首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nucleosomes released from oviduct nuclei during brief micrococcal nuclease digestions are enriched in transcribed sequences (bloom K.S. and Anderson, J.N. (1978) Cell, 15, 141-150). Such nucleosomes released into this 1Sf supernatant fraction are enriched in proteins HMG14, 17 and a third lower molecular weight protein which we show in this paper to be related to HMG14 and 17. This protein, which we call HMGY, runs as a doublet on polyacrylamide gels. A similar doublet is present in smaller quantities in chicken erythrocyte nuclei. Monomer nucleosomes in the 1SF supernatant have been separated by polyacrylamide gel electrophoresis into two main bands. The slower moving band contains the three HMG proteins HMG14, 17 and Y but lacks histone H1.  相似文献   

2.
Chromatin fractions from rat liver nuclei digested by nucleases were separated by differential solubility into several fractions. Material solubilized during digestion (predominantly monomer nucleosomes and polynucleosomes) had the highest HMG14 + 17/DNA ratios but were not enriched in active gene sequences (albumin and c-Ha-ras1 genes). Material soluble in a low ionic strength buffer containing 0.2 mM MgCl2 (monomer nucleosomes and polynucleosomes) contained in addition to the histones, HMG14 and 17 plus a 41K non-histone protein. This fraction was depleted in active gene sequences and enriched in inactive sequences. The insoluble material was highly enriched in active sequences and had the lowest HMG14 + 17/DNA ratio. This fraction could be further fractionated into a histone-containing 2 M NaCl-soluble fraction and a 2 M NaCl-insoluble matrix-bound fraction, both of which were enriched in active sequences. The results show that the HMG proteins do not partition with active sequences during fractionation of chromatin. The 41K protein may be associated with inactive chromatin fraction.  相似文献   

3.
4.
The nuclease sensitivity of active genes.   总被引:14,自引:11,他引:3       下载免费PDF全文
Brief micrococcal nuclease digestion of chick embryonic red blood cells results in preferential excision and solubilization of monomer nucleosomes associated with beta-globin sequences and also 5'-sequences flanking the beta-globin gene. Both regions are DNAse-I sensitive in nuclei. Such salt-soluble nucleosomes are enriched in all four major HMG proteins but HMG1 and 2 are only weakly associated. These nucleosomes appear to have lost much of the DNAse-I sensitivity of active genes. The HMG14 and 17-containing salt-soluble nucleosomes separated by electrophoresis are not DNAse-I sensitive and contain inactive gene sequences as well as active sequences. Reconstitution of HMG proteins onto bulk nucleosomes or chromatin failed to reveal an HMG-dependent sensitivity of active genes as assayed by dot-blot hybridization and it was found that the DNAse-I sensitivity of ASV proviral sequences as assayed by dot-blot hybridization was not HMG-dependent. These results indicate that higher order chromatin structures might be responsible for nuclease sensitivity of active genes.  相似文献   

5.
Nucleosomes have been isolated from rabbit thymus by sucrose gradient centrifugation, and their high mobility group (HMG) protein content analysed by electrophoresis on polyacrylamide gels. The results suggest that proteins HMG 14 and HMG 17 are associated with the core particle of the nucleosome, and that there are two or more sub-populations of both HMG 1 and HMG 2 molecules. One sub-population appears to be fairly tightly bound to the nucleosome, while another is rapidly released from the chromatin by digestion with micrococcal nuclease. The latter fraction may participate in a higher order folding of the nucleosomes.  相似文献   

6.
7.
T W Brotherton  G D Ginder 《Biochemistry》1986,25(11):3447-3454
High mobility group (HMG) proteins 14 and 17 bind to mononucleosomes in vitro, but the exact nature of this binding has not been clearly established. A new method was developed to allow direct membrane transfer of DNA from HMG 14/17 bound and unbound nucleosomes, which have been separated by acrylamide gel electrophoresis. Hybridization analysis of membranes obtained by this method revealed that the HMG 14/17 bound nucleosomes of avian erythrocytes and rat hepatic tumor (HTC) cells were enriched, about 2-fold, in actively transcribed genes and also inactive but DNase I sensitive genes. Nucleosomes containing inactive, DNase I resistant genes were bound by HMG 14/17, but not preferentially. Several factors that have been reported to greatly influence the binding of HMG 14/17 to nucleosomes in vitro were tested and shown to not account for the preferential binding to DNase I sensitive chromatin. These factors include nucleosomal linker DNA length, single-stranded DNA nicks, and DNA bulk hypomethylation. An additional factor, histone acetylation, was preferentially associated with the HMG 14/17 bound chromatin fraction of avian erythrocytes, but it was not associated with the HMG 14/17 bound chromatin fraction of metabolically active HTC cells. The latter finding was true for all kinetic forms of histone acetylation.  相似文献   

8.
The interaction of HMG 14 and 17 with actively transcribed genes was studied by monitoring the sensitivity of specific genes to DNAase I after reconstitution of HMG-depleted chromatin with HMG 14 and 17. Our experiments lead to the following conclusions: most actively transcribed genes become sensitized to DNAase I by HMG 14 and 17; either HMG 14 or HMG 17 can sensitize most genes to DNAase I; genes transcribed at different rates have about the same affinity for HMG 14 and 17; HMG 14 and 17 bind stoichiometrically to actively transcribed nucleosomes; and HMG 14 and 17 can restore DNAase I sensitivity to purified nucleosome core particles depleted of HMGs. This last observation suggests that during reconstitution, low levels of HMG 14 and 17 can associate with the active nucleosomes in the presence of a 10–20 fold excess of inactive nucleosomes. Consequently, we conclude that besides their association with HMGs, active nucleosomes also have at least one other unique feature that distinguishes them from bulk nucleosomes and insures proper HMG binding during reconstitution.  相似文献   

9.
10.
11.
12.
Nucleosome core particles form well defined complexes with the nuclear nonhistone proteins HMG 14 or 17. The binding of HMG 14 or 17 to nucleosomes results in greater stability of the nucleosomal DNA as shown by circular dichroism and thermal denaturation. Under appropriate conditions the binding is cooperative, and cooperativity is ionic strength dependent. The specificity and cooperative transitions of high mobility group (HMG) binding are preserved in 1 M urea. Specificity is lost in 4 M urea. Thermal denaturation and circular dichroism show a dramatic reversal of the effects of urea on nucleosomes when HMG 14 or 17 is bound, indicating stabilization of the nucleosome by HMG proteins. Complexes formed between reconstructed nucleosomes containing purified inner histones plus poly(dA-dT) and HMG 14 or 17 demonstrate that the HMG binding site requires only DNA and histones. Electron microscopy reveals no major structural alterations in the nucleosome upon binding of HMG 14 or 17. Cross-linking the nucleosome extensively with formaldehyde under cooperative HMG binding conditions does not prevent the ionic strength-dependent shift to noncooperative binding. This suggests mechanisms other than internal nucleosome conformational changes may be involved in cooperative HMG binding.  相似文献   

13.
Zhang SB  Huang J  Zhao H  Zhang Y  Hou CH  Cheng XD  Jiang C  Li MQ  Hu J  Qian RL 《Cell research》2003,13(5):351-360
Using atomic force microscopy (AFM), the dynamic process of the in vitro nucleosome reconstitution followed by slow dilution from high salt to low salt was visualized. Data showed that the histone octamers were dissociatedfrom DNA at 1M NaC1. When the salt concentration was slowly reduced to 650 mM and 300 mM, the core histones bound to the naked DNA gradually. Once the salt concentration was reduced to 50 mM the classic “beads-on-a-string“ structure was clearly visualized. Furthermore, using the technique of the in vitro reconstitution of nucleosome,the mono- and di- nucleosomes were assembled in vitro with both HS2core (-10681 to -10970 bp) and NCR2 (-372to -194 bp) DNA sequences in the 5‘flanking sequence of human b-globin gene. Data revealed that HMG 1/2 and HMG 14/17 proteins binding to both DNA sequences are changeable following the assembly and disassembly of nucleosomes. We suggest that the changeable binding patterns of HMG 14/17 and HMG1/2 proteins with these regulatory elements may be critical in the process of nucleosome assembly, recruitment of chromatin-modifying activities, and the regulation of human b-globin gene expression.  相似文献   

