首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Plastids and mitochondria, the DNA‐containing cytoplasmic organelles, are maternally inherited in the majority of angiosperm species. Even in plants with strict maternal inheritance, exceptional paternal transmission of plastids has been observed. Our objective was to detect rare leakage of plastids via pollen in Nicotiana sylvestris and to determine if pollen transmission of plastids results in co‐transmission of paternal mitochondria. As father plants, we used N. sylvestris plants with transgenic, selectable plastids and wild‐type mitochondria. As mother plants, we used N. sylvestris plants with Nicotiana undulata cytoplasm, including the CMS‐92 mitochondria that cause cytoplasmic male sterility (CMS) by homeotic transformation of the stamens. We report here exceptional paternal plastid DNA in approximately 0.002% of N. sylvestris seedlings. However, we did not detect paternal mitochondrial DNA in any of the six plastid‐transmission lines, suggesting independent transmission of the cytoplasmic organelles via pollen. When we used fertile N. sylvestris as mothers, we obtained eight fertile plastid transmission lines, which did not transmit their plastids via pollen at higher frequencies than their fathers. We discuss the implications for transgene containment and plant evolutionary histories inferred from cytoplasmic phylogenies.  相似文献   

2.
Stromules are dynamic membrane-bound tubular structures that emanate from plastids. Stromule formation is triggered in response to various stresses and during plant development, suggesting that stromules may have physiological and developmental roles in these processes. Despite the possible biological importance of stromules and their prevalence in green plants, their exact roles and formation mechanisms remain unclear. To explore these issues, we obtained Arabidopsis thaliana mutants with excess stromule formation in the leaf epidermis by microscopy-based screening. Here, we characterized one of these mutants, stromule biogenesis altered 1 (suba1). suba1 forms plastids with severely altered morphology in a variety of non-mesophyll tissues, such as leaf epidermis, hypocotyl epidermis, floral tissues, and pollen grains, but apparently normal leaf mesophyll chloroplasts. The suba1 mutation causes impaired chloroplast pigmentation and altered chloroplast ultrastructure in stomatal guard cells, as well as the aberrant accumulation of lipid droplets and their autophagic engulfment by the vacuole. The causal defective gene in suba1 is TRIGALACTOSYLDIACYLGLYCEROL5 (TGD5), which encodes a protein putatively involved in the endoplasmic reticulum (ER)-to-plastid lipid trafficking required for the ER pathway of thylakoid lipid assembly. These findings suggest that a non-mesophyll-specific mechanism maintains plastid morphology. The distinct mechanisms maintaining plastid morphology in mesophyll versus non-mesophyll plastids might be attributable, at least in part, to the differential contributions of the plastidial and ER pathways of lipid metabolism between mesophyll and non-mesophyll plastids.  相似文献   

3.
A novel male-sterile mutant of Arabidopsis thaliana was isolated by means of T-DNA tagging. Pollen abortion of the mutant was evident after microspore release, and pollen grains were completely absent at anthesis. Transmission electron microscope analysis revealed that primexine was coarsely developed, and that although sporopollenin was produced, it was not deposited onto the microspore plasma membrane. The sporopollenin that failed to be deposited aggregated and accumulated within the locule and on the locule wall. Finally, as no exine formation was observed, the mutant was named nef1. The plastoglobuli within the plastids of the tapetum were reduced, and lipid accumulation was considerably decreased. The mutant had a significantly altered leaf chloroplast ultrastructure and showed various growth defects. Lipid analysis revealed that the total lipid content in nef1 was lower than that in the wild type, which indicated that Nef1 was involved in lipid metabolism. Cloning of the full-length Nef1 indicated that the gene encodes a novel plant protein of 1123 amino acids with limited sequence similarities to membrane proteins or transporter-like proteins, and the NEF1 is predicted to be a plastid integral membrane protein. Motif analysis revealed that NEF1 contains prokaryotic membrane lipoprotein lipid attachment sites that are involved in maintaining cell envelope integrity. It is predicted that the Nef1 encodes a membrane protein that maintains the envelope integrity in the plastids.  相似文献   

4.
Summary The plastid DNAs of the species Daucus carota (ssp. sativus, libanotifolia, gingidium), D. maximus and D. muricatus were compared by restriction enzyme analysis. A number of restriction fragment length polymorphisms (RFLPs) were observed. As expected from taxonomic data the degree of plastid DNA homology between D. carota and D. maximus is significantly higher (97%) than between D. carota and D. muricatus (70%). On the basis of RFLPs of plastid DNA the mode of plastid inheritance in interspecific crosses between D. muricatus and D. c. sativus was analysed. The results clearly indicate paternal plastid inheritance. Thus Daucus is the second genus among angiosperms transmitting predominantly male plastids.  相似文献   

