共查询到20条相似文献,搜索用时 0 毫秒
1.
Ryuuichi D. Itoh Kohdai P. Nakajima Shun Sasaki Hiroki Ishikawa Yusuke Kazama Tomoko Abe Makoto T. Fujiwara 《The Plant journal : for cell and molecular biology》2021,107(1):237-255
Stromules are dynamic membrane-bound tubular structures that emanate from plastids. Stromule formation is triggered in response to various stresses and during plant development, suggesting that stromules may have physiological and developmental roles in these processes. Despite the possible biological importance of stromules and their prevalence in green plants, their exact roles and formation mechanisms remain unclear. To explore these issues, we obtained Arabidopsis thaliana mutants with excess stromule formation in the leaf epidermis by microscopy-based screening. Here, we characterized one of these mutants, stromule biogenesis altered 1 (suba1). suba1 forms plastids with severely altered morphology in a variety of non-mesophyll tissues, such as leaf epidermis, hypocotyl epidermis, floral tissues, and pollen grains, but apparently normal leaf mesophyll chloroplasts. The suba1 mutation causes impaired chloroplast pigmentation and altered chloroplast ultrastructure in stomatal guard cells, as well as the aberrant accumulation of lipid droplets and their autophagic engulfment by the vacuole. The causal defective gene in suba1 is TRIGALACTOSYLDIACYLGLYCEROL5 (TGD5), which encodes a protein putatively involved in the endoplasmic reticulum (ER)-to-plastid lipid trafficking required for the ER pathway of thylakoid lipid assembly. These findings suggest that a non-mesophyll-specific mechanism maintains plastid morphology. The distinct mechanisms maintaining plastid morphology in mesophyll versus non-mesophyll plastids might be attributable, at least in part, to the differential contributions of the plastidial and ER pathways of lipid metabolism between mesophyll and non-mesophyll plastids. 相似文献
2.
3.
4.
Nagano AJ Fukazawa M Hayashi M Ikeuchi M Tsukaya H Nishimura M Hara-Nishimura I 《The Plant journal : for cell and molecular biology》2008,56(6):1058-1065
We have designed a novel tiling array, AtMap1, for genomic deletion mapping. AtMap1 is a 60-mer oligonucleotide microarray consisting of 42 497 data probes designed from the genomic sequence of Arabidopsis thaliana Col-0. The average probe interval is 2.8 kb. The performance of the AtMap1 array was assessed using the deletion mutants mag2-2, rot3-1 and zig-2. Eight of the probes showed threefold lower signals in mag2-2 than Col-0. Seven of these probes were located in one region on chromosome 3. We considered these adjacent probes to represent one deletion. This deletion was consistent with a reported deleted region. The other probe was located near the end of chromosome 4. A newly identified deletion around the probe was confirmed by PCR. We also detected the responsible deletions for rot3-1 and zig-2. Thus we concluded that the AtMap1 array was sufficiently sensitive to identify a deletion without any a priori knowledge of the deletion. An analysis of the result of hybridization of Ler and previously reported polymorphism data revealed that the signal decrease tended to depend on the overlap size of sequence polymorphisms. Mutation mapping is time-consuming, laborious and costly. The AtMap1 array removes these limitations. 相似文献
5.
吕思敏 《氨基酸和生物资源》2007,29(1):25-29
采取在高盐平板上萌发的方法,对一个雌激素诱导激活型拟南芥突变体库进行了耐盐突变体的筛选,最终得到了2株稳定的耐盐突变体。本文中对其中的一株耐盐突变体,命名为stg2(salt tolerance during germination 2),进行了研究。遗传实验表明它的耐盐特性是受雌激素诱导的,是功能获得型的耐盐突变体。本实验中还探讨了stg2突变体的筛选过程及耐盐生理特点。 相似文献
6.
细胞核基因突变引起的植物叶片花斑,是研究细胞器(特别是叶绿体)和细胞核之间信息交流的重要材料,也在园艺科学上有重要的应用价值。综述了拟南芥菜IM.VAR1、VAR2、CHM.CUE1、PAC.ATD2和VAR3等8个细胞核基因突变后引起的叶片花斑,主要包括这些基因所编码的蛋白质以及它们突变以后引起花斑的机制。 相似文献
7.
