首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Susceptibility of Bacillus thuringiensis spores and toxins to the UV-B range (280–330 nm) of the solar spectrum reaching Earth's surface may be responsible for its inactivation and low persistence in nature. Spores of the mosquito larvicidal B. thuringiensis subsp. israelensis were significantly more resistant to UV-B than spores of the lepidopteran-active subsp. kurstaki. Spores of subsp. israelensis were as resistant to UV-B as spores of B. subtilis and more resistant than spores of the closely related B. cereus and another mosquito larvicidal species B. sphaericus. Sensitivity of B. thuringiensis subsp. israelensis spores to UV-B radiation depended upon their culture age; 24-h cultures, approaching maximal larvicidal activity, were still sensitive. Maximal resistance to UV-B was achieved only at 48 h. Received: 13 December 2000/Accepted: 19 January 2001  相似文献   

2.
Sprays of commercial preparations of the bacterium Bacillus thuringiensis subsp. israelensis are widely used for the control of mosquito larvae. Despite an abundant literature on B. thuringiensis subsp. israelensis field efficiency on mosquito control, few studies have evaluated the fate of spores in the environment after treatments. In the present article, two complementary experiments were conducted to study the effect of different parameters on B. thuringiensis subsp. israelensis persistence and recycling, in field conditions and in the laboratory. First, we monitored B. thuringiensis subsp. israelensis persistence in the field in two contrasting regions in France: the Rhône-Alpes region, where mosquito breeding sites are temporary ponds under forest cover with large amounts of decaying leaf matter on the ground and the Mediterranean region characterized by open breeding sites such as brackish marshes. Viable B. thuringiensis subsp. israelensis spores can persist for months after a treatment, and their quantity is explained both by the vegetation type and by the number of local treatments. We found no evidence of B. thuringiensis subsp. israelensis recycling in the field. Then, we tested the effect of water level, substrate type, salinity and presence of mosquito larvae on the persistence/recycling of B. thuringiensis subsp. israelensis spores in controlled laboratory conditions (microcosms). We found no effect of change in water level or salinity on B. thuringiensis subsp. israelensis persistence over time (75 days). B. thuringiensis subsp. israelensis spores tended to persist longer in substrates containing organic matter compared to sand-only substrates. B. thuringiensis subsp. israelensis recycling only occurred in presence of mosquito larvae but was unrelated to the presence of organic matter.  相似文献   

3.
4.
We studied the effects of combinations of Bacillus thuringiensis spores and toxins on the mortality of diamondback moth (Plutella xylostella) larvae in leaf residue bioassays. Spores of B. thuringiensis subsp. kurstaki increased the toxicity of crystals of B. thuringiensis subsp. kurstaki to both resistant and susceptible larvae. For B. thuringiensis subsp. kurstaki, resistance ratios were 1,200 for a spore-crystal mixture and 56,000 for crystals without spores. Treatment of a spore-crystal formulation of B. thuringiensis subsp. kurstaki with the antibiotic streptomycin to inhibit spore germination reduced toxicity to resistant larvae but not to susceptible larvae. In contrast, analogous experiments with B. thuringiensis subsp. aizawai revealed no significant effects of adding spores to crystals or of treating a spore-crystal formulation with streptomycin. Synergism occurred between Cry2A and B. thuringiensis subsp. kurstaki spores against susceptible larvae and between Cry1C and B. thuringiensis subsp. aizawai spores against resistant and susceptible larvae. The results show that B. thuringiensis toxins combined with spores can be toxic even though the toxins and spores have little or no independent toxicity. Results reported here and previously suggest that, for diamondback moth larvae, the extent of synergism between spores and toxins of B. thuringiensis depends on the strain of insect, the type of spore, the set of toxins, the presence of other materials such as formulation ingredients, and the concentrations of spores and toxins.  相似文献   

5.
Spores of Bacillus thuringiensis subsp. israelensis and their toxic crystals are bioencapsulated in the protozoan Tetrahymena pyriformis, in which the toxin remains stable. Each T. pyriformis cell concentrates the spores and crystals in its food vacuoles, thus delivering them to mosquito larvae, which rapidly die. Vacuoles containing undigested material are later excreted from the cells. The fate of spores and toxin inside the food vacuoles was determined at various times after excretion by phase-contrast and electron microscopy as well as by viable-cell counting. Excreted food vacuoles gradually aggregated, and vegetative growth of B. thuringiensis subsp. israelensis was observed after 7 h as filaments that stemmed from the aggregates. The outgrown cells sporulated between 27 and 42 h. The spore multiplication values in this system are low compared to those obtained in carcasses of B. thuringiensis subsp. israelensis-killed larvae and pupae, but this bioencapsulation represents a new possible mode of B. thuringiensis subsp. israelensis recycling in nontarget organisms.  相似文献   