5.
Senescence, a sequence of biochemical and physiological events, constitutes the final stage of development In higher plants and is modulated by a variety of environmental factors and intemal factors. PPF1 possesses an important biological function in plant development by controlling the Ca2 storage capacity within chloroplasts. Here we show that the expression of PPF1 might play a pivotal role in negatively regulating plant senescence as revealed by the regulation of overexpression and suppression of PPF1 on plant development. Moreover, TFL1, a key regulator in the floral repression pathway, was screened out as one of the downstream targets for PPF1 in the senescence-signaling pathway. Investigation of the senescence-related phenotypes in PPF1(-) tfl1-1 and PPF1( ) tfl1-1 double mutants confirmed and further highlighted the relation of PPF1 with TFL1 in tranegenic plants. The activation of TFL1 expression by PPF1 defines an important pathway possibly essential for the negative regulation of plant senescence in transgenic Arabidopsis.  相似文献   

6.
7.
8.
Summary A high frequency of paternal plastid transmission occurred in progeny from crosses among normal green alfalfa plants. Plastid transmission was analyzed by hybridization of radiolabeled alfalfa plastid DNA (cpDNA) probes to Southern blots of restriction digests of the progeny DNA. Each probe revealed a specific polymorphism differentiating the parental plastid genomes. Of 212 progeny, 34 were heteroplastidic, with their cpDNAs ranging from predominantly paternal to predominantly maternal. Regrowth of shoots from heteroplasmic plants following removal of top growth revealed the persistence of mixed plastids in a given plant. However, different shoots within a green heteroplasmic plant exhibited paternal, maternal, or mixed cpDNAs. Evidence of maternal nuclear genomic influence on the frequency of paternal plastid transmission was observed in some reciprocal crosses. A few tetraploid F1 progeny were obtained from tetraploid (2n=4x=32) Medicago sativa ssp. sativa x diploid (2n=2x=16) M. sativa ssp. falcata crosses, and resulted from unreduced gametes. Here more than the maternal genome alone apparently functioned in controlling plastid transmission. Considering all crosses, only 5 of 212 progeny cpDNAs lacked evidence of a definitive paternal plastid fragment.Contribution No. 89-524-J from the Kansas Agricultural Experiment Station, Kansas State University, Manhattan  相似文献   

9.
We have designed a novel tiling array, AtMap1, for genomic deletion mapping. AtMap1 is a 60-mer oligonucleotide microarray consisting of 42 497 data probes designed from the genomic sequence of Arabidopsis thaliana Col-0. The average probe interval is 2.8 kb. The performance of the AtMap1 array was assessed using the deletion mutants mag2-2, rot3-1 and zig-2. Eight of the probes showed threefold lower signals in mag2-2 than Col-0. Seven of these probes were located in one region on chromosome 3. We considered these adjacent probes to represent one deletion. This deletion was consistent with a reported deleted region. The other probe was located near the end of chromosome 4. A newly identified deletion around the probe was confirmed by PCR. We also detected the responsible deletions for rot3-1 and zig-2. Thus we concluded that the AtMap1 array was sufficiently sensitive to identify a deletion without any a priori knowledge of the deletion. An analysis of the result of hybridization of Ler and previously reported polymorphism data revealed that the signal decrease tended to depend on the overlap size of sequence polymorphisms. Mutation mapping is time-consuming, laborious and costly. The AtMap1 array removes these limitations.  相似文献   

10.
细胞核基因突变引起的植物叶片花斑,是研究细胞器(特别是叶绿体)和细胞核之间信息交流的重要材料,也在园艺科学上有重要的应用价值。综述了拟南芥菜IM.VAR1、VAR2、CHM.CUE1、PAC.ATD2和VAR3等8个细胞核基因突变后引起的叶片花斑,主要包括这些基因所编码的蛋白质以及它们突变以后引起花斑的机制。  相似文献   

11.
12.
拟南芥活性氧不敏感型突变体的筛选与特性分析   总被引:4,自引:0,他引:4  
采用 EMS化学诱变方法与 H2 O2 氧化胁迫选择 ,以根在重力作用下的弯曲生长为指标 ,筛选得到拟南芥活性氧不敏感型突变体。对突变体杂交后代遗传分析表明 ,突变株对活性氧不敏感性状为隐性单基因突变所致 ;生理生化分析表明突变体对 H2 O2 有很强的抗性 ,表现为气孔开度对 H2 O2 不敏感和 H2 O2 胁迫时较低的膜脂过氧化水平。运用 L SCM技术并结合 H2 O2 荧光探针 H2 DCFDA检测外源 ABA诱导保卫细胞内产生 H2 O2 的情况 ,结果显示突变体体内荧光强度比对照低 ,暗示了突变体体内消除 H2 O2 的能力可能有所提高 ,增强了植株对氧化胁迫的抗性。拟南芥活性氧不敏感突变体的筛选 ,不仅为人们深入研究活性氧在细胞内的作用提供良好的实验材料 ,而且还将大大加深人们对信号转导途径的再认识  相似文献   

13.
Summary Plastid nucleoids (pt nucleoids) were observed during pollen formation, or in generative cells of mature pollen grains using fluorescence microscopy after staining with 4,6-diamidino-2-phenylindole (DAPI). Nuclease C activity was surveyed using SDS-PAGE and agarose gel nuclease assay methods. InMirabilis jalapa, pt nucleoids were observed both in pollen mother cells and the monocellular pollen grains after meiosis, followed by the complete disappearance both in the generative and vegetative cells at the bicellular pollen grain stage. This observation is a direct evidence of maternal plastid inheritance. By contrast, in the generative cells of mature pollen grains fromRhododendron kaempferi, Zygocactus truncatus, Oenothera laciniata, andO. speciosa, pt nucleoids were clearly observed. Thus cytological evidence convinces the mode of biparental plastid inheritance. Nuclease C activity was clearly detected both in the stamen and pistil ofM. jalapa. InR. kaempferi low nuclease C activity was detected in both organs, but the activity in the stamen was much less than in the pistil. InZ. truncatus, O. laciniata, andO. speciosa, the activities were difficult to detect in both organs. These results suggest a significant role of nuclease C for the digestion of pt nucleoids in the generative cells.Abbreviations EGTA ethylene-glycol-bis-(2-aminoethyl ether)-N, N, N, N-tetraacetic acid - DAPI 4,6-diamidino-2-phenylindole - Nuclease C Ca2+ dependent nuclease - SDS-PAGE SDS-polyacrylamide gel electrophoresis - pt nucleoids plastid nucleoids  相似文献   

14.
Mutational analysis of chilling tolerance in plants   总被引:1,自引:0,他引:1  
A mutational approach was taken to identify genes required for low-temperature growth of the chilling-tolerant plant Arabidopsis thaliana. The screen identified mutants that were specifically compromised in their ability to grow at 5°C but were indistinguishable from wild type when grown at 22°C. The populations screened were mutated either by ethyl methanesulphonate or by T-DNA insertion. In both cases symptoms at 5°C included chlorosis, reduced growth, necrosis and death. This diversity of phenotypes demonstrates roles for chilling-tolerance responses in such diverse processes as organdie biogenesis, cell metabolism and cell and organ development. Co-segregation analysis on the first five mutants isolated from the T-DNA lines indicated that in three of them, pfc1, pfc2 and sop1, the chilling phenotype is the result of T-DNA insertion in a gene required for chilling tolerance rather than the creation of a temperature-conditional mutation in an essential housekeeping gene. This identification of T-DNA tagged alleles will facilitate cloning of the PFC1, PFC2 and SOP1 loci and allow for the biochemical and molecular genetic characterization of these chilling-tolerance genes and the proteins that they encode.  相似文献   

15.
Among the genes that have recently been pinpointed to be essential for plant embryo development a large number encodes plastid proteins suggesting that embryogenesis is linked to plastid localized processes. However, nuclear encoded plastid proteins are synthesized as precursors in the cytosol and subsequently have to be transported across the plastid envelopes by a complex import machinery. We supposed that deletion of components of this machinery should allow a more general assessment of the role of plastids in embryogenesis since it will not only affect single proteins but instead inhibit the accumulation of most plastid proteins. Here we have characterized three Arabidopsis thaliana mutants lacking core components of the Toc complex, the protein translocase in the outer plastid envelope membrane, which indeed show embryo lethal phenotypes. Remarkably, embryo development in the atToc75-III mutant, lacking the pore forming component of the translocase, was arrested extremely early at the two-cell stage. In contrast, despite the complete or almost complete lack of the import receptors Toc34 and Toc159, embryo development in the a tToc33/34 and atToc132/159 mutants proceeded slowly and was arrested later at the transition to the globular and the heart stage, respectively. These data demonstrate a strict dependence of cell division and embryo development on functional plastids as well as specific functions of plastids at different stages of embryogenesis. In addition, our analysis suggest that not all components of the translocase are equally essential for plastid protein import in vivo.  相似文献   

16.
17.
The completion of the Arabidopsis thaliana genome has revealed that there are nine members of the Pht1 family of phosphate transporters in this species. As a step towards identifying the role of this gene family in phosphorus nutrition, we have isolated the promoter regions from each of these genes, and fused them to the reporter genes beta-glucuronidase and/or green fluorescent protein. These chimeric genes have been introduced into A. thaliana, and reporter gene expression has been assayed in plants grown in soil containing high and low concentrations of inorganic phosphate (Pi). Four of these promoters were found to direct reporter gene expression in the root epidermis, and were induced under conditions of phosphate deprivation in a manner similar to previously characterised Pht1 genes. Other members of this family, however, showed expression in a range of shoot tissues and in pollen grains, which was confirmed by RT-PCR. We also provide evidence that the root epidermally expressed genes are expressed most strongly in trichoblasts, the primary sites for uptake of Pi. These results suggest that this gene family plays a wider role in phosphate uptake and remobilisation throughout the plant than was previously believed.  相似文献   

18.
异三聚体G蛋白在NAA诱导的拟南芥根生长发育中的作用   总被引:2,自引:0,他引:2  
以拟南芥的野生型(ws)、异三聚体G蛋白α亚基基因GPA1缺失突变体(gpa1-1,gpa1-2)和超表达突变体(wGα,cGα)为材料,通过施加不同浓度(0~0.2 mg/L)的NAA处理,对拟南芥根生长发育的一些形态指标进行了观测比较.结果表明:(1)随着培养基中NAA浓度的不断升高,5种基因型主根的伸长生长均受到抑制,且抑制作用随浓度升高而增强;4种突变体和野生型主根的生长在相同浓度NAA处理下,无明显差异;(2)NAA在一定浓度范围内,对拟南芥侧根的生长发育起促进作用;在NAA诱导的侧根生长中,G蛋白超表达突变体比野生型更敏感,缺失突变体则不敏感.初步证明G蛋白不参与主根生长发育的调节,而在侧根生长发育中可能起正调节作用.  相似文献   

19.
The plastid is an organelle vital to all photosynthetic and some non-photosynthetic eukaryotes. In the model plant Arabidopsis thaliana, a number of nuclear genes encoding plastid proteins have been found to be necessary for embryo development. However, the exact roles of plastids in this process remain largely unknown. Here we use publicly available datasets to obtain insights into the relevance of plastid activities to A. thaliana embryogenesis. By searching the SeedGenes database (http://www.seedgenes.org) and recent literature, we found that, of the 339 non-redundant genes required for proper embryo formation, 108 genes likely encode plastid-targeted proteins. Nineteen of these genes are necessary for development of preglobular embryos and/or their conversion to globular embryos, of which 13 genes encode proteins involved in non-photosynthetic metabolism. By contrast, among 38 genes which are dispensable for globular embryo formation but necessary for further development, only one codes for a protein involved in metabolism. Products of 21 of the 38 genes play roles in plastid gene expression and maintenance. Examination of RNA profiles of embryos at distinct growth stages obtained in laser-capture microdissection coupled with DNA microarray experiments revealed that most of the identified genes are expressed throughout embryo morphogenesis and maturation. These findings suggest that metabolic activities are required at preglobular and throughout all stages of embryo development, whereas plastid gene expression becomes necessary during and/or after the globular stage to sustain various activities of the organelle including photosynthetic electron transport.  相似文献   

20.
向光素(PHOT1和PHOT2)功能冗余调节单侧强蓝光诱导的拟南芥(Arabidopsis thaliana)黄化苗下胚轴向光弯曲表现功能冗余,限制了人们对PHOT2信号转导机制的深入研究。通过化学诱变剂甲基磺酸乙酯(EMS)诱变拟南芥phot1突变体,避开PHOT1基因的干扰,寻找PHOT2下游信号分子。研究结果表明,已成功筛选到1株遗传稳定的下胚轴向蓝光不弯曲突变体。遗传分析结果显示,该突变体可能是PHOT2下游信号分子突变,将其命名为p2sa1(phototropin2 signaling associated1)。用100μmol·m–2·s–1强蓝光单侧照射,phot1p2sa1下胚轴向光弯曲缺失,呈现phot1phot2双突变的表型,然而phot1p2sa1在强蓝光下叶绿体避光正常,明显不同于phot1phot2。实验证实P2SA1可能位于PHOT2的下游,参与调节PHOT2介导的拟南芥下胚轴向光弯曲反应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号