拟南芥耐低钾突变体的筛选及遗传分析 总被引:2,自引:1,他引:2
利用乙酰甲基磺酸(EMS)诱变方法,以幼苗根在重力作用下的弯曲生长为指标、筛选得到了拟南芥(Arabidopsis thaliana)耐低钾突变体。经过对突变体杂交后代的遗传分析证明,其中两株突变体的耐低钾性状为隐性单基因突变所致。鉴定、分离与植物耐低钾性状连锁的基因将有可能与对培育钾高效作物品种有重要意义。 相似文献
8.
Plastids and mitochondria, the DNA‐containing cytoplasmic organelles, are maternally inherited in the majority of angiosperm species. Even in plants with strict maternal inheritance, exceptional paternal transmission of plastids has been observed. Our objective was to detect rare leakage of plastids via pollen in Nicotiana sylvestris and to determine if pollen transmission of plastids results in co‐transmission of paternal mitochondria. As father plants, we used N. sylvestris plants with transgenic, selectable plastids and wild‐type mitochondria. As mother plants, we used N. sylvestris plants with Nicotiana undulata cytoplasm, including the CMS‐92 mitochondria that cause cytoplasmic male sterility (CMS) by homeotic transformation of the stamens. We report here exceptional paternal plastid DNA in approximately 0.002% of N. sylvestris seedlings. However, we did not detect paternal mitochondrial DNA in any of the six plastid‐transmission lines, suggesting independent transmission of the cytoplasmic organelles via pollen. When we used fertile N. sylvestris as mothers, we obtained eight fertile plastid transmission lines, which did not transmit their plastids via pollen at higher frequencies than their fathers. We discuss the implications for transgene containment and plant evolutionary histories inferred from cytoplasmic phylogenies. 相似文献
9.
In plant cells, plastids divide by binary fission involving a complex pathway of events. Although there are clear similarities between bacterial and plastid division, limited information exists regarding the mechanism of plastid division in higher plants. Here we demonstrate that AtMinE1, an Arabidopsis homologue of the bacterial MinE topological specificity factor, is an essential integral component of the plastid division machinery. In prokaryotes MinE imparts topological specificity during cell division by blocking division apparatus assembly at sites other than midcell. We demonstrate that overexpression of AtMinE1 in E. coli results in loss of topological specificity and minicell formation suggesting evolutionary conservation of MinE mode of action. We further show that AtMinE1 can indeed act as a topological specificity factor during plastid division revealing that AtMinE1 overexpression in Arabidopsis seedlings results in division site misplacement giving rise to multiple constrictions along the length of plastids. In agreement with cell division studies in bacteria, AtMinE1 and AtMinD1 show distinct intraplastidic localisation patterns suggestive of dynamic localisation behaviour. Taken together our findings demonstrate that AtMinE1 is an evolutionary conserved topological specificity factor, most probably acting in concert with AtMinD1, required for correct plastid division in Arabidopsis. 相似文献
10.
Kyo Aoki Yuzo Yamada Yasutaka Tahara 《Bioscience, biotechnology, and biochemistry》2013,77(7):1693-1695
A new aryl-peptidyl amidase has been isolated from a Lactobacillus casei homogenate. Its ribosomal localization was shown by fractionation and its general properties studied after purification on Sepharose 6B and DEAE-Sephacel. The enzyme requires 1 mM Mg2+ for stability, while Zn2+, Mn2+, Co2+ and Ca2+ result in only partial stability. No inhibitory effects were noted after treatment with phenylmethylsulfonylfluoride or EDTA. Enzymatic activity was totally inhibited by 5mM p-hydroxymercuribenzoate; activity was restored by dithiothreitol. The only substrates hydrolyzed by this enzyme were the succinyl-L-phenylalanine-p-nitroanilide type, with a pH optimum between 6 and 7 and a Michaelis constant of 0.76 mM. No hydrolysis could be detected using proteins, peptides, amides or esterase substrates. This enzyme would thus not be an endopeptidase (E.C. 3.4.21), but would to rather be considered as belonging to the group of amidases (E.C. 3.5.1) 相似文献
11.
