首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is still controversial whether cranial placodes and neural crest cells arise from a common precursor at the neural plate border or whether placodes arise from non-neural ectoderm and neural crest from neural ectoderm. Using tissue grafting in embryos of Xenopus laevis, we show here that the competence for induction of neural plate, neural plate border and neural crest markers is confined to neural ectoderm, whereas competence for induction of panplacodal markers is confined to non-neural ectoderm. This differential distribution of competence is established during gastrulation paralleling the dorsal restriction of neural competence. We further show that Dlx3 and GATA2 are required cell-autonomously for panplacodal and epidermal marker expression in the non-neural ectoderm, while ectopic expression of Dlx3 or GATA2 in the neural plate suppresses neural plate, border and crest markers. Overexpression of Dlx3 (but not GATA2) in the neural plate is sufficient to induce different non-neural markers in a signaling-dependent manner, with epidermal markers being induced in the presence, and panplacodal markers in the absence, of BMP signaling. Taken together, these findings demonstrate a non-neural versus neural origin of placodes and neural crest, respectively, strongly implicate Dlx3 in the regulation of non-neural competence, and show that GATA2 contributes to non-neural competence but is not sufficient to promote it ectopically.  相似文献   

2.
Biochemical and biophysical changes in the precompetent cell culture, rather than merely the cell size, regulate the appearance of competence. The more physiologically mature the incompetent cell culture is, the less competence substance is required for maximal induction of competence. The kinetics of induction of competence as the function of the physiological state of the incompetent culture and as the function of the concentration of the competence substance seems to support the idea that the competent cell is a temporary spheroplast.  相似文献   

3.
R Bravo  H Macdonald-Bravo 《FEBS letters》1986,195(1-2):309-312
The pH dependence of competence induction and progression to the S-phase in quiescent stimulated cells has been studied. The results show that: (i) induction of competence by fibroblast growth factor in these cells is relatively independent of the external pH between pH 5.6-7.6; (ii) progression of cells to the S-phase is highly sensitive to pH and shows a dramatic increase between pH 6.8-7.2. These observations suggest that the intracellular alkalinization triggered by growth factors is fundamental for progression but not for competence induction.  相似文献   

4.
《Developmental biology》1985,112(2):494-497
Leaf explants of Convolvulus arvensis produce roots or shoots when cultured in vitro on media of appropriate phytohormone balance. Each of these processes of organogenesis can be divided into three parts: phase 1, the acquisition of competence for induction, phase 2, induction per se, and phase 3, morphological differentiation and growth. Control of the type of organogenesis by the balance of exogenous phytohormones resides in phase 2; phases 1 and 3 occur over a wide range of hormone balances. The competence for induction acquired in phase 1 has a positional component. Root-, shoot-, and callus-inducing media, RIM, SIM, or CIM, respectively, all can produce competence for both root and shoot induction; however, roots arise from cells in the upper part of the callus, and shoots, from cells in contact with the medium. Some genotypes of Convolvulus do not make roots on RIM, others, make no shoots on SIM. Because explants of some of these genotypes can be made to regenerate organ types by short precultures on seemingly inappropriate media, we conclude that these genotypes are blocked in the acquisition of competence.  相似文献   

5.
Group H streptococcus strain Wicky, which was induced to competence for genetic transformation with competence factor (CF) derived from a related strain, displayed reduced rates of ribonucleic acid (RNA) and peptidoglycan synthesis. Pulse-labeling studies revealed that the inhibition of both RNA and peptidoglycan synthesis was maximal at the peak of competence and decreased as competence declined. These studies indicated that competence induction had only a slight effect on the rate of protein synthesis. Trypsin inactivation of CF prevented the reductions in synthesis normally elicited by CF preparations. If the addition of trypsin was delayed until 5 min after the addition of CF, competence induction and decreased synthesis of RNA and peptidoglycan were again apparent. Thus, the alterations in the synthesis of these macromolecules appeared to be related to the induction of competence. Further studies indicated that the apparent reductions in biosynthesis were not caused by decreased uptake of the labeled precursors by intact Wicky cells. In addition, these effects were probably not the result of turnover of macromolecules induced by CF. The lack of turnover of labeled peptidoglycan suggested that competence induction may not involve an autolysin.  相似文献   

6.
The binding of the competence factor to cellular receptors of physiologically non-competent cells of Pneumococcus was followed as a function of time. A transformation medium without bovine serum albumin was used to study the binding of the competence factor. Control cells without the added factor remained completely non-competent under these conditions. The maximal binding of the factor to the cellular receptors took place already after 3 min of contact of the cells with the factor at 37 degrees C. After 10 min, when the maximum induction of competence occurs in the system used, the competence factor is fully released from the receptors to the medium. It follows that within the period between the 3rd and 10th min, when the cells are being modified for the irreversible binding of DNA, the presence of the competence factor on the cells is no longer necessary.  相似文献   

