共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A method for the clonal analysis of murine erythroleukemia cells has been developed which allows the precise characterization of the number of progeny produced by each cell and the degree of differentiation of each progeny cell. The potential of almost every cell in the culture can be monitored because a plating efficiency close to 100% has been achieved. The effects of treatment with an inducer of differentiation (DMSO) on the proliferative capacity of the treated cells have been studied with this technique. Cells from a mass culture treated with inducer give rise to colonies of differentiated progeny when subsequently cloned in the absence of inducer. Colonies exhibiting this phenotype represent the progeny of cells committed to the differentiation pathway by treatment with inducer. We observe that the commitment decision limits the subsequent proliferative capacity of the cell to four additional cell divisions. A quantitative analysis suggests that the commitment decision for each cell is made in a stochastic manner. Irreversible commitment to the expression of differentiated functions occurs with discrete probability per cell generation for many cell generations. The value for this probability is a function of the concentration of inducer (DMSO). A correlative biochemical study suggests that an irreversible commitment decision by a significant proportion of the population precedes or accompanies increases in cytoplasmic globin mRNA levels, one of the earliest detectable biochemical markers for erythroid differentiation in this system.A specific kinetic model based on these considerations has been developed to predict clonal phenotypes as a function of time and probability of commitment. Quantitative predictions based on this model are in excellent agreement with experimental observations. The effectiveness of a stochastic model in predicting the behavior of this system is discussed in relation to the stochastic behavior of normal hematopoiesis and the biochemical mechanisms which control these differentiation programs. 相似文献
4.
Addition of an analog of histidine, histidinol, together with lowering the level of histidine in the medium, can induce hemoglobin synthesis in murine erythroleukemia cells. 相似文献
5.
6.
The synthesis of mouse erythrocyte membrane proteins by Friend erythroleukemia cells during dimethyl sulfoxide-induced differentiation was studied. Untreated and dimethyl sulfoxide-treated cells were incubated with l-[3H] leucine and the incorporation of radioactivity into total trichloroacetic acid-insoluble proteins and into proteins immunoprecipitated with a multivalent rabbit antibody to mouse erythrocyte membranes was determined. The immunoprecipitated membrane proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and radioactivity was detected by fluorography. The incorporation of l-[3H]leucine into total cell proteins was linear for 20 min in both untreated and treated cells. Exposure of the cells to dimethyl sulfoxide had an inhibitory effect on protein synthesis, with a significant decrease noted on the fourth day of treatment and a continued decline occurring until the seventh day when protein synthesis was 42% that of untreated cells. The synthesis of erythrocyte membrane proteins was 0.49% that of total cell proteins in untreated cells, was increased to 1.27% by the third day of treatment and remained at about 1% of total protein synthesis from the fourth to the seventh day. Untreated cells synthesized low levels of spectrin, bands 5 and 6 proteins. Treatment with dimethyl sulfoxide caused a staggered increase in synthesis of a number of erythrocyte membrane proteins. Spectrin synthesis increased 4-fold by the third day of treatment and declined thereafter. The synthesis of membrane proteins with electrophoretic mobilities similar to bands 3 and 4 was increased 2–3-fold by the fourth day, while bands 6 and 5 proteins attained maximal synthesis (4-fold) on the fifth and sixth days of treatment. 相似文献
7.
Esther L. Sabban David D. Sabatini Vincent T. Marchesi Milton Adesnik 《Journal of cellular physiology》1980,104(2):261-268
The major integral membrane protein of red blood cells, the mouse equivalent of human band 3, was purified and used to raise a specific antiserum. The murine protein resembles its human counterpart in several of its properties, including susceptibility to digestion by chymotrypsin added to intact cells and an ability to bind to concanavalin A. The synthesis of 35S-labeled band 3 was detected in Friend erythroleukemia cells treated with DMSO by immuneprecipitation followed by SDS gel electrophoresis and fluorography. Induction with DMSO led to a greater than tenfold increase in the synthesis of band 3 and maximal synthesis was reached 3 to 4 days after the beginning of induction. 相似文献
8.
Jonathan Glass Marco T. Nunez Siegmund Fischer Stephen H. Robinson 《Biochimica et Biophysica Acta (BBA)/General Subjects》1978,542(1):154-162
Four aspects of iron metabolism were studied in cultured Friend erythroleukemia cells before and after induction of erythroid differentiation by dimethyl sulfoxide. (1) The binding of 125I-labeled transferrin was determined over a range of transferrin concentrations from 0.5 to 15 μM. Scatchard analysis of the binding curves demonstrated equivalent numbers of transferrin binding sites per cell: 7.78 ± 2.41 · 105 in non-induced cells and 9.28 ± 1.57 · 105 after 4 days of exposure to dimethyl sulfoxide. (2) The rate of iron transport was determined by measuring iron uptake from 59Fe-labeled transferrin. Iron uptake in non-induced cells was approx. 17 000 molecules of iron/cell per min; 24 h after addition of dimethyl sulfoxide it increased to 38 000, and it rose to maximal levels of approx. 130 000 at 72 h. (3) Heme synthesis, assayed qualitatively by benzidine staining and measured quantitatively by incorporation of 59Fe or [2-14C]glycine into cyclohexanone-extracted or crystallized heme, was not detected until 3 days after addition of dimethyl sulfoxide, when 12% of the cells were stained by benzidine and 6 pmol 59Fe and 32 pmol [2-14C]glycine were incorporated into heme per 108 cells/h. After 4 days, 60% of the cells were benzidine positive and 34 pmol 59Fe and 90 pmol [2-14C]glycine were incorporated into heme per 108 cells/h. (4) The rate of incorporation of 59Fe into ferritin, measured by immunoprecipitation of ferritin by specific antimouse ferritin immunoglobulin G, rose from 4.4 ± 0.6 cells to 18.4 ± 1.3 pmol 59Fe/h per 108 cells 3 days after addition of dimethyl sulfoxide, and then fell to 11.6 ± 3.1 pmol 4 days after dimethyl sulfoxide when heme synthesis was maximal. These studies indicate that one or more steps in cellular iron transport distal to transferrin binding is induced early by dimethyl sulfoxide and that ferritin may play an active role in iron delivery for heme synthesis. 相似文献
9.
Hemoglobin synthesis in cell hybrids formed between teratocarcinoma and friend erythroleukemia cells
Michael W. McBurney 《Cell》1977,12(3):653-662
Viable hybrid cells have been isolated following fusion of Friend erythroleukemia cells and undifferentiated teratocarcinoma cells. The hybrids formed between near-diploid parental cells resembled Friend cells in their ability to grow in suspension and to synthesize hemoglobin in the presence of the chemical inducers dimethyl sulfoxide (DMSO) and ouabain. Erythropoietin (EPO) was effective in inducing hemoglobin synthesis in some of the hybrid cell lines. The hemoglobins synthesized by the hybrids were of the adult forms, but were quantitatively different from those hemoglobins synthesized by the parental Friend cells, suggesting that the fusion event modulated the expression of the hemoglobin chain genes. 相似文献
10.
M. Gabriella Santoro Arrigo Benedetto Bernard M. Jaffe 《Prostaglandins & other lipid mediators》1979,17(5):719-727
The effect of different prostaglandins and prostaglandin-metabolites on the growth and differentiation of Friend erythroleukemia cells (FLC) was evaluated. The prostaglandin-metabolites, thromboxane B2 and 6-keto PGF1α, were completely inactive, while PGE1 inhibited slightly and PGF2α stimulated the replication of FLC. PGA1 was found to be the most active compound. It profoundly inhibited the replication of both DMSO-treated and undifferentiated FLC. Most importantly, PGA1 alone induced differentiation in FLC, stimulating hemoglobin production over a five-day period. PGA1-stimulated differentiation was completely suppressed by the addition of 10−6M hydrocortisone. Finally, treatment of DMSO-differentiated cells with PGA1 (but no DMSO) prevented the return to the undifferentiated state. 相似文献
11.
Friend erythroleukemia cells display transient and permanent changes in the composition of their plasma membrane-bound glycoproteins during dimethyl sulfoxide-induced differentiation. The transient changes, as revealed by metabolic labeling with [14C]glucosamine, are most conspicuous around the time during which most cells become committed to terminal differentiation. Permanent changes are revealed by reductive tritiation after oxidation with NaIO4 or galactose oxidase. In differentiated cells one glycoprotein fraction (Mr 150 000) could not be labeled by any of these methods, although it does contain neuraminic acid. We found no evidence in support of the hypothesis that the anomalous behavior of this fraction is caused by an increased degree of O-acetylated neuraminic acid in the plasma membrane of differentiated cells. 相似文献
12.
Nuclear precursor molecules of the two beta-globin mRNAs in Friend erythroleukemia cells 总被引:8,自引:0,他引:8
D S Donaldson A R McNab G Rovera P J Curtis 《The Journal of biological chemistry》1982,257(15):8655-8660
Processing of the beta major and beta minor globin pre-mRNAs has been compared in murine erythroleukemia cells induced to synthesize hemoglobin by dimethyl sulfoxide or hemin treatment, using both the Northern blot technique and S1 nuclease mapping with 3' and 5' end-labeled probes. The small intervening sequence of both beta-globin pre-mRNAs was removed in one step, although minor amounts of incompletely spliced RNA were detected. During the processing of the large intervening sequence of beta major globin pre-mRNA two internal splice sites were clearly detected. On the contrary, the beta minor globin pre-mRNA did not show any internal splice sites. A model of processing of the mouse adult beta major globin pre-mRNA is proposed. 相似文献
13.
14.
Synthesis of tetrahydrobiopterin in friend erythroleukemia cells and its modulator effect on cell proliferation 总被引:2,自引:0,他引:2
Franz Kerler Irmgard Ziegler Cornelia Schmid Adelbert Bacher 《Experimental cell research》1990,189(2):151-156
The induction of the enzymes in the tetrahydrobiopterin pathway by dimethyl sulfoxide (DMSO) was investigated in subclones F4N and B8/3 of the proerythroblastoid Friend erythroleukemia cell line (MEL). GTP-cyclohydrolase, the initial enzyme in the biosynthetic pathway, is virtually absent in both clones, but expression increases during 3 days of DMSO treatment. The final enzyme levels show 12-fold (subclone B8/3) and 40-fold (subclone F4N) increases compared to initial values. Enhancement of 6-pyruvoyl tetrahydropterin synthase activity is detectable 6 h after exposure to DMSO and continues to increase in the 3-day time period to 2.4-fold and 1.8-fold levels in subclones B8/3 and F4N, respectively. Sepiapterin reductase is present in unstimulated F4N cells and absent in B8/3 cells. The enzyme activity is not affected by DMSO treatment in either cell line. This explains why DMSO treatment causes accumulation of tetrahydrobiopterin in the MEL subclone F4N, but not in subclone B8/3. MEL cells are devoid of phenylalanine hydroxylase for which tetrahydrobiopterin serves as cofactor. In F4N, but not in B8/3, tetrahydrobiopterin modulates the rate of [3H]thymidine incorporation, thus being functionally linked with cell proliferation rather than with differentiation. In contrast to T lymphocytes, periods of tetrahydrobiopterin synthesis and of modulator function are uncoupled in MEL cells. 相似文献
15.
Summary Chromatin fractions from Friend erythroleukemia cells after induction of differentiation by dimethylsulfoxide (DMSO) were compared in their biochemical characteristics to fractions from uninduced cells. Fractions were prepared by extracting chromatin from nuclei after mild micrococcal nuclease treatment with increasing concentrations of NaCl according to Sanders [1]. This procedure has been found to release chromatin containing hyperacetylated histones preferentially [2]. The fractions obtained by this procedure were analysed in respect to the amount of chromatin released, the amount of histone H1, the degree of acetylation of histone H4, the presence of non-histone proteins and the concentration of transcribed and non-transcribed sequences. It was found that the fractions differ in the amount of histone H1 present, in several non-histone proteins and in the acetylation of histonie H4, regardless whether induced or uninduced cells were analysed. The distribution of transcribed sequences versus non-transcribed sequences among the fractions was the same, demonstrating that this fractionation procedure, although leading to fractions with biochemical differences, is not able to discriminate functional states of chromatin and that the biochemical characteristics of the fractions may be common to both, active as well as inactive states of chromatin. 相似文献
16.
Vanadium stimulates the (Na+,K+) pump in friend erythroleukemia cells and blocks erythropoiesis 总被引:2,自引:1,他引:2
下载免费PDF全文

Friend murine erythroleukemia cells underwent apparently normal erythropoiesis when treated with dimethyl sulfoxide. One of the earliest events associated with this induction was a decrease in ouabain sensitive 86Rb+ uptake, an assay of the plasma membrane Na,K(ATPase). Ammonium vanadate (10 microM) blocked differentiation of these cells without affecting cell viability. Vanadium was taken up by Friend cells and prevented the dimethyl sulfoxide-induced decrease in ouabain sensitive 86Rb+ uptake. Vanadate reactivated 86Rb+ transport previously inhibited by dimethyl sulfoxide treatment but had no affect on 86Rb+ transport in untreated cells. These results suggest an essential role for the (Na,K)ATPase in cell differentiation. 相似文献
17.