拟南芥铵超敏感突变体amosd和vtc1对外源铵的响应 总被引:1,自引:0,他引:1
分析了不同外源铵浓度(0、1、5、10、20mmol.L-1)处理下,2个铵超敏感突变体amosd和vtc1对于外源铵处理的响应差异。结果表明,尽管amosd和vtc1都表现为对外源铵超敏感,但二者对外源铵处理浓度的敏感性上存在差异。随着外源铵浓度的增加,vtc1比amosd先表现出铵中毒症状,更高浓度(20mmol·L-1)铵处理时amosd受到的毒害程度表现更加严重,AMOSD遗传位点的缺失容易导致植物出现铵毒害死亡。其次,二者在遭受外源铵胁迫时表现的最敏感部位有所不同,主要的毒害特征上存在差异,amosd在铵胁迫下首先表现在叶片尤其是新叶的发育受阻,而vtc1则主要表现在根部尤其是主根的伸长受阻。通过分区供应实验证明,amosd主要对于地上部供铵处理超敏感,对根部供铵处理不表现超敏感特性;而vtc1则相反,对根部供铵处理超敏感,对地上部供铵不表现超敏感特性。由此可见,amosd和vtc1这2个铵超敏感突变体在拟南芥铵毒害范围和部位上存在较大差异,与vtc1有所不同,amosd是一个叶源铵超敏感型突变体。在农业机械化叶面喷施施肥日益增加和环境铵沉降日益严重的当下,叶源型铵超敏感突变体amosd的获得为揭示植物地上部铵毒害机制提供了一个理想的遗传材料,对系统全面认识植物铵毒害机制,提高作物耐铵性状具有十分重要的意义。 相似文献
12.
Among the genes that have recently been pinpointed to be essential for plant embryo development a large number encodes plastid proteins suggesting that embryogenesis is linked to plastid localized processes. However, nuclear encoded plastid proteins are synthesized as precursors in the cytosol and subsequently have to be transported across the plastid envelopes by a complex import machinery. We supposed that deletion of components of this machinery should allow a more general assessment of the role of plastids in embryogenesis since it will not only affect single proteins but instead inhibit the accumulation of most plastid proteins. Here we have characterized three Arabidopsis thaliana mutants lacking core components of the Toc complex, the protein translocase in the outer plastid envelope membrane, which indeed show embryo lethal phenotypes. Remarkably, embryo development in the atToc75-III mutant, lacking the pore forming component of the translocase, was arrested extremely early at the two-cell stage. In contrast, despite the complete or almost complete lack of the import receptors Toc34 and Toc159, embryo development in the a tToc33/34 and atToc132/159 mutants proceeded slowly and was arrested later at the transition to the globular and the heart stage, respectively. These data demonstrate a strict dependence of cell division and embryo development on functional plastids as well as specific functions of plastids at different stages of embryogenesis. In addition, our analysis suggest that not all components of the translocase are equally essential for plastid protein import in vivo. 相似文献
13.
14.
Jill Deikman 《Plant Growth Regulation》1997,23(1-2):33-40
Cytokinins (CKs) have powerful effects on many elements of plant development, but little is known about the cellular and molecular mechanisms of CK action. This review describes recent progress in identification and characterization of mutants of flowering plants that may permit elucidation of CK response mechanisms. Several Nicotiana plumbaginifolia mutants that are resistant to high levels of exogenous CK have been isolated. Characterization of these mutants has led to information about relationships between CKs and other hormones, and CKs and nutrient metabolism. Two Arabidopsis thaliana mutants that are specifically resistant to CKs in a root elongation assay, cyr1 and stp1, have been described, and may represent lesions in the CK signal transduction pathway. A mutant that produces elevated levels of CKs, amp1, has provided surprising information about the role of CKs in cotyledon formation. A set of tagged mutations that result in CK independent growth in culture has been identified, and the affected gene, CKI1, cloned. The possibility that this gene encodes a CK receptor is discussed. Continued molecular/genetic analysis of CK responses is predicted to result in rapid progress in the next few years in understanding how CKs act. 相似文献
15.
拟南芥干旱突变体远红外成像技术的筛选和特性鉴定 总被引:2,自引:0,他引:2
利用化学诱变剂甲基磺酸乙酯(EMS)对模式植物拟南芥(Arabidopsis thaliana)进行化学诱变获得突变体筛选群体。在干旱胁迫下,以叶片的温度差异为筛选指标,利用远红外成像技术进行突变体的筛选,获得了对干旱不敏感突变体dri1(drought-insensitive 1)和敏感突变体drs1(drought-sensitive 1)。实验结果表明dri1和drs1为单基因隐性突变,气孔密度同野生型无差异,而叶片温度、气孔开度和叶片失水率则有明显改变。在MS培养基上的种子萌发实验表明在ABA、甘露醇和NaCl胁迫下dri1萌发率要比野生型高,而drs1则比野生型低。对突变基因的研究有待进一步进行。 相似文献
16.
