首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of diatom locomotion has been widely researched but still remains a hypothesis. There are several questionable points on the prevailing model proposed by Edgar, and some of the observed phenomena cannot be completely explained by this model. In this paper, we undertook detailed investigations of cell structures, locomotion, secreted mucilage, and bending deformation for a benthic pennate diatom Navicula species. According to these broad evidences, an updated locomotion model is proposed. For Navicula sp., locomotion is realized via two or more pseudopods or stalks protruded out of the frustules. The adhesion can be produced due to the pull-off of one pseudopod or stalk from the substratum through extracellular polymeric substances. And the positive pressure is generated to balance the adhesion because of the push-down of another pseudopod or stalk onto the substratum. Because of the positive pressure, friction is generated, acting as a driving force of locomotion, and the other pseudopod or stalk can detach from the substratum, resulting in the locomotion. Furthermore, this model is validated by the force evaluation and can better explain observed phenomena. This updated model would provide a novel aspect on underwater locomotion strategy, hence can be useful in terms of artificial underwater locomotion devices.  相似文献   

2.
Proteins as well as materials of low molecular weight have marked effects on the rate of locomotion, adhesion and cell shape of human neutrophil granulocytes in vitro. Plasma protein preparations differ qualitatively with respect to their chemokinetic activity. Human serum albumin (HSA), fibrinogen and acid-treated gamma globulin without polymers have a positive chemokinetic effect on neutrophils suspended in Gey's solution. Standard gamma globulin (SGG) or acid-treated gamma globulin with polymers have marked negative chemokinetic activity. Three different mechanisms are presumably responsible for the low rate of locomotion observed in Gey's solution alone, Gey's solution containing acid-treated gamma globulin with polymers or SGG, respectively: (a) too firm adhesion to the substratum; (b) lack of adhesion to the substratum; and (c) impaired capacity to perform shape changes. The relationship between attachment of cells to the substratum and the rate of neutrophil locomotion has been investigated. It appears that the pattern of adhesion rather than cell attachment as measured by the proportion of neutrophils adhering to the substratum is a meaningful correlate to locomotion. Two different patterns of adhesion can be distinguished by means of reflection-contrast microscopy: (a) the pattern characterized by uniform grey areas is compatible with efficient locomotion; (b) a pattern characterized by large black areas at the cell periphery. It is associated with neutrophils in Gey's solution which fail to displace themselves efficiently. This suggests that reflection-contrast microscopy may be helpful in distinguishing contacts allowing locomotion to occur from contacts impeding neutrophil locomotion.  相似文献   

3.
It is proposed that patching, capping and endocytosis, and cell locomotion are manifestations of a single process whereby the cell discards foreign materials. Capping results from the binding to the cell surface of particulate (or molecular) objects which cannot function as immovable substratum. This might be described as unsuccessful or abortive cell adhesion in that the particles adhere to the cell rather than the cell adhering to the substratum. Lateral particle movements on the cell surface membrane are effected by the submembranous microfilament-microtubule system, resulting in capping without displacement of the cell. Successful adhesion of the cell to a substratum renders capping and endocytosis impossible and the cell attempts to discard the substratum by mechanisms analogous to capping. The cell achieves this by lateral movement and detachment of the trailing edge.The concept of abortive adhesion leading to capping has been amplified by the development of molecular models of normal and neoplastic cell adhesion in vitro in the presence and absence of serum. In these models, the normal cells have molecule A (adhesion sites) on their surface; they can spread on the substratum in the absence of serum. In the presence of serum, the A molecules on the normal cell surface bind with B molecules in serum, which may be substratum-bound or free in suspension. Binding of free B molecules with cell surface A molecules results in blockage of adhesion sites; these are cleared via capping. New adhesion sites (A molecules) are produced at the active edges of the cell. Binding of cell surface A molecules with the substratum bound B molecules results in cell adhesion. Transformed cells do not have A molecules on their surface; they cannot spread in the absence of serum. The transformed cells may recruit A molecules from the serum to attain deformability and spreading.These models also relate to capping of gold or resin particles, cell locomotion and regulation of cell division, and lectin-induced agglutination of transformed cells.  相似文献   

