were 2.54 mol·g-1 and 0.70, respectively. Within 5 min of cold hypoxia, ATP levels had dropped well below control values and by 8 h storage, ATP, AMP, and energy charge values were 0.21 mol·g-1, 2.01 mol·g-1, and 0.17, respectively. In columbian ground squirrels the patterns of rapid ATP depletion and AMP accumulation were similar to those found in rat. In rat liver, enzymatic regulatory control of glycolysis appeared to be extremely sensitive to the decline in cellular energy levels. After 8 h cold hypoxia levels of fructose-6-phosphate decreased and fructose-1,6-bisphosphate increased, thus reflecting an activation of glycolysis at the regulatory step catalysed by phospho-fructokinase fructose-1,6-bisphosphatase. Despite an initial increase in flux through glycolysis over the first 2 min (lactate levels increased 3.7 mol·g-1), further flux through the pathway was not permitted even though glycolysis was activated at the phosphofructokinase/fructose-1,6-bisphosphatase locus at 8 h, since supplies of phosphorylated substrate glucose-1-phosphate or glucose-6-phosphate remained low throughout the duration of the 24-h period. Conversely, livers of Columbian ground squirrels exhibited no activation or inactivation of two key glycolytic regulatory loci, phosphofructokinase/fructose-1,6-bisphosphatase and pyruvate kinase/phosphoenolpyruvate carboxykinase and pyruvate carboxylase. Although previous studies have shown similar allosteric sensitivities to adenylates to rat liver phospho-fructokinase, there was no evidence of an activation of the pathway as a result of decreasing high energy adenylate, ATP or increasing AMP levels. The lack of any apparent regulatory control of glycosis during cold hypoxia may be related to hibernator-specific metabolic adaptations that are key to the survival of hypothermia during natural bouts of hibernation.Abbreviations DHAP dihydroxyacetonephosphate - EC energy charge - F1,6P2 fructose-1,6-bisphosphate - F2,6P2 fructose-2,6-bisphosphate - F6P fructose-6-phosphate - FBP fructose-1,6-bisphosphatase - G1P glucose-1-phosphate - G6P glucose-6-phosphate - GAP glyceraldehyde-3-phosphate - GAPDH glyceraldehyde-3-phosphate dehydrogenase - L/R lactobionate/raffinose-based solution - MR metabolic rate - PDH pyruvate dehydrogenase - PEP phosphoenolpyruvate - PEPCK & PC phosphoenolpyruvate carboxykinase and pyruvate carboxylase - PFK phosphofructokinase; PK, pyruvate kinase - Q 10 the effect of a 10 °C drop in temperature on reaction rates (generally, Q 10=2–3) - TA total adenylates - UW solution University of Wisconsin solution (L/R-based)  相似文献   

20.
The objectives of the present work were to investigate whether loss of sunflower (Helianthus annuus L.) seed viability was affected by the embryo moisture content (MC) during seed pretreatment at 35°C, and was related to changes in energy metabolism and in the antioxidant defence system. Non‐dormant seeds were equilibrated at MC of the embryonic axis ranging from 0.037 to 0.605 g H2O g?1 dry matter (DM) for 1 day at 15°C, and they were then placed at 35°C for various durations up to 14 days before the germination assays at 15°C. As expected, the higher the MC, the faster was seed deterioration. There existed a negative linear relationship between the time taken for germination to drop to 50% (P50) and the embryonic axis MC ranging from 0.108 and 0.438 g H2O g?1 DM. In dry seeds, adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate represented 6.3, 14.8 and 70.9% of the adenylate pool, respectively, and the energy charge (EC) was very low (0.14). ATP and ADP levels and EC increased sharply during the first day of equilibrium of seeds at a MC above 0.158 g H2O g?1 DM. Subsequent controlled deterioration at 35°C resulted in a decrease in the adenylate pool, and consequently in ATP level. The higher the energy metabolism during ageing, the lower was seed viability. Loss of seed viability was associated with an accumulation of H2O2, and then of malondialdehyde (MDA) suggesting that lipid peroxidation was not the only cause of seed deterioration. When there was a sublinear relationship between H2O2 content in the embryonic axis and seed viability, MDA accumulation only occurred when 50% of the seed population died within 7 days, i.e. when MC was higher than 0.248 g H2O g?1 DM. Ageing was associated with a decrease in the activity of superoxide dismutase, catalase and glutathione reductase, the main enzymes involved in cell detoxification. The involvement of seed MC, as key factor of ageing is discussed with regards to energy metabolism and the regulation of active oxygen species accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号