7.
8.
Inductive interactions between different cell layers have an extremely important role in early embryogenesis. One of the most intensively studied and best characterised of these is the induction of neural tissue from ectodermal cells by the dorsal mesoderm. The competence of ectodermal cells to respond to neural induction varies according to dorsal-ventral position; with dorsal ectoderm (much of which forms the neural plate) having a far higher competence. Here we show that overexpression of the nucleotide exchange factor lfc increases ectodermal competence for neural induction as well as the amount of neural tissue in the whole embryo. Lfc is expressed pan ectodermally soon after gastrulation and may respond to an early determinant of dorsal ectoderm.  相似文献   

9.
Changes in retinoic acid signaling alter otic patterning   总被引:1,自引:0,他引:1  
Retinoic acid (RA) has pleiotropic functions during embryogenesis. In zebrafish, increasing or blocking RA signaling results in enlarged or reduced otic vesicles, respectively. Here we elucidate the mechanisms that underlie these changes and show that they have origins in different tissues. Excess RA leads to ectopic foxi1 expression throughout the entire preplacodal domain. Foxi1 provides competence to adopt an otic fate. Subsequently, pax8, the expression of which depends upon Foxi1 and Fgf, is also expressed throughout the preplacodal domain. By contrast, loss of RA signaling does not affect foxi1 expression or otic competence, but instead results in delayed onset of fgf3 expression and impaired otic induction. fgf8 mutants depleted of RA signaling produce few otic cells, and these cells fail to form a vesicle, indicating that Fgf8 is the primary factor responsible for otic induction in RA-depleted embryos. Otic induction is rescued by fgf8 overexpression in RA-depleted embryos, although otic vesicles never achieve a normal size, suggesting that an additional factor is required to maintain otic fate. fgf3;tcf2 double mutants form otic vesicles similar to RA-signaling-depleted embryos, suggesting a signal from rhombomere 5-6 may also be required for otic fate maintenance. We show that rhombomere 5 wnt8b expression is absent in both RA-signaling-depleted embryos and in fgf3;tcf2 double mutants, and inactivation of wnt8b in fgf3 mutants by morpholino injection results in small otic vesicles, similar to RA depletion in wild type. Thus, excess RA expands otic competence, whereas the loss of RA impairs the expression of fgf3 and wnt8b in the hindbrain, compromising the induction and maintenance of otic fate.  相似文献   

10.
A P Otte  R T Moon 《Cell》1992,68(6):1021-1029
The restricted ability of embryonic tissue to respond to inductive signals is controlled by a poorly understood phenomenon, termed competence. In Xenopus, dorsal ectoderm is more competent than ventral ectoderm to become induced to neural tissue. We tested whether the Xenopus protein kinase C (PKC) isozymes alpha and beta have a role in neural induction and competence. We found that PKC alpha is predominantly localized in dorsal ectoderm, whereas PKC beta is uniformly distributed. Overexpression of PKC beta conveys a higher propensity for neural differentiation to both dorsal and ventral ectoderm, but their difference in competence remains. However, ectopic expression of PKC alpha elevates the level of neural competence of ventral ectoderm to that of dorsal ectoderm. These data indicate that different PKC isozymes have distinct roles in mediating both neural induction and competence.  相似文献   

11.
Snir M  Ofir R  Elias S  Frank D 《The EMBO journal》2006,25(15):3664-3674
Cellular competence is defined as a cell's ability to respond to signaling cues as a function of time. In Xenopus laevis, cellular responsiveness to fibroblast growth factor (FGF) changes during development. At blastula stages, FGF induces mesoderm, but at gastrula stages FGF regulates neuroectoderm formation. A Xenopus Oct3/4 homologue gene, XLPOU91, regulates mesoderm to neuroectoderm transitions. Ectopic XLPOU91 expression in Xenopus embryos inhibits FGF induction of Brachyury (Xbra), eliminating mesoderm, whereas neural induction is unaffected. XLPOU91 knockdown induces high levels of Xbra expression, with blastopore closure being delayed to later neurula stages. In morphant ectoderm explants, mesoderm responsiveness to FGF is extended from blastula to gastrula stages. The initial expression of mesoderm and endoderm markers is normal, but neural induction is abolished. Churchill (chch) and Sip1, two genes regulating neural competence, are not expressed in XLPOU91 morphant embryos. Ectopic Sip1 or chch expression rescues the morphant phenotype. Thus, XLPOU91 epistatically lies upstream of chch/Sip1 gene expression, regulating the competence transition that is critical for neural induction. In the absence of XLPOU91 activity, the cues driving proper embryonic cell fates are lost.  相似文献   

12.
13.

Background

A metamorphic life-history is present in the majority of animal phyla. This developmental mode is particularly prominent among marine invertebrates with a bentho-planktonic life cycle, where a pelagic larval form transforms into a benthic adult. Metamorphic competence (the stage at which a larva is capable to undergo the metamorphic transformation and settlement) is an important adaptation both ecologically and physiologically. The competence period maintains the larval state until suitable settlement sites are encountered, at which point the larvae settle in response to settlement cues. The mechanistic basis for metamorphosis (the morphogenetic transition from a larva to a juvenile including settlement), i.e. the molecular and cellular processes underlying metamorphosis in marine invertebrate species, is poorly understood. Histamine (HA), a neurotransmitter used for various physiological and developmental functions among animals, has a critical role in sea urchin fertilization and in the induction of metamorphosis. Here we test the premise that HA functions as a developmental modulator of metamorphic competence in the sea urchin Strongylocentrotus purpuratus.

Results

Our results provide strong evidence that HA leads to the acquisition of metamorphic competence in S. purpuratus larvae. Pharmacological analysis of several HA receptor antagonists and an inhibitor of HA synthesis indicates a function of HA in metamorphic competence as well as programmed cell death (PCD) during arm retraction. Furthermore we identified an extensive network of histaminergic neurons in pre-metamorphic and metamorphically competent larvae. Analysis of this network throughout larval development indicates that the maturation of specific neuronal clusters correlates with the acquisition of metamorphic competence. Moreover, histamine receptor antagonist treatment leads to the induction of caspase mediated apoptosis in competent larvae.

Conclusions

We conclude that HA is a modulator of metamorphic competence in S. purpuratus development and hypothesize that HA may have played an important role in the evolution of settlement strategies in echinoids. Our findings provide novel insights into the evolution of HA signalling and its function in one of the most important and widespread life history transitions in the animal kingdom - metamorphosis.  相似文献   

14.
Ralf Oelmüller  Hans Mohr 《Planta》1984,161(2):165-171
The time course of appearance of competence towards phytochrome (Pfr) was studied in cotyledons of mustard (Sinapis alba L.) with regard to the light-mediated formation of anthocyanin (aglycone cyanidin) and NADP-dependent plastidal glyceraldehyde-3-phosphate dehydrogenase (GPD, EC 1.2.1.13). The experiments were performed to answer the following question: Does phytochrome act to turn responses on (induction), or — as an alternative — does phytochrome cause an amplification of processes already occurring in absolute darkness albeit at low rates once competence is reached (modulation)? The data show that in the case of GPD, phytochrome causes an amplification of the rate of synthesis once the competence point is reached at approximately 36 h after sowing at 25° C. In the case of anthocyanin, it was found that two distinct points of competence exist (26 h and 39 h after sowing, 25° C). In the case of ‘early anthocyanin’ (competence point at 26 h), synthesis does not occur in darkness without Pfr, while in the case of ‘late anthocyanin’ (competence point at 39 h), phytochrome causes an amplification of a process occurring in complete darkness albeit at a very low rate. It is concluded that in phytochrome-mediated photomorphogenesis, modulation as well as induction of biosynthetic processes plays a role.  相似文献   

15.
Full-grown oocytes of Atlantic croaker are insensitive to maturation-inducing steroid (MIS) unless they are primed with gonadotropin (GtH). The objective of this study was to examine the mechanism of GtH-induced maturational competence in croaker oocytes. Specifically, we determined the in vitro secretion of steroids by intact ovarian follicles of unprimed or hCG-primed fish, the direct effects of steroids on maturational competence, and the effects of steroid (cyanoketone), protein (cycloheximide), and RNA (actinomycin D) synthesis inhibitors on hCG-induced maturational competence and steroidogenesis in vitro. The steroid content of the incubation medium after hCG treatment was measured by RIA. The effects of hCG or exogenous steroid treatment on maturational competence were determined by recording the incidence of germinal vesicle breakdown (GVBD) after MIS-induced GVBD in a standard bioassay. Our major findings were: (1) induction of maturational competence occurred after exposure of ovarian follicles to hCG either in vivo or in vitro; (2) MIS secretion was detected in follicles of hCG-primed fish but not unprimed fish, and no MIS secretion was observed during hCG induction of maturational competence in vitro; (3) treatment with cyanoketone blocked the hCG-dependent secretion of testosterone and estradiol but not the development of maturational competence; (4) treatment with MIS or various other exogenous steroids in the absence of hCG did not induce maturational competence; and (5) hCG-induced maturational competence was inhibited by cycloheximide and actinomycin D. Therefore, the mechanisms of GtH induction of oocyte maturation in Atlantic croaker can be described in two distinct stages: a delta-4 steroid-(including MIS) and estrogen-independent priming stage followed by a MIS-mediated GVBD stage. The priming stage may involve mechanisms requiring RNA as well as protein synthesis.  相似文献   

16.
The effects of competence induction by competence factor (CF) on macromolecular synthesis in group H streptococcus strain Wicky were investigated. CF preparations (culture filtrates from competent group H streptococcus strain Challis) were either heated or partially purified to remove a bacteriocin. These preparations did not inhibit growth, although they induced high levels of competence in strain Wicky. The action of the CF preparations did not affect the overall rates of deoxyribonucleic acid and protein synthesis, but caused a reduction in the rates of ribonucleic acid (RNA) and peptidoglycan synthesis. When competence induction by CF was prevented, no alterations in RNA or peptidoglycan synthesis were observed, indicating that these changes are in fact related to the development of competence.  相似文献   

17.
Hypophysectomy of 15-day-old rats (hypox) markedly reduced the normal development of meiotic competence and abolished the development of antral follicles between days 21 and 31 postpartum (pp). Here the correlation among age of the rats, stage of follicular development, and meiotic competence was examined. Administration of pregnant mare's serum gonadotropin (PMSG-3IU) or insertion of an estradiol-17β (E2) capsule to hypox rats induced the development of meiotic competence provided the treatment started after day 20 pp. Hormonal treatments at an earlier age were not effective in inducing meiotic competence in hypox rats. The induction of meiotic competence by PMSG or E2 was associated with an increase in the number of granulosa cells and formation of follicular antrum. The finding that PMSG and E2 failed to induce meiotic competence when administered prior to day 21 pp suggests that the development of meiotic competence is an age-dependent process. When the hormonal treatments commenced after day 21, both follicular development and meiotic competence were induced.  相似文献   

18.
19.
It has previously been shown that the c-fos proto-oncogene is rapidly and transiently induced following growth factor stimulation of quiescent NIH3T3 mouse fibroblasts. To investigate a possible role of c-fos in growth control mechanisms we have studied its expression and inducibility during the NIH3T3 cell cycle. Two major conclusions can be drawn from this analysis. First, expression of c-fos is not cell cycle-regulated, and is barely detectable in all phases of the cycle. Second, cells at different stages of the cell cycle (except for mitosis) are as sensitive to c-fos induction by growth factors as quiescent cells. These observations suggest that induction of the c-fos gene does not play a role during the continuous cycling of NIH3T3 cells, but they are fully compatible with the hypothesis that a function of c-fos may be associated with the induction of competence in fibroblasts. Through such a function c-fos may contribute to moving cells out of the quiescent state.  相似文献   

20.
Cell competence is a key developmental property. The Caenorhabditis elegans vulval competence group consists of P(3–8).p, six cells aligned along the antero-posterior axis in a wide central body region. The six cells are not equal in their competence: 1) P3.p quits the competence group in half of the individuals; 2) the posterior cells P7.p and P8.p are less competent than central vulval precursor cells. Competence to adopt a vulval fate is controlled by expression of the HOM-C gene lin-39, and maintained through Wnt signals that are secreted from the tail in a long-range gradient. Here we quantify the LIN-39 protein profile in vulval precursor cells of early L2 stage larvae, prior to P3.p fusion and inductive signaling. We show that LIN-39 levels are very low in P3.p and P4.p, peak in P5.p and progressively decrease until P8.p. This unexpectedly centered profile arises independently from the gonad. Posterior Wnt signaling reduces LIN-39 level in the posterior cells by activating the next-posterior HOM-C gene, mab-5. On the anterior side, P3.p and P4.p competence and division are sensitive to the already low LIN-39 and Wnt doses; most dramatically, each of the cwn-1/Wnt and egl-20/Wnt genes show haplo-insufficience for P3.p fate. In contrast to previous results, we find that these Wnts maintain P3.p and P4.p competence without affecting their LIN-39 level. The centered vulval competence profile is thus under the control of the posterior Wnts and of cross-regulation of three HOM-C genes and prepatterns the later induction of vulval fates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号