A. Hradilek J. Borov O. Fuchs J. Neuwirt 《Biochimica et Biophysica Acta (BBA)/General Subjects》1981,678(3):373-380
The inhibition of cellular iron uptake by hemin described previously in reticulocytes was studied in murine erythroleukemia (Friend) cells that can be induced to differentiate in culture by dimethyl sulfoxide (DMSO). Hemin had no effect on iron uptake into noninduced cells. After the induction by DMSO, hemin inhibited iron uptake into Friend cells and this effect of hemin became more pronounced with the further progress of differentiation. The reduction of cellular iron accumulation was caused mainly by inhibition of iron incorporation into heme, iron uptake into the non-heme pool was influenced by hemin treatment. Inhibition of heme synthesis by isonicotinic acid hydrazide (INH) caused an accumulation of iron in mitochondria in DMSO-induced cells but not in uninduced cells. On the basis of these results, a specific system transporting iron to mitochondria induced by DMSO treatment is suggested as a target for the inhibitory action of hemin. In Friend cells of the Fw line which are deficient in ferrochelatase, heme has no effect on iron uptake. The addition of INH to the Fw cells does not enhance the iron accumulatoni in mitochondria. 相似文献
18.
A 5S rRNA/L5 complex is a precursor to ribosome assembly in mammalian cells 总被引:12,自引:6,他引:12
下载免费PDF全文

J A Steitz C Berg J P Hendrick H La Branche-Chabot A Metspalu J Rinke T Yario 《The Journal of cell biology》1988,106(3):545-556
A novel 5S RNA-protein (RNP) complex in human and mouse cells has been analyzed using patient autoantibodies. The RNP is small (approximately 7S) and contains most of the nonribosome-associated 5S RNA molecules in HeLa cells. The 5S RNA in the particle is matured at its 3' end, consistent with the results of in vivo pulse-chase experiments which indicate that this RNP represents a later step in 5S biogenesis than a previously described 5S*/La protein complex. The protein moiety of the 5S RNP has been identified as ribosomal protein L5, which is known to be released from ribosomes in a complex with 5S after various treatments of the 60S subunit. Indirect immunofluorescence indicates that the L5/5S complex is concentrated in the nucleolus. L5 may therefore play a role in delivering 5S rRNA to the nucleolus for assembly into ribosomes. 相似文献
19.
Activation of the Jun N-terminal kinase pathway by friend spleen focus-forming virus and its role in the growth and survival of friend virus-induced erythroleukemia cells
下载免费PDF全文

Members of the mitogen-activated protein kinase (MAPK) family, including Jun amino-terminal kinase (JNK) and extracellular signal-related kinase (ERK), play an important role in the proliferation of erythroid cells in response to erythropoietin (Epo). Erythroid cells infected with the Friend spleen focus-forming virus (SFFV) proliferate in the absence of Epo and show constitutive activation of Epo signal transduction pathways. We previously demonstrated that the ERK pathway was constitutively activated in Friend SFFV-infected erythroid cells, and in this study JNK is also shown to be constitutively activated. Pharmacological inhibitors of both the ERK and JNK pathways stopped the proliferation of primary erythroleukemic cells from Friend SFFV-infected mice, with little induction of apoptosis, and furthermore blocked their ability to form Epo-independent colonies. However, only the JNK inhibitor blocked the proliferation of erythroleukemia cell lines derived from these mice. The JNK inhibitor caused significant apoptosis in these cell lines as well as an increase in the fraction of cells in G(2)/M and undergoing endoreduplication. In contrast, the growth of erythroleukemia cell lines derived from Friend murine leukemia virus (MuLV)-infected mice was inhibited by both the MEK and JNK inhibitors. JNK is important for AP1 activity, and we found that JNK inhibitor treatment reduced AP1 DNA-binding activity in primary erythroleukemic splenocytes from Friend SFFV-infected mice and in erythroleukemia cell lines from Friend MuLV-infected mice but did not alter AP1 DNA binding in erythroleukemia cell lines from Friend SFFV-infected mice. These data suggest that JNK plays an important role in cell proliferation and/or the survival of erythroleukemia cells. 相似文献
20.
V L Pulito D L Miller S Sassa T Yamane 《The Journal of biological chemistry》1983,258(24):14756-14758
A variety of chemical agents that are known to induce erythrodifferentiation in the Friend virus-induced murine erythroleukemia (MEL) cell have been suggested to mediate DNA cleavage in cultured cells prior to differentiation. The activation of the nuclear enzyme, ADP-ribosyltransferase, depends upon the presence of single strand breaks in DNA. If dimethyl sulfoxide (Me2SO) causes DNA breakage, it would be expected that the activity of ADP-ribosyltransferase would increase. A study of ADP-ribosyltransferase activity during cell growth indicates that both Me2SO-treated and untreated MEL cells exhibit a similar increase in the enzyme activity but the increase in Me2SO-treated cells is delayed by a few hours. When examined at comparable stages of growth, both treated and untreated cells show almost identical levels of enzyme activity. The present data thus do not support the contention that Me2SO induces DNA breakage in the MEL cells. 相似文献