4.
Contact angle measurements have been used to correlate surface hydrophobicity of a supporting substratum with adhesion and locomotion of polymorphonuclear leukocytes. The binding of human serum albumin, a well-known chemokinetic substance, to hydrophilic glass slides gave rise to hydrophobic surfaces with adhesive properties conducive, to cell polarization thus allowing cell locomotion. Parallel contact angle and cell adhesion measurements suggested that albumin modified the cellsubstratum interaction by increasing the van der Waals forces of attraction and reducing the electrostatic forces. By allowing cells to adhere to a hydrophobic surface (siliconized glass), it was found that protein could be omitted from in vitro test systems for leukocyte locomotion. It is suggested that quantitatively equal cell adhesion values may, depending on the type of attraction forces working in adhesion to the substratum, result in different locomotion patterns.  相似文献   

5.
C Dahlgren 《Cell biophysics》1982,4(2-3):133-141
Contact angle measurements have been used to correlate surface hydrophobicity of a supporting substratum with adhesion and locomotion of polymorphonuclear leukocytes. The binding of human serum albumin, a well-known chemokinetic substance, to hydrophilic glass slides gave rise to hydrophobic surfaces with adhesive properties conductive to cell polarization, thus allowing cell locomotion. Parallel contact angle and cell adhesion measurements suggested that albumin modified the cell-substratum interaction by increasing the van der Waals forces of attraction and reducing the electrostatic forces. By allowing cells to adhere to a hydrophobic surface (siliconized glass), it was found that protein could be omitted from in vitro test systems for leukocyte locomotion. It is suggested that quantitatively equal cell adhesion values may, depending on the type of attraction forces working in adhesion to the substratum, result in different locomotion patterns.  相似文献   

6.
The effects of glucose concentration on the chemokinetic effects of the chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (fMet-Leu-Phe) was evaluated for normal human neutrophils using a direct microscopic assay. fMet-Leu-Phe increased the rate of locomotion in the absence of glucose, but the chemokinetic effect of fMet-Leu-Phe was most potent at 5mM glucose and not further changed at 15 mM glucose. The chemokinetic effects of fMet-Leu-Phe and glucose were essentially the same in blood clot-isolated and gradient-isolated neutrophils. However, in gradient-isolated neutrophils, the rate of locomotion under different experimental conditions was strictly negatively correlated to the fraction of non-locomoting cells and the degree of adhesion to the substratum. These results indicate that the chemokinetic effects of fMet-Leu-Phe are regulated by the glucose concentration by inducing locomotor activity in otherwise non-locomoting cells and by improving adhesion to the substratum.  相似文献   

7.
Neutrophils from a patient with Chédiak-Higashi (CH) syndrome exhibited defective directional locomotion in a gradient of activated plasma. Further analysis of the nature of this defect showed that CH neutrophils could respond normally to stimulation with f-Met-Leu-Phe, by increasing both their motility and polarization, provided the cells were kept in suspension. Contact with the substratum resulted in the loss of both motility and polarity in the majority of cells. CH neutrophils, in contrast to normal cells, did not respond chemokinetically to f-Met-Leu-Phe. Unstimulated random locomotion of CH neutrophils was also depressed, and this correlated with increased spreading on the substratum. Our results indicate that motility, locomotion and polarisation of CH neutrophils on the substratum are depressed because of excessive adhesion.  相似文献   

8.
Locomotion in terrestrial vertebrates is supposed to be derived from preadaptation in bottom-dwelling fish. A few fish species have been assumed to walk on the substratum, on the basis of coordinated movements of their paired fins. However, the validity of this assumption has remained uncertain, because of a lack of evidence that their fin rays actually exert a force on the substratum. Here, we provide the first conclusive evidence that a benthic teleost fish, the gurnard, Chelidonichthys lucerna (Triglidae), exerts forces on the substratum during its temporary bottom-dwelling hexapod locomotion. This demonstration was achieved by the use of a photoelastic gel technique combined with a force calibration device. The movement patterns of the three first pairs of rays of the pectoral fins were analysed in relation to the forces exerted on the substratum, by measuring deformations of the photoelastic gel substratum produced by the rays. The rays were shown to produce a force pattern that confirmed the existence of a hexapod locomotion in a vertebrate that was consistent with body propulsion and voluntary substratum walking.  相似文献   

