首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
植物具备一套复杂的由3种蓝光受体和多种信号转导下游组分组成的蓝光感应系统,通过感受光照强度、光的方向和光周期,调节自身对蓝光的应答。本文综述了植物蓝光反应突变体分子生物学研究进展,探讨蓝光受体及信号转导下游组分在植物发育中的作用及蓝光诱发植物作出反应的分子机制。  相似文献   

2.
Reversible protein phosphorylation is a switching mechanism used in eukaryotes to regulate various cellular signalings. In plant light signaling, sophisticated photosensory receptor systems operate to modulate growth and development. The photoreceptors include phytochromes, cryptochromes and phototropins. Despite considerable progresses in defining the photosensory roles of these photoreceptors, the primary biochemical mechanisms by which the photoreceptor molecules transduce the perceived light signals into cellular responses remain to be elucidated. The signal-transducing photoreceptors in plants are all phosphoproteins and/or protein kinases, suggesting that light-dependent protein phosphorylation and dephosphorylation play important roles in the function of the photoreceptors. This review focuses on the role of phytochromes' reversible phosphorylation involved in the light signal transduction in plants.  相似文献   

3.
While the biochemical basis of photosynthesis by bacteriochlorophyll-based reaction centres in purple phototrophic Eubacteria and retinal-based bacteriorhodopsin in the Archaebacterium Halobacterium salinarium has been elucidated in great detail, much less is known about photosensory signal transduction; this is especially the case for Eubacteria. Recent findings on two different photosensory proteins in two different Eubacteria, which both show clear resemblances to the rhodopsins, will be presented. The photoactive yellow protein (PYP) from the purple phototrophic organism Ectothiorhodospira halophila probably functions as the photoreceptor for a new type of negative phototaxis response and has been studied in some detail with respect to its structural and photochemical characteristics. On basis of crystallographic an photochemical data it has been proposed that PYP contains retinal as a chromophore. However, we have unambiguously demonstrated that the PYP chromophore is different from retinal, in spite of the fact that PYP's photochemical properties show striking similarities with the rhodopsins. The cyanobacterium Calothrix sp. displays complementary chromatic adaptation, a process in which the pigment composition of the phycobilisomes is adjusted to the spectral characteristics of the incident light. In orange light the blueish chromophore phycocyanin is present, in green light the reddish phycoerythrin is synthesized. On the basis of the action spectrum of this adaptation process, we hypothesized that a rhodopsin is the photosensor in this process. In line with this, we found that nicotine, an inhibitor of the biosynthesis of beta-carotene (which is the precursor of retinal), abolishes chromatic adaptation. Direct proof of the involvement of a photosensory rhodopsin was obtained in experiments in which the chromatic adaptation response was restored by the addition of retinal to the cultures. The two photosensory proteins mentioned above represent the first examples of eubacterial photoreceptors that can be studied at a molecular level. Our current knowledge on these two proteins and their status as retinal proteins will be reviewed.  相似文献   

4.
5.
6.
Almost all major phyla of invertebrates and lower vertebratesdisplay a direct sensitivity of their chromatophores to lightby either dispersing or—in rare cases—aggregatingthe pigment granules within the cell. This "primary response"of color change is an accessory component of the "dermal lightsense" and characterizes the chromatophores as an independentreceptor for light and effector of the chromomotor response.Photosensitivity does not seem to be restricted to certain partsof the pigment cell but is rather supposed to be a ubiquitousproperty of the chromatophore. Experiments on partially illuminatedchromatophores show that the photopigment, whose chemical compositionis still unknown, is localised within the plasma membrane orthe cytoplasmic ground substance. Threshold responses for ajust visible reaction are much higher than for background responsesand have for some pigment cells been determined to be in a rangebetween 0.2 and 0.5 erg/sec/cm2. The physiological significanceof the photosensory reaction is closely related with thermoregulationand the protection of underlying tissue against harmful radiation.The chain of events involved in photosensory transduction remainsto be further studied and can at present be interpreted onlyon the basis of related phenomena like retinal pigment migrationand the light-sensitivity of simple non-pigmented contractilesystems.  相似文献   

7.
Phytochrome, a major photoreceptor in plants, consists of two domains: the N-terminal photosensory domain and the C-terminal domain. Recently, the 651-amino acid photosensory domain of phytochrome B (phyB) has been shown to act as a functional photoreceptor in the nucleus. The phytochrome (PHY) domain, which is located at the C-terminal end of the photosensory domain, is required for the spectral integrity of phytochrome; however, little is known about the signal transduction activity of this domain. Here, we have established transgenic Arabidopsis thaliana lines expressing an N-terminal 450-amino acid fragment of phyB (N450) lacking the PHY domain on a phyB-deficient background. Analysis of these plants revealed that N450 can act as an active photoreceptor when attached to a short nuclear localization signal and beta-glucuronidase. In vitro spectral analysis of reconstituted chromopeptides further indicated that the stability of the N450 Pfr form, an active form of phytochrome, is markedly reduced in comparison with the Pfr form of full-length phyB. Consistent with this, plants expressing N450 failed to respond to intermittent light applied at long intervals, indicating that N450 Pfr is short-lived in vivo. Taken together, our findings show that the PHY domain is dispensable for phyB signal transduction but is required for stabilizing the Pfr form of phyB.  相似文献   

8.
1. Live Stentor coeruleus exhibits a substantially red-shifted fluorescence maximum, corresponding to the anionic species of the photoreceptor chromophore. No change was observed in either the absorption or fluorescence excitation spectrum, indicating an efficient deprotonation of the photoreceptor pigment upon excitation by light. 2 Changes in external pH exhibit a dramatic effect on the pulmonary response of Stentor. Phototaxis is specifically inhibited at pH less than 6, with loss of photosensory perception which is restored when the pH is returned to pH greater than 6. 3. Fluorescence changes of 9-aminoacridine in suspensions of live Stentor indicate the generation of a pH gradient upon irradiation with light. Both pH gradient and phototaxis were inhibited by the addition of nigericin and p-tri-fluoromethoxy carbonyl cyanide phenylhydrazone (FCCP). 4. Incorporation of the Stentor photoreceptor protein in to artificial liposomes demonstrates the ability of the system to generate pH gradients across model membranes as monitored by the quenching of 9-aminoacridine fluorescence. The effect of external pH on net proton movement in the model system is strikingly similar to the pH dependent of the liver Stentor, thus lending support for transient proton flux being an important mode of light signal processing for photosensory transduction.  相似文献   

9.
Light plays a crucial role throughout the life cycle of higher plants modulating various aspects of their growth and development, such as seed germination, leaf differentiation, flowering, and senescence. Plants have thus evolved extremely sensitive mechanisms to continually detect the changing ambient light conditions and transduce the information to the gene expression machinery. The elucidation of this complex information sensing and transduction machinery is fundamental to our understanding of the molecular mechanisms involved in light-regulated plant development. The last decade has witnessed an immense upsurge in information in this regard and the mechanism of photosensory perception and phototransduction is turning out to be quite intricate, involving an array of cellular effectors and biochemical messengers. The analysis of photomorphogenic mutants, predominantly of Arabidopsis, has revealed interesting facts, not only about the intricacies of light signaling circuitry, but also about the multiplicity of the photoreceptors and their specialized or overlapping photosensory functions. In addition, these studies have also highlighted, and in some cases even redefined, the role of conventional plant growth regulators in modulating photomorphogenic development. Employing standard recombinant DNA techniques, substantial information has also become available about the regulatory cis-acting DNA sequences that make a gene amenable to light control and the trans-acting protein factors that can potentially interact with these cis-acting sequences on receiving the signal from the upstream transduction components. The information available to date on these emerging trends in photomorphogenesis research has been summarized and critically evaluated in this review.  相似文献   

10.
Light with decreased red:far-red (R:FR) ratios may signal neighbor presence and trigger plant developmental responses. There is some evidence that plant canopies forage towards increased R:FR ratios, but it is unclear to what extent R:FR versus the total amount of photosynthetically active radiation (PAR) influences canopy foraging responses among forest trees. The objective of this study was to examine the relative importance of PAR and R:FR as photosensory cues leading to tree canopy foraging responses. Seedlings of Betula papyrifera Marshall (paper birch) were grown in an experimental garden. Each seedling was germinated and grown in its own shading structure and exposed to two spatially separated light environments, in a factorial design of PAR and R:FR. Plant canopy foraging was evaluated at the end of one growing season in terms of canopy displacement, canopy area, leaf number, direction of stem lean, petiole aspect, and lamina aspect with respect to experimental light treatments. Leaf number and canopy area were greater on the high PAR sides of plants, irrespective of the R:FR treatment. Seedling canopies were displaced towards the direction of high PAR, but this relationship was not significant across all treatments. Petiole aspect was random and showed no significant directedness towards any of the light treatments. Lamina aspect and the direction of stem lean were distributed towards the direction of high PAR, irrespective of the R:FR treatment. Overall, first-year B. papyrifera seedlings used PAR, rather than R:FR ratio, as a photosensory cue for canopy light foraging.  相似文献   

11.
Phototropins and phytochromes are the major photosensory receptors in plants and they regulate distinct photomorphogenic responses. The molecular mechanisms underlying functional interactions of phototropins and phytochromes remain largely unclear. We show that the tomato (Lycopersicon esculentum) phytochrome A deficient mutant fri lacks phototropic curvature to low fluence blue light, indicating requirement for phytochrome A for expression of phototropic response. The hp1 mutant that exhibits hypersensitive responses to blue light and red light reverses the impairment of second-positive phototropic response in tomato in phytochrome A-deficient background. Physiological analyses indicate that HP1 functions as a negative regulator of phototropic signal transduction pathway, which is removed via action of phytochrome A. The loss of HP1 gene product in frihp1 double mutant allows the unhindered operation of phototropic signal transduction chain, obviating the need for the phytochrome action. Our results also indicate that the role of phytochrome in regulating phototropism is restricted to low fluence blue light only, and at high fluence blue light, the phytochrome A-deficient fri mutant shows the normal phototropic response.  相似文献   

12.
Transposing phytochrome into the nucleus   总被引:3,自引:0,他引:3  
To control many physiological responses, phytochromes directly modulate gene expression. A key regulatory event in this signal transduction pathway is the light-controlled translocation of the photoreceptor from the cytoplasm into the nucleus. Recent publications are beginning to shed light on the molecular mechanisms underlying this central control point. Interestingly, there is a specific mechanism for phytochrome A (phyA) nuclear accumulation. The dedicated phyA nuclear import pathway might be important for the distinct photosensory specificity of this atypical phytochrome. Recent studies in the field also provide a starting point for investigating how the different subcellular pools of phytochrome can control distinct responses to light.  相似文献   

13.
The blue light receptor photoactive yellow protein (PYP) displays rhodopsin-like photochemistry based on the trans to cis photoisomerization of its p-coumaric acid chromophore. Here, we report that protein refolding from the acid-denatured state of PYP mimics the last photocycle transition in PYP. This implies a direct link between transient protein unfolding and photosensory signal transduction. We utilize this link to study general issues in protein folding. Chromophore trans to cis photoisomerization in the acid-denatured state strongly decelerates refolding, and converts the pH dependence of the barrier for refolding from linear to nonlinear. We propose transition state movement to explain this phenomenon. The cis chromophore significantly stabilizes the acid-denatured state, but acidification of PYP results in the accumulation of the acid-denatured state containing a trans chromophore. This provides a clear example of kinetic control in a protein unfolding reaction. These results demonstrate the power of PYP as a light-triggered model system to study protein folding.  相似文献   

14.
Light regulates many physiological and developmental events in plants through the action of multiple sensory pigment systems. Although our understanding of the regulatory photoreceptors, including phytochromes (that principally absorb red and far-red energy) and blue light receptors, has advanced considerably in the recent past, the mechanisms of light signal transduction in higher plants are poorly understood. To unravel the molecular events associated with light-regulated plant development, a large number of photomorphogenic mutants have been isolated in several different plant species, including Arabidopsis, cucumber, tomato, pea, Brassica and Sorghum, which are either impaired in normal perception of light signal (photoreceptor mutants) or are affected in some specific or a sub-set of phenotypic traits (signal transduction mutants). Their physiological and molecular analysis is proving to be valuable in (1) assigning specific function to discrete phytochrome species, (2) elucidation of elements that constitute the transduction pathway downstream of signal perception, and (3) determining how different photosensory systems regulate many diverse responses. The progress made in the analysis of photomorphogenic mutants, as reviewed in this article, clearly indicates that multiple photoreceptors, either of the same or different class, interact through an intricate network of signal transduction pathways to finally determine the light-dependent phenotype of both monocots and dicots.  相似文献   

15.
The 14-3-3 proteins specifically bind a number of client proteins to influence important pathways, including flowering timing via the photosensory system. For instance, 14-3-3 proteins influence the photosensory system through interactions with Constans (CO) protein. 14-3-3 associations with the photosensory system were further studied in this investigation using 14-3-3 T-DNA insertion mutants to study root and chloroplast development. The 14-3-3 μ T-DNA insertion mutant, 14-3-3μ-1, had shorter roots than the wild type and the difference in root length could be influenced by light intensity. The 14-3-3 ν T-DNA insertion mutants also had shorter roots, but only when grown under narrow-bandwidth red light. Five-day-old 14-3-3 T-DNA insertion and co mutants all had increased root greening compared with the wild type, which was influenced by light wavelength and intensity. However, beyond 10 d of growth, 14-3-3μ-1 roots did not increase in greening as much as wild-type roots. This study reveals new developmental roles of 14-3-3 proteins in roots and chloroplasts, probably via association with the photosensory system.  相似文献   

16.
Mutational analysis of blue-light sensing in Arabidopsis   总被引:2,自引:1,他引:1  
Blue light regulates many physiological and developmental processes in higher plants through the action of multiple photosensory systems. The analysis of photomorphogenic mutants is leading to a better understanding of how the different photosensory systems mediate the wide range of responses observed in blue light. A review of the current literature on photomorphogenic mutants makes it apparent that redundancies exist in photoreceptor function. For example, many blue-light responses that have been shown to be regulated by a blue-light photosensory system are also under phytochrome control. The study of various light-response mutants suggests that a complex sensory network regulates light-mediated responses. This article attempts to piece together information regarding the sensory systems responsible for blue-light-regulated responses.  相似文献   

17.
Phototropins mediate various blue-light responses such as phototropism, chloroplast relocation, stomatal opening and leaf flattening in plants. Phototropins are hydrophilic chromoproteins that are mainly bound to the plasma membrane. One of two phototropins in Arabidopsis thaliana, phot2, associates with the Golgi apparatus in a light-dependent manner. In this study, we analyzed the biological activities of the N-terminal photosensory and C-terminal kinase domains of phot2. For this purpose, these domains were fused to green fluorescent protein (GFP) and ectopically expressed in the wild-type and a phot1 phot2 double mutant of Arabidopsis. The kinase domain fused to GFP (P2CG) was localized to the plasma membrane and the Golgi apparatus, whereas the photosensory domain fused to GFP (P2NG) was uniformly localized in the cytosol. Hence, the kinase domain rather than the photosensory domain is responsible for the membrane association. Interestingly, the P2CG plants exhibited constitutive blue-light responses even in dark conditions, i.e. stomata were open and chloroplasts were in the avoidance position. By contrast, P2CG with a mutation that abolishes the kinase activity (P2C[D720/N]G) failed to exhibit these responses. phot2 kinase is therefore suggested to be correctly localized to functional sites in the cell and to trigger light signal transduction through its kinase activity. In contrast to P2CG, P2NG did not affect the phot2 responses, except for partial inhibition of the phototropic response caused by the endogenous phototropins.  相似文献   

18.
1. Experiments are presented which show that the latent period in the photosensory response of Ciona is inversely proportional to the duration of the exposure period to light. From this it is found that the velocity of the chemical reaction which determines the latent period is directly proportional to the concentration of photochemical products formed during the exposure period. This is interpreted as showing that the two processes form a coupled photochemical reaction, of which the secondary reaction proceeds only in the presence of products from the primary reaction. This coupling may be a catalysis or a direct chemical relation. 2. Further experiments show that the relation between temperature and the latent period is accurately described by the Arrhenius equation in which µ = 16,200. The precise numerical value of µ tentatively identifies the latent period process as an oxidation reaction which is catalyzed by iron. 3. The photocatalytic properties of certain iron compounds are used as a model for the coupled photochemical reaction suggested for the photosensory mechanism of Ciona and Mya.  相似文献   

19.
Incompetent plasmodia of Physarum polycephalum exposed to a light pulse sporulated after reaching the competent stage. Fusion of irradiated plasmodia with dark-incubated plasmodia and analysis of sporulation indicated the presence of a morphogenetic signal. It is concluded that a logic AND gate integrates the photoreceptor signal and the competence signal and controls the formation of the morphogenetic signal.  相似文献   

20.
Apical hook opening and cotyledon unfolding are characteristic responses that occur during deetiolation of dicotyledonous seedlings. Light-stimulated apical hook opening and cotyledon unfolding in etiolated Arabidopsis thaliana seedlings appears to involve the activities of multiple photosensory systems. Red, far-red, and blue light are all effective in stimulating these responses in Arabidopsis. Stimulation of hook opening by red light and low fluence blue light is inductive, far-red reversible, and exhibits reciprocity, as is characteristic of many low fluence-dependent phytochrome-mediated responses. Far-red and high-fluence blue light appear to stimulate hook opening and cotyledon unfolding through high-irradiance-response systems during long-term light treatments. Although a phytochrome high-irradiance-response system presumably mediates the responses in far-red light, the responses to high-fluence blue light may be mediated by a blue light-specific photosensory system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号