14.
Chromosomal proteins have been isolated from barley (Hordeum vulgare) and corn (Zea mays) nuclei by extraction with 5% perchloric acid. In each plant, one protein was shown to belong to the HMG proteins. Their molecular weights are very close to that of HMG 14 from chicken erythrocytes, as shown by electrophoretic mobility in SDS polyacrylamide gels. In acetic acid-urea-Triton polyacrylamide gels they migrate between HMG 1,2 and HMG 14, from chicken erythrocytes. Their amino acid compositions are typical of HMG proteins, with equivalent high values of acidic and basic residues. Extraction of HMG's from purified barley chromatin fractions with 0.35 M NaCl considerably reduces histone H2 contamination and increases the yield of HMG up to 0.7% of the total histones. In this technique a second protein was extracted which is soluble in 2% Trichloroacetic acid and shows electrophoretic mobility analogous to those of HMG 14 and 17 from chicken erythrocytes. Whether or not these proteins are counterparts of the animal HMG's 1–2 or HMG's 14–17 is discussed.  相似文献   

15.
The binding sites for histones and high mobility group proteins (HMG) 14 and 17 have been located on DNA in the nucleosomal cores and H1/H5-containing nucleosomes. The nucleosomes were specifically associated with two molecules of the non-histone proteins HMG 14 and/or HMG 17 when followed by DNA-protein crosslinking and immunoaffinity isolation of the crosslinked HMG-DNA complexes. HMGs 14 and 17 were shown to be crosslinked in a similar manner to each core DNA strand at four sites: to both 3' and 5' DNA ends and also at distances of about 25 and 125 nucleotides from the 5' termini of the DNA. These sites are designated as HMG(143), (0), (25) and (125). The site HMG(125) is located at the place where no significant histone-DNA crosslinking was observed. The HMG(125) and HMG(25) sites lie opposite one another on the complementary DNA strands across the minor DNA groove and are placed, similarly to histones, on the inner side of the DNA superhelix in the nucleosome. The crosslinking of HMG 17 to the 3' ends of the DNA is much weaker than that of HMG 14. These data indicate that each of two molecules of HMG 14 and/or HMG 17 is bound to the double-stranded core DNA at two discrete sites: to the 3' and 5' ends of the DNA and at a distance of 20 to 25 base-pairs from each DNA terminus inside the nucleosome on a histone-free DNA region. Binding of HMG 14 or 17 does not induce any detectable rearrangement of histones on DNA and both HMGs seem to choose the same sites for attachment in nucleosomal cores and H1/H5-containing nucleosomes.  相似文献   

16.
The interaction of high mobility proteins HMG14 and 17 with nucleosomes.   总被引:41,自引:22,他引:19       下载免费PDF全文
The interaction of the high mobility group proteins, HMG14 and HMG17, with nucleosome core particles has been studied. The results show that two molecules of HMG14/17 can be bound tightly but reversibly to each core particle and that their affinity for core particles is greater than their affinity for histone-free DNA of core size. Thermal denaturation and nuclease digestion studies suggest that major sites of interaction are located near the ends of the nucleosome core DNA. When nucleosome preparations from chicken erythrocyte nuclei stripped of HMG proteins are partially titrated with HMG14/17, the nucleosome-HMG complex fraction is enriched in beta-globin gene sequences.  相似文献   

17.
18.
Purified lamb thymus high-mobility-group (HMG) proteins 1, 2, and 17 have been investigated as potential substrates for the Ca2+-phospholipid-dependent protein kinase and the cAMP-dependent protein kinase. HMG proteins 1, 2, and 17 are phosphorylated by the Ca2+-phospholipid-dependent protein kinase; the reactions are totally Ca2+ and lipid dependent and are not inhibited by the inhibitor protein of the cAMP-dependent protein kinase. HMG 17 is phosphorylated predominantly in a single seryl residue, Ser 24 in the sequence Gln-Arg-Arg-Ser 24-Ala-Arg-Leu-Ser 28-Ala-Lys, with the second seryl moiety, Ser 28, modified to a markedly lesser degree. HMGs 1 and 2 are also phosphorylated in only seryl residues but with each there are multiple phosphorylation sites. HMG 17, but not HMG 1 or 2, is also phosphorylated by the cAMP-dependent protein kinase with the site phosphorylated being the minor of the two phosphorylated by the Ca2+-phospholipid-dependent protein kinase; the Km for phosphorylation by the cAMP-dependent enzyme is 50-fold higher than that by the Ca2+-phospholipid-dependent enzyme. HMG 17 is an equally effective substrate for the Ca2+-phospholipid-dependent protein kinase either as the pure protein or bound to nucleosomes. Preliminary evidence has indicated that lamb thymus HMG 14 is also a substrate for the Ca2+-phospholipid-dependent enzyme. It is phosphorylated with a Km similar to that of HMG 17 (4-6 microM), and a comparison of tryptic peptides suggests that it is phosphorylated in a site that is homologous with Ser 24 of HMG 17 and distinct from the sites phosphorylated by the cAMP-dependent protein kinase.  相似文献   

19.
ADP-ribosylation of nonhistone high mobility group proteins in intact cells   总被引:7,自引:0,他引:7  
The ADP-ribosylation of nonhistone, high mobility group (HMG) proteins in intact cultured cells was investigated. Radioactively labeled adenosine was used as a precursor to detect (ADP-ribose)n on protein. A protein fraction enriched in HMG proteins and histone H1 was separated from RNA and DNA by CsCl density gradient centrifugation, 5% perchloric acid extraction, and CM-Sephadex C-50 column chromatography. Poly- and mono(ADP-ribose) were recovered following alkaline hydrolysis, and 5'-AMP and (2'-(5"-phosphoribosyl)-5'-AMP) were produced by phosphodiesterase treatment, indicating that the protein-bound radioactive material was (ADP-ribose)n. An average chain length of 1.5 to 1.8 was determined. Analysis of proteins by sodium dodecyl sulfate and acetic acid/urea polyacrylamide gel electrophoresis demonstrated that HMG 1, 2, 14, and 17 as well as histone H1 contained (ADP-ribose)n. Treatment of cells with 3-aminobenzamide, an inhibitor of (ADP-ribose)n synthetase, decreased endogenous ADP-ribosylation in both types of chromosomal proteins but that of HMG 14 and 17 was affected more.  相似文献   

20.
HMG proteins are abundant chromosomal non-histone proteins. It has been suggested that the HMG proteins may play an important role in the structure and function of chromatin. In the present study, the binding of HMG proteins (HMG1/2 and HMG14/17) to the core DNA sequence of DNaseI hypersensitive site 2 (HS2core DNA sequence, -10681--10970 bp) in the locus control region (LCR) of the human b-like globin gene cluster has been examined by using both the in vitro nucleosome reconstitution and the gel mobility shift assays. Here we show that HMG1/2 can bind to the naked HS2core DNA sequence, however, HMG14/17 cannot. Using the in vitro nucleosome reconstitution we demonstrate that HMG14/17 can bind to the HS2core DNA sequence which is assembled into nucleosomes with the core histone octamer transferred from chicken erythrocytes. In contrast, HMG1/2 cannot bind to the nucleosomes reconstituted in vitro with the HS2core DNA sequence. These results indicate that the binding patterns between HMG proteins and the HS2core DNA sequence which exists in different states (the naked DNA or the in vitro reconstituted nucleosomal DNA) are quite different. We speculate that HMG proteins might play a critical role in the regulation of the human β-like globin gene's expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号