6.
It was found by using spectrophotometric, spectrofluorometric, and high-pressure liquid chromatography that four subspecies of Bacillus thuringiensis produce coproporphyrin. The porphyrin isomer was identified as coproporphyrin I for B. thuringiensis subsp. kurstaki (HD1). The porphyrin was isolated both from spores and from a variety of spent growth media. The quantity of porphyrin released by each Bacillus subspecies differed. The rank order of porphyrin production follows: B. thuringiensis subsp. kurstaki HD1 > B. thuringiensis subsp. thuringiensis HD27 > B. thuringiensis subsp. thuringiensis HD41 > B. thuringiensis subsp. darmstadiensis HD199.  相似文献   

7.
The l-alanine mediated germination of food isolated Bacillus cereus DSA 1 spores, which lacked an intact exosporium, increased in the presence of d-cycloserine (DCS), which is an alanine racemase (Alr) inhibitor, reflecting the activity of the Alr enzyme, capable of converting l-alanine to the germination inhibitor d-alanine. Proteomic analysis of the alkaline extracts of the spore proteins, which include exosporium and coat proteins, confirmed that Alr was present in the B. cereus DSA 1 spores and matched to that encoded by B. cereus ATCC 14579, whose spore germination was strongly affected by the block of conversion of l- to d-alanine. Unlike ATCC 14579 spores, l-alanine germination of B. cereus DSA 1 spores was not affected by the preincubation with DCS, suggesting a lack of restriction in the reactant accessibility.  相似文献   

8.
Bacillus thuringiensis subsp. israelensis is a bioinsecticide increasingly used worldwide for mosquito control. Despite its apparent low level of persistence in the field due to the rapid loss of its insecticidal activity, an increasing number of studies suggested that the recycling of B. thuringiensis subsp. israelensis can occur under specific, unknown conditions. Decaying leaf litters sampled in mosquito breeding sites in the French Rhône-Alpes region several months after a treatment were shown to exhibit a high level of larval toxicity and contained large amounts of spores. In the present article, we show that the high concentration of toxins found in these litters is consistent with spore recycling in the field, which gave rise to the production of new crystal toxins. Furthermore, in these toxic leaf litter samples, Cry4Aa and Cry4Ba toxins became the major toxins instead of Cyt1Aa in the commercial mixture. In a microcosm experiment performed in the laboratory, we also demonstrated that the toxins, when added in their crystal form to nontoxic leaf litter, exhibited patterns of differential persistence consistent with the proportions of toxins observed in the field-collected toxic leaf litter samples (Cry4 > Cry11 > Cyt). These results give strong evidence that B. thuringiensis subsp. israelensis recycled in specific breeding sites containing leaf litters, and one would be justified in asking whether mosquitoes can become resistant when exposed to field-persistent B. thuringiensis subsp. israelensis for several generations.  相似文献   

9.
We sought to identify proteins in the Bacillus anthracis spore, conserved in other strains of the closely related Bacillus cereus group, that elicit an immune response in mammals. Two high throughput approaches were used. First, an in silico screening identified 200 conserved putative B. anthracis spore components. A total of 192 of those candidate genes were expressed and purified in vitro, 75 of which reacted with the rabbit immune sera generated against B. anthracis spores. The second approach was to screen for cross-reacting antigens in the spore proteome of 10 diverse B. cereus group strains. Two-dimensional electrophoresis resolved more than 200 protein spots in each spore preparation. About 72% of the protein spots were found in all the strains. 18 of these conserved proteins reacted against anti-B. anthracis spore rabbit immune sera, two of which (alanine racemase, Dal-1 and the methionine transporter, MetN) overlapped the set of proteins identified using the in silico screen. A conserved repeat domain protein (Crd) was the most immunoreactive protein found broadly across B. cereus sensu lato strains. We have established an approach for finding conserved targets across a species using population genomics and proteomics. The results of these screens suggest the possibility of a multiepitope antigen for broad host range diagnostics or therapeutics against Bacillus spore infection.The anthrax causing bacterium Bacillus anthracis is a member of the Bacillus cereus sensu lato (s.l.)1 group, a term given to the polyphyletic species consisting of Bacillus thuringiensis, Bacillus cereus, Bacillus mycoides, Bacillus weihