首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulated endothelial exocytosis of Weibel-Palade bodies (WPBs), the first stage in leukocyte trafficking, plays a pivotal role in inflammation and injury. Acute mechanical stretch has been closely associated with vascular inflammation, although the precise mechanism is unknown. Here, we show that hypertensive stretch regulates the exocytosis of WPBs of endothelial cells (ECs) through VEGF receptor 2 (VEGFR2) signaling pathways. Stretch triggers a rapid release (within minutes) of von Willebrand factor and interleukin-8 from WPBs in cultured human ECs, promoting the interaction between leukocytes and ECs through the translocation of P-selectin to the cell membrane. We further show that hypertensive stretch significantly induces P-selectin translocation of intact ECs and enhances leukocyte adhesion both ex vivo and in vivo. Stretch-induced endothelial exocytosis is mediated via a VEGFR2/PLCγ1/calcium pathway. Interestingly, stretch also induces a negative feedback via a VEGFR2/Akt/nitric oxide pathway. Such dual effects are confirmed using pharmacological and genetic approaches in carotid artery segments, as well as in acute hypertensive mouse models. These studies reveal mechanical stretch as a potent agonist for endothelial exocytosis, which is modulated by VEGFR2 signaling. Thus, VEGFR2 signaling pathways may represent novel therapeutic targets in limiting hypertensive stretch-related inflammation.  相似文献   

2.
In the vasculature, physiological levels of nitric oxide (NO) protect against various stressors, including mechanical stretch. While endothelial NO production in response to various stimuli has been studied extensively, the precise mechanism underlying stretch-induced NO production in venous endothelial cells remains incompletely understood. Using a model of continuous cellular stretch, we found that stretch promoted phosphorylation of endothelial NO synthase (eNOS) at Ser1177, Ser633 and Ser615 and NO production in human umbilical vein endothelial cells. Although stretch activated the kinases AMPKα, PKA, Akt, and ERK1/2, stretch-induced eNOS activation was only inhibited by kinase-specific inhibitors of PKA and PI3K/Akt, but not of AMPKα and Erk1/2. Similar results were obtained with knockdown by shRNAs targeting the PKA and Akt genes. Furthermore, inhibition of PKA preferentially attenuated eNOS activation in the early phase, while inhibition of the PI3K/Akt pathway reduced eNOS activation in the late phase, suggesting that the PKA and PI3K/Akt pathways play distinct roles in a time-dependent manner. Finally, we investigated the role of these pathways in stretch-induced endothelial exocytosis and leukocyte adhesion. Interestingly, we found that inhibition of the PI3K/Akt pathway increased stretch-induced Weibel-Palade body exocytosis and leukocyte adhesion, while inhibition of the PKA pathway had the opposite effects, suggesting that the exocytosis-promoting effect of PKA overwhelms the inhibitory effect of PKA-mediated NO production. Taken together, the results suggest that PKA and Akt are important regulators of eNOS activation in venous endothelial cells under mechanical stretch, while playing different roles in the regulation of stretch-induced endothelial exocytosis and leukocyte adhesion.  相似文献   

3.
The epithelium of the urinary bladder must maintain a highly impermeable barrier despite large variations in urine volume during bladder filling and voiding. To study how the epithelium accommodates these volume changes, we mounted bladder tissue in modified Ussing chambers and subjected the tissue to mechanical stretch. Stretching the tissue for 5 h resulted in a 50% increase in lumenal surface area (from approximately 2900 to 4300 microm(2)), exocytosis of a population of discoidal vesicles located in the apical cytoplasm of the superficial umbrella cells, and release of secretory proteins. Surprisingly, stretch also induced endocytosis of apical membrane and 100% of biotin-labeled membrane was internalized within 5 min after stretch. The endocytosed membrane was delivered to lysosomes and degraded by a leupeptin-sensitive pathway. Last, we show that the exocytic events were mediated, in part, by a cyclic adenosine monophosphate, protein kinase A-dependent process. Our results indicate that stretch modulates mucosal surface area by coordinating both exocytosis and endocytosis at the apical membrane of umbrella cells and provide insight into the mechanism of how mechanical forces regulate membrane traffic in non-excitable cells.  相似文献   

4.
The polypeptide hormone atrial natriuretic peptide (ANP) plays vital roles in maintaining blood volume and arterial blood pressure. The recognition of clinical benefits of ANP both in healthy and diseased heart identifies ANP as a potential candidate for therapeutic strategy in the treatment of heart disease. ANP is synthesized and stored in cardiac myocytes and it is released through the exocytosis of ANP granules both constitutively and in response to stimuli. It is well known that mechanical stretch is the predominant stimulus for ANP secretion. However, the mechanistic link between mechanical stimuli and exocytosis of ANP vesicles in single atrial myocyte has not yet been demonstrated. Over the last decade, compelling evidence suggested that stretch-activated ion channels might function as mechanosensors. We showed previously that direct stretch of single atrial myocyte using two micro-electrodes activated a non-selective cation channel (SAC). So far it is not known whether activation of SAC is involved in stretch-induced ANP secretion. The present article aims to give an overview of the mechanism of mechanical stretch-stimulated ANP secretion and describes an innovative technique to detect ANP secretion from isolated rat atrial myocytes with high time-resolution. Combined with capacitance measurement and patch-clamp technique in conjunction with in situ ANP bioassay, we were able to demonstrate that SAC in rat atrial myocytes acts as a mechanosensor to transduce stretch signals into the ANP secretion pathway.  相似文献   

5.
A decrease in the osmolarity of incubation medium is accompanied by calcium influx in neuronal presynaptic endings. We studied the influence of Ca2+ on exocytosis induced by hypotonic shock using the hydrophilic fluorescent dye acridine orange and the hydrophobic fluorescent dye FM2-10. It was shown using acridine orange that lowering of osmolarity to 230 mOsm/l induces exocytosis both in calcium-containing and calcium-free medium. By contrast, we were able to demonstrate calcium-dependence of exocytosis using styryl dye FM2-10. Lowering of osmolarity leads to increase of [3H]D-aspartate and [3H]GABA release in calcium-free medium. Addition of calcium inhibits hypotonic-induced neurotransmitter release. Decreasing of NaCl concentration to 92 mM in isotonic medium is able to induce d-aspartate and GABA release. Thus, our data suggest that hypotonic swelling induces calcium-independent exocytosis possibly by a "kiss and run" mechanism. Calcium influx mediated by stretch channels is able to provoke full fusion between plasma membrane and synaptic vesicles. [3H]D-aspartate and [3H]GABA released by hypotonic shock is determined by sodium lowering rather than by osmolarity decreasing itself.  相似文献   

6.
The role of plasma membrane (PM) area as a critical factor during cell motility is poorly understood, mainly due to an inability to precisely follow PM area dynamics. To address this fundamental question, we developed static and dynamic assays to follow exocytosis, endocytosis, and PM area changes during fibroblast spreading. Because the PM area cannot increase by stretch, spreading proceeds by the flattening of membrane folds and/or by the addition of new membrane. Using laser tweezers, we found that PM tension progressively decreases during spreading, suggesting the addition of new membrane. Next, we found that exocytosis increases the PM area by 40–60% during spreading. Reducing PM area reduced spread area, and, in a reciprocal manner, reducing spreadable area reduced PM area, indicating the interconnection between these two parameters. We observed that Golgi, lysosomes, and glycosylphosphatidylinositol-anchored protein vesicles are exocytosed during spreading, but endoplasmic reticulum and transferrin receptor-containing vesicles are not. Microtubule depolymerization blocks lysosome and Golgi exocytosis but not the exocytosis of glycosylphosphatidylinositol-anchored protein vesicles or PM area increase. Therefore, we suggest that fibroblasts are able to regulate about half of their original PM area by the addition of membrane via a glycosylphosphatidylinositol-anchored protein compartment.  相似文献   

7.
Phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) synthesis is required for calcium-dependent exocytosis in neurosecretory cells. We developed a PtdIns(4,5)P2 bead pulldown strategy combined with subcellular fractionation to identify endogenous chromaffin granule proteins that interact with PtdIns(4,5)P2. We identified two synaptotagmin isoforms, synaptotagmins 1 and 7; spectrin; alpha-adaptin; and synaptotagmin-like protein 4 (granuphilin) by mass spectrometry and Western blotting. The interaction between synaptotagmin 7 and PtdIns(4,5)P2 and its functional relevance was investigated. The 45-kDa isoform of synaptotagmin 7 was found to be highly expressed in adrenal chromaffin cells compared with PC12 cells and to mainly localize to secretory granules by subcellular fractionation, immunoisolation, and immunocytochemistry. We demonstrated that synaptotagmin 7 binds PtdIns(4,5)P2 via the C2B domain in the absence of calcium and via both the C2A and C2B domains in the presence of calcium. We mutated the polylysine stretch in synaptotagmin 7 C2B and demonstrated that this mutant domain lacks the calcium-independent PtdIns(4,5)P2 binding. Synaptotagmin 7 C2B domain inhibited catecholamine release from digitonin-permeabilized chromaffin cells, and this inhibition was abrogated with the C2B polylysine mutant. These data indicate that synaptotagmin 7 C2B-effector interactions, which occur via the polylysine stretch, including calcium-independent PtdIns(4,5)P2 binding, are important for chromaffin granule exocytosis.  相似文献   

8.
The apical surface of polarized epithelial cells receives input from mediators, growth factors, and mechanical stimuli. How these stimuli are coordinated to regulate complex cellular functions such as polarized membrane traffic is not understood. We analyzed the requirement for growth factor signaling and mechanical stimuli in umbrella cells, which line the mucosal surface of the bladder and dynamically insert and remove apical membrane in response to stretch. We observed that stretch-stimulated exocytosis required apical epidermal growth factor (EGF) receptor activation and that activation occurred in an autocrine manner downstream of heparin-binding EGF-like growth factor precursor cleavage. Long-term changes in apical exocytosis depended on protein synthesis, which occurred upon EGF receptor-dependent activation of mitogen-activated protein kinase signaling. Our results indicate a novel physiological role for the EGF receptor that couples upstream mechanical stimuli to downstream apical EGF receptor activation that may regulate apical surface area changes during bladder filling.  相似文献   

9.
Dietl P  Haller T  Frick M 《Cell calcium》2012,52(3-4):296-302
The type II cell of the pulmonary alveolus is a polarized epithelial cell that secretes surfactant into the alveolar space by regulated exocytosis of lamellar bodies (LBs). This process consists of multiple sequential steps and is correlated to elevations of the cytoplasmic Ca(2+) concentration ([Ca(2+)](c)) required for extended periods of secretory activity. Both chemical (purinergic) and mechanical (cell stretch or exposure to an air-liquid interface) stimuli give rise to complex Ca(2+) signals (such as Ca(2+) peaks, spikes and plateaus) that differ in shape, origin and spatio-temporal behavior. This review summarizes current knowledge about Ca(2+) channels, including vesicular P2X4 purinoceptors, in type II cells and associated signaling cascades within the alveolar microenvironment, and relates stimulus-dependent activation of these pathways with distinct stages of surfactant secretion, including pre- and postfusion stages of LB exocytosis.  相似文献   

10.
Using single molecule force spectroscopy we examine the response of heparin chains to mechanical stretching. We find that at forces below 200 pN heparin behaves as a simple entropic spring. At approximately 200 pN heparin displays a large enthalpic elasticity, which is evident as a pronounced plateau in the force-extension relationship. We determine that this enthalpic elasticity is produced by sugar rings of heparin flipping to more energetic and more extended conformations. We estimate that in vivo, the forces which stretch heparin are comparable to the forces that trigger conformational transitions in our single molecule atomic force microscopy measurements. We hypothesize that these conformational transitions have biological significance in that they provide a mechanism to finely regulate the affinity of various ligands toward heparin, for example, in secretory granules undergoing exocytosis and during the mechanical interactions between cells and the extracellular matrix.  相似文献   

11.
It has recently been shown that shear stress augments the heterologously expressed TRPM7 channel activity by exocytosis-mediated incorporation of TRPM7 into the plasma membrane. On the other hand, our recent study has shown that the TRPM7-like channel endogenously expressed in HeLa cells is activated by membrane expansion induced by membrane stretch or osmotic cell swelling. Thus, the present study was aimed at exploring the possibility that the heterogously expressed TRPM7 channel is activated directly by membrane expansion in a manner independent of exocytosis. Here, whole-cell currents of the TRPM7 channel heterologously expressed in HEK293T cells were found to be augmented not only by perfusion of bath solution but also by osmotic swelling even under the conditions where exocytotic events can hardly take place in the cytosol dialyzed with ATP-free, Ca(2+)-free and EGTA-containing pipette solution. In addition, shear stress-induced augmentation was not affected by a blocker of vesicular protein traffic, brefeldin A. Furthermore, in cell-free patches, membrane stretch directly augmented single-channel activity of TRPM7 by increasing Po value at < or = 20 mV. We thus conclude that the TRPM7 channel can be directly activated by mechano-stress in a manner independent of exocytosis-mediated incorporation of this channel protein into the plasma membrane.  相似文献   

12.
We have visualized the exocytosis of lysosomes into the peripheral circulation by the phagocytic endothelia of the venous sinuses of liver and bone marrow of rats. Perfusion fixation at normal body temperature produced images of the earliest stages of lysosomal exocytosis. After fixation at low body temperatures (7-12 degrees C), advanced stages of this process became evident, showing extrusion of lysosomes and their contents into the circulation. It is postulated that this form of exocytosis has escaped structural detection because of its rapidity and relative infrequency as compared to merocrine secretory exocytosis, and that fixation at low body temperatures arrests or slows down these exocytic events in sufficient measure for ultrastructural visualization. The possibility that this lysosomal exocytosis contributes to the presence of lysosomal enzymes detected in the peripheral blood should be considered. In addition, it is likely that lysosomal degradation products may be discharged by exocytosis into the circulation.  相似文献   

13.
Synaptotagmins are membrane proteins that possess tandem C2 domains and play an important role in regulated membrane fusion in metazoan organisms. Here we show that both synaptotagmins I and II, the two major neuronal isoforms, can interact with the syntaxin/synaptosomal-associated protein of 25 kDa (SNAP-25) dimer, the immediate precursor of the soluble NSF attachment protein receptor (SNARE) fusion complex. A stretch of basic amino acids highly conserved throughout the animal kingdom is responsible for this calcium-independent interaction. Inositol hexakisphosphate modulates synaptotagmin coupling to the syntaxin/SNAP-25 dimer, which is mirrored by changes in chromaffin cell exocytosis. Our results shed new light on the functional importance of the conserved polybasic synaptotagmin motif, suggesting that synaptotagmin interacts with the t-SNARE dimer to up-regulate the probability of SNARE-mediated membrane fusion.  相似文献   

14.
Delivery of proteins or lipids to the plasma membrane or into the extracellular space occurs through exocytosis, a process that requires tethering, docking, priming and fusion of vesicles, as well as F-actin rearrangements in response to specific extracellular cues. GTPases of the Rho family have been implicated as important regulators of exocytosis, but how Rho proteins control this process is an open question. In this review, we focus on molecular connections that drive Rho-dependent exocytosis in polarized and regulated exocytosis. Specifically, we present data showing that Rho proteins interaction with the exocyst complex and IQGAP mediates polarized exocytosis, whereas interaction with actin-binding proteins like N-WASP mediates regulated exocytosis.  相似文献   

15.
Cytotoxic T cells (CTLs) kill target cells by releasing lytic agents via regulated exocytosis. Three signals are known to be required for exocytosis: an increase in intracellular Ca2+, activation of protein kinase C (PKC) and activation of extracellular signal regulated signal kinase (ERK). ERK activation required for exocytosis depends on activity of PKC. The simplest possibility is that the sole effect of PKC required for exocytosis is ERK activation. Testing this requires dissociating ERK and PKC activation. We did this using TCR-independent stimulation of TALL-104 human leukemic CTLs. When cells are stimulated with thapsigargin and PMA, agents that increase intracellular Ca2+ and activate PKC, respectively, PKC-dependent ERK activation is required for lytic granule exocytosis. Expressing a constitutively active mutant MAP kinase kinase activates ERK independent of PKC. However, activating ERK without PKC does not support lytic granule exocytosis, indicating that there are multiple effects of PKC required for granule exocytosis.  相似文献   

16.
Abstract: Amyloid β peptide (Aβ) neurotoxicity is believed to play a central role in the pathogenesis of Alzheimer's disease. An early indicator of Aβ toxicity is the inhibition of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction to MTT formazan, a widely used assay for measuring cell viability. In this report we show that Aβ and other cytotoxic amyloid peptides such as human amylin dramatically enhance MTT formazan exocytosis, resulting in the inhibition of cellular MTT reduction. Only the amyloid peptides that are known to be cytotoxic enhanced MTT formazan exocytosis. Basal MTT formazan exocytosis and amyloid peptide-enhanced MTT formazan exocytosis are blocked by several drugs with diverse known effects. These and other data suggest that MTT formazan exocytosis is a multistep process and that cytotoxic amyloid peptides enhance MTT formazan exocytosis through an intracellular signal transduction pathway.  相似文献   

17.
Exocytosis is a key event in mast cell functions. By this process, mast cells release inflammatory mediators, contained in secretory granules (SGs), which play important roles in immunity and wound healing but also provoke allergic and inflammatory responses. The mechanisms underlying mast cell exocytosis remained poorly understood. An essential step toward deciphering the mechanisms behind exocytosis is the identification of the cellular components that regulate this process. Because Rab GTPases regulate specific trafficking pathways, we screened 44 Rabs for their functional impacts on exocytosis triggered by the FcεRI or combination of Ca(2+) ionophore and phorbol ester. Because exocytosis involves the continuous reorganization of the actin cytoskeleton, we also repeated our screen in the presence of cytochalasin D that inhibits actin polymerization. In this paper, we report on the identification of 30 Rabs as regulators of mast cell exocytosis, the involvement of 26 of which has heretofore not been recognized. Unexpectedly, these Rabs regulated exocytosis in a stimulus-dependent fashion, unless the actin skeleton was disrupted. Functional clustering of the identified Rabs suggested their classification as Rabs involved in SGs biogenesis or Rabs that control late steps of exocytosis. The latter could be further divided into Rabs that localize to the SGs and Rabs that regulate transport from the endocytic recycling compartment. Taken together, these findings unveil the Rab networks that control mast cell exocytosis and provide novel insights into their mechanisms of action.  相似文献   

18.
We have previously reported that synaptotagmin VI is present in human sperm cells and that a recombinant protein containing the C2A and C2B domains abrogates acrosomal exocytosis in permeabilized spermatozoa, an effect that was regulated by phosphorylation. In this report, we show that each individual C2 domain blocks acrosomal exocytosis. The inhibitory effect was completely abrogated by phosphorylation of the domains with purified PKCbetaII. We found by site-directed mutagenesis that Thr418 and/or Thr419 in the polybasic region (KKKTTIK) of the C2B domain--a key region for the function of synaptotagmins--are the PKC target that regulates its inhibitory effect on acrosomal exocytosis. Similarly, we showed that Thr284 in the polybasic region of C2A (KCKLQTR) is the target for PKC-mediated phosphorylation in this domain. An antibody that specifically binds to the phosphorylated polybasic region of the C2B domain recognized endogenous phosphorylated synaptotagmin in the sperm acrosomal region. The antibody was inhibitory only at early stages of exocytosis in sperm acrosome reaction assays, and the immunolabeling decreased upon sperm stimulation, indicating that the protein is dephosphorylated during acrosomal exocytosis. Our results indicate that acrosomal exocytosis is regulated through the PKC-mediated phosphorylation of conserved threonines in the polybasic regions of synaptotagmin VI.  相似文献   

19.
Regulated secretion is a fundamental process underlying the function of many cell types. In particular, acrosomal exocytosis in mammalian sperm is essential for egg fertilization. In general, exocytosis is initiated by a cytosolic calcium increase. In this report we show that calcium affects several factors during human sperm acrosomal exocytosis. By using an antibody that specifically recognizes synaptotagmin VI phosphorylated at the polybasic region of the C2B domain, we showed that a calcium-dependent dephosphorylation of this protein occurred at early stages of the acrosomal exocytosis in streptolysin O-permeabilized sperm. We identified the phosphatase as calcineurin and showed that the activity of this enzyme is absolutely required during the early steps of the secretory process. When added to sperm, an inhibitor-insensitive, catalytically active domain of calcineurin was able to rescue the effect of the specific calcineurin inhibitor cyclosporin A. This same domain dephosphorylated recombinant synaptotagmin VI C2B domain, validating this protein as a new substrate for calcineurin. When sperm were treated with catalytically active calcineurin before stimulation, exocytosis was inhibited, an effect that was rescued by the phosphomimetic synaptotagmin VI C2B-T418E,T419E mutant domain. These observations indicate that synaptotagmin must be dephosphorylated at a specific window of time and suggest that phosphorylated synaptotagmin has an active role at early stages of the acrosomal exocytosis.  相似文献   

20.
The intraacrosomal calcium pool plays a direct role in acrosomal exocytosis   总被引:9,自引:0,他引:9  
The acrosome reaction is a unique type of regulated exocytosis. The single secretory granule of the sperm fuses at multiple points with the overlying plasma membrane. In the past few years we have characterized several aspects of this process using streptolysin O-permeabilized human spermatozoa. Here we show that Rab3A triggers acrosomal exocytosis in the virtual absence of calcium in the cytosolic compartment. Interestingly, exocytosis is blocked when calcium is depleted from intracellular stores. By using a membrane-permeant fluorescent calcium probe, we observed that the acrosome actually behaves as a calcium store. Depleting calcium from this compartment by using a light-sensitive chelator prevents secretion promoted by Rab3A. UV inactivation of the chelator restores exocytosis. Rab3A-triggered exocytosis is blocked by calcium pump and inositol 1,4,5-trisphosphate (IP(3))-sensitive calcium channel inhibitors. Calcium measurements inside and outside the acrosome showed that Rab3A promotes a calcium efflux from the granule. Interestingly, release of calcium through IP(3)-sensitive calcium channels was necessary even when exocytosis was initiated by increasing free calcium in the extraacrosomal compartment in both permeabilized and intact spermatozoa. Our results show that a calcium efflux from the acrosome through IP(3)-sensitive channels is necessary downstream Rab3A activation during the membrane fusion process leading to acrosomal exocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号