9.
Summary Anucleated fragments ofAmoeba proteus obtained by dissection and kept on an untreated glass surface fail to adhere to this substratum, lose motor polarity, and stop moving, at least for several hours. If they are transferred after the operation to a highly adhesive surface (polylysine-coated glass), they adhere to the substratum, although locomotion is not spontaneously restored. However, after exposure to a light-shade difference along their body they start moving towards the shaded area and continue locomotion as long as the photic stimulus is acting. Disorganisation of the F-actin cytoskeleton of anucleated fragments was observed on the untreated glass but reorganization on the polylysine-coated surface. The anucleated fragments can show transient recovery of slight spontaneous motor activity and react promptly to external stimuli after up to several days on untreated glass. These intermittent activity periods are enabled by reconstruction of F-actin cytoskeleton in the anucleated fragments during their temporary adhesion to the glass. It is concluded that the injurious effect of cell nucleus removal on the locomotor capacity of amoebae can be compensated by the simultaneous enhancement of cell adhesion and application of a stimulus restoring the motor polarity of the cell. The compensation is achieved by cytoskeletal reorganization.  相似文献   

10.
It has been shown that adhesion of the limpet, Patella vulgata L. is influenced by both physical and physiological factors. The tenacity is sensitive to surface properties of the substratum, varying inversely with the contact angle which water makes with a substratum. This can be explained in terms of thermodynamics. Surface roughness also affects tenacity and this is explained in the same manner. Different angles of detachment were tested and it was clearly shown that when a strong peeling component was introduced, a much reduced force was needed to detach a limpet. Contrary to a normal pull, when a shear pull is exerted the force is not proportional to the surface area of the foot. It has also been shown that the speed of separation affects the measured tenacity; there is a speed at which tenacity will be maximum. The effect of water temperature on tenacity has been tested, tenacity increasing with rising temperature (7, 13, 20 °C). At the higher temperatures limpets are able to contract the foot muscles more powerfully, indicating that increased foot rigidity increases tenacity. By measuring the tenacity of limpets left out of water for different periods of time it has been shown that desiccation has no effect on tenacity, but a change from aquatic to aerial respiration increases tenacity. Tenacity has also been measured when the limpets have been subjected to a reduction in metabolic rate. The effect of both anoxia and narcotization shows that reduced muscle tonus, especially in the foot, results in decreased tenacity. These results further demonstrate that foot rigidity is essential for efficient adhesion. Eimpets from different habitats (exposed and sheltered) and vertical distribution (high and low level on shore) exhibited no differences in tenacity. During locomotion limpets leave a mucous trail, most of the mucus being confined to the edge of the trail. Water is incorporated anteriorly under each new locomotory wave and these pockets of water are used to release the mucus from the substratum during locomotion. It is concluded from this study that limpet adhesion can be explained solely by the tackiness of the pedal mucus, tack being due to the stored elastic energy within the mucous layer itself.  相似文献   

11.
The effects of lanthanum ions (La+++) on the locomotion and adhesion of g lial cells and elongating nerve axons are reported. La+++ increases adhesion of both glia and of nerve growth cones to a plastic substratum. La+++ also markedly reduces glia locomotion, but it does not inhibit nerve elongation. Electron-opaque deposits are seen on the cell surface and within cytoplasmic vesicles of glia and nerves cultured in a La+++-containing medium. Possible modes of action for La+++ are discussed, particularly the possibilities that Ca++ fluxes or Ca++ involvement in adhesion are altered by La+++. The results are consistent with the hypothesis that cell migration and nerve axon elongation differ in mechanism, with respect to both adhesive interactions and the activity of microfilament systems.  相似文献   

12.
A. Grębecki 《Protoplasma》1987,141(2-3):126-134
Summary The transverse velocity profiles of the anterograde flow of particles on the cell surface and around it are approximately parabolic. The peak velocity is recorded close to the membrane and the descendent arm of the profile is viscosity-dependent. It indicates that the extracellular forward flow is probably generated by a forward movement of the fluid fraction of the membrane itself. The retrograde component of extracellular movements is manifested by particles kept on the cell surface by adhesion, which behave exactly as the ectoplasmic layer on the opposite side of the membrane,i.e., they probably reflect the movement of that fraction of the surface material which is attached to the cortical microfilaments. In the longitudinal profile, the velocity of anterograde flow rises from the tail to the front of amoeba, but is generally related to the effective cell locomotion rate and not to the movements of any intracellular layer. Around the cells deprived of any attachment to the substratum, which cannot locomote but manifest vigorous intracellular movements, the anterograde flow ceases at least along 2/3 of their lenght. It persists, however, around the frontal fountain zone, where other particles still move backwards together with the retracted ectoplasmic layer. This indicates that the role of the forward flow of and on the cell surface is to compensate for: (1) the increase of the surface area in the frontal regions due to locomotion, (2) the withdrawal of a part of material which is hauled back by the retracting cortical layer. A comprehensive scheme of the velocity distribution within the different layers of a moving amoeba and around it has been constructed on the basis of present and earlier data.Study supported by the Research Project CPBP 04.01 of the Polish Academy of Science.I dedicate this paper to Professor K. E. Wohlfarth-Bottermann with the best wishes for his 65th birthday.  相似文献   

13.
Morphology and locomotive behavior in the marine amoeba, Paramoeba pemaquidensis Page, was examined under different environmental conditions. Paramoeba requires a minimum surface negative charge density for adhesion of amoebae to substrata. Once adhesion to the substratum has been attained, however, surface negative charge density has no effect on morphology or locomotive rate. Divalent cations are not required for adhesion, but external calcium is required for normal locomotion. In the presence of calcium, Paramoeba often assumes a locomotive form with a broad, well-developed anterior hyaline region and truncate posterior region. Locomotive forms vary from those with only a well-developed hyaline region (Flabellula-like) to forms with long digitiform sub-pseudopodia (Vexillifera-like), with intermediate morphotypes. Locomotive rates decrease and anteroposterior polarity disappears in the presence of living or heat-killed bacteria, indicating that phagocytosis temporarily interferes with locomotion and alters form.  相似文献   

14.
Serum fibronectin inhibits the adhesion of neutrophil granulocytes (PMNs) to clean glass, HSA-coated glass, and gelatin-coated glass. It does not affect adhesion to collagen-coated glass which itself provides a substratum of low adhesiveness for PMNs. Cell-cell adhesion is not affected. During the acute inflammatory response in vivo, PMNs must migrate through the fibronectin and collagen containing extracellular matrix: reducing cell-substratum adhesion in these circumstances might facilitate locomotion towards inflammatory foci.  相似文献   

15.
Recent data have reinforced the fundamental role of regulated cell adhesion as a force that drives morphogenesis during gastrulation. As we discuss, cell adhesion is required for all modes of gastrulation movements in all organisms. It can even be instructive in nature, but it must be tightly and dynamically regulated. The picture that emerges from the recent findings that we review here is that different modes of gastrulation movements use the same principles of adhesion regulation, while adhesion molecules themselves coordinate the intra- and extracellular changes required for directed cell locomotion.  相似文献   

16.
To evaluate the role of adhesiveness in cell locomotion we have compared the parameters of motion (rate and directionality index) of an adhesive-deficient mutant, AD6, and of its parental strain, BALB 3T3, by means of cinematography. The low adhesive cells, AD6, have the same migration rate (1 μm/min) as the parental cells, but they have lost the directionality of motion (directionality index is 6-fold lower in AD6). Similarly, the parental strain BALB 3T3 or the mutant biochemically reverted, cultured on a poorly adhesive substratum, showed a significant decrease in the persistence of direction of movement. The adhesiveness of AD6 cells is increased when cultured in presence of LETS (50 μg/ml). In these conditions the high directionality index of the wild-type cells is restored in the mutant. On the other hand, we have reported that N-acetyl glucosamine bypasses the enzymatic block of the AD6 cells, and restores to normal the cell surface carbohydrates and adhesiveness. We show here that the directionality of motion is also reverted by the amino-sugar. A good correlation was found between the loss of directionality and the absence of microfilament bundles. We conclude that adhesiveness to substratum controls the directionality of fibroblast locomotion as follows: (1) Cell-to-substrate adhesion is necessary to stabilize the leading edge and to promote the organization of microfilaments in bundles; (2) the stabilization of the leading edge and the axial organization provided by the actin cables are required for the persistence of direction of motion.  相似文献   

17.
Adhesive systems are ubiquitous in benthic animals and play a key role in diverse functions such as locomotion, food capture, mating, burrow building, and defence. For benthic animals that release adhesives, surface and material properties and external morphology have received little attention compared to the biochemical content of the adhesives. We address temporary adhesion of benthic animals from the following three structural levels: (a) the biochemical content of the adhesive secretions, (b) the micro‐ and mesoscopic surface geometry and material properties of the adhesive organs, and (c) the macroscopic external morphology of the adhesive organs. We show that temporary adhesion of benthic animals is affected by three structural levels: the adhesive secretions provide binding to the substratum at a molecular scale, whereas surface geometry and external morphology increase the contact area with the irregular and unpredictable profile of the substratum from micro‐ to macroscales. The biochemical content of the adhesive secretions differs between abiotic and biotic substrata. The biochemistry of the adhesives suitable for biotic substrata differentiates further according to whether adhesion must be activated quickly (e.g. as a defensive mechanism) or more slowly (e.g. during adhesion of parasites). De‐adhesion is controlled by additional secretions, enzymes, or mechanically. Due to deformability, the adhesive organs achieve intimate contact by adapting their surface profile to the roughness of the substratum. Surface projections, namely cilia, cuticular villi, papillae, and papulae increase the contact area or penetrate through the secreted adhesive to provide direct contact with the substratum. We expect that the same three structural levels investigated here will also affect the performance of artificial adhesive systems.  相似文献   

18.
In the present study we show that adhesion of normal rat liver epithelial cells (RL34) to substratum coated with type I collagen (collagen substratum) is promoted by a factor involved in 80% ammonium sulfate precipitated proteins from serum-free conditioned medium (PCM) of rat embryo fibroblasts. Adhesion of RL34 cells to collagen substratum was promoted dose dependently by whole PCM and the maximum effects on adhesion could be achieved by 200 micrograms/ml whole PCM. Kinetics studies with 100 micrograms/ml whole PCM showed that adhesion proceeded very slowly, taking 16 h to reach a plateau. Adhesion-promoting activity in whole PCM was sensitive to treatments with trypsin, acid, and heat but stable to dithiothreitol treatment. Further purification of whole PCM was performed using a combination of chromatography on blue Sepharose column, gel filtration column and heparin Sepharose column. The partially purified proteins, referred to as heparin PCM, are not bound or only weakly bound to heparin under physiological ion strength and pH, and the apparent molecular weight (Mr) range is estimated to be 40,000 to 60,000 from gel filtration chromatography and SDS-polyacrylamide gel electrophoresis. When whole PCM or heparin PCM was used for coating on plastic or collagen substratum, they no longer exerted the promoting activity.  相似文献   

19.
Posture control by statocysts is affected by leg condition in decapod crustaceans. We investigated how, in the crayfish brain, the synaptic response of local interneurons to statocyst stimulation was affected by leg movements on and off a substratum. The magnetic field stimulation method permitted sustained stimulation of statocyst receptors by mimicking body rolling. The statocyst-driven local interneurons were classified into four morphological groups (Type-I–IV). All interneurons except Type-IV projected their dendritic branches to the parolfactory lobe of the deutocerebrum where statocyst afferents project directly. Type-I interneurons having somata in the ventral-paired lateral cluster responded invariably to statocyst stimulation regardless of the leg condition, whereas others having somata in the ventral-unpaired posterior cluster showed response enhancement or suppression, depending on the cell, during leg movements on a substratum, but no response change during free leg movements off the substratum. The synaptic responses of Type-II and IV interneurons were also affected differently by leg movements depending on the substratum condition, whereas those of Type-III remained unaffected. These findings suggest that the statocyst pathway in the crayfish brain is organized in parallel with local circuits that are affected by leg condition and those not affected.  相似文献   

20.
Summary Floating heterotactic cells ofAmoeba proteus were sedimented on untreated glass surfaces and on modified substrata, differing in their wettability and surface potential. About 95% of the amoebae readhere to the glass within 12 min and recover locomotive (polytactic) morphology within 13 min. The rate of locomotion resumption does not change significantly on styrene/methyl methacrylate co-polymers with contrasting hydrophilic sulfonic group surface densities. Almost all amoebae readhere within 3 min to the positively charged surface of polylysine-coated glass, but locomotive shape is only reassumed after 20 min by 95% of them. The polytactic cells are marked flattened on polylysine and move 2 1/2 times more slowly than on the glass. Floating amoebae never readhere to negatively charged gelatin gel; up to 25% become polytactic after 20 min, but they never resume locomotion. Indifference of amoebae to substratum wettability, and their prompt reaction to the positively or negatively charged surfaces, are discussed. The polylysine and gelatin gel substrata seem suitable for the study of adhesion dependent motor functions in amoebae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号