为了揭示乙烯在植物与环境相互作用过程中的生物学功能;以拟南芥(Arabidopsis thaliana)的ein2-5、ein3-1、EIN3ox、EIL1ox 4种乙烯突变体与Col-0野生型为材料;对比研究它们在干旱胁迫条件下的生长和形态学变化。研究发现;干旱胁迫导致莲座叶直径、叶片面积、花序、水势等指标发生显著变化;同时不同突变体的形态适应特点呈现显著差异。这些结果表明;乙烯积极参与了植物形态塑造过程;与植物的抗旱性具有紧密相关性。 相似文献
17.
《Journal of Plant Interactions》2013,8(1):330-337
Two-dimensional electrophoresis (2-DE) showed the variation expression of Arabidopsis thaliana root proteins between wild type and its salt-tolerant mutant obtained from cobalt-60 γ ray radiation. Forty-six differential root protein spots were reproducibly presented on 2-DE maps, and 29 spots were identified by matrix assisted laser desorption ionization-time of flight/time of flight mass spectrometry (MS). Fifteen protein spots corresponding to 10 proteins, and 14 protein spots corresponding to 9 proteins were constitutively up-regulated and down-regulated in the salt-tolerant mutant root. Bioinformatic analysis indicated that those differential proteins might be involved in the regulation of redox homeostasis, nucleotide metabolism, signal transduction, stress response and defense, carbohydrate metabolism, and cell wall metabolism. Peroxidase 22 might be a versatile enzyme and might play dual roles in both cell wall metabolism and regulation of redox homeostasis. Our work provides not only new insights into salt-responsive proteins in root, but also the potential salt-tolerant targets for further dissection of molecular mechanism adapted by plants during salt stress. 相似文献
18.
草酸是多种真菌的致病因子。在含1.2 mmol/L 草酸和10 mmol/L 雌二醇的MS缺钙培养基上, 从大约含6000个独立株系的拟南芥化学诱导突变体库中筛选草酸不敏感的突变体。初筛获得的可能的草酸不敏感突变体单株收种后, 进一步复筛获得5株较抗草酸的突变体D33、D74、D154、D282和D630。对它们的TAIL-PCR的第三步产物回收、测序、比对的结果表明:D33的T-DNA插入位点位于At2g39720 (Zinc finger ) and At2g39730 (Rubisco activase) 之间, D74、D154、D282和D630都插在At5g10450 (14-3-3 protein GF14 lambda) 的第一个内含子上。突变体后继的遗传分析与分子分析正在进行中。 相似文献
19.
Ethyl methane-sulfonate (EMS)-mutagenized Arabidopsis M2 populations were screened in low-K+ medium using the root-bending assay. Forty-two putative low-K+-tolerant ( lkt ) mutants were selected from 150?000 tested M2 seedlings, and two of these mutants maintained their low-K+-tolerant phenotype in their M3 generations, respectively. Genetic analysis showed that either one of these two mutants has a monogenic recessive mutation in a nuclear gene, and that the two mutations in two independent mutants are allelic to each other. 相似文献
20.
草酸是多种真菌的致病因子.在含 1.2 mmol/L 草酸和 10 μmol/L 雌二醇的 MS 缺钙培养基上,从大约含 6000个独立株系的拟南芥化学诱导突变体库中筛选草酸不敏感的突变体.初筛获得的可能的草酸不敏感突变体单株收种后,进一步复筛获得 5 株较抗草酸的突变体 D33、D74、D154、D282 和 D630.对它们的 TAIL-PCR 的第三步产物回收、测序、比对的结果表明:D33 的 T-DNA 插入位点位于 At2g39720(Zinc finger)and At2g39730 (Rubisco activase) 之间,D74、D154、D282 和 D630 都插在 At5g10450 (14-3-3 protein GF14 lambda) 的第一个内含子上.突变体后继的遗传分析与分子分析正在进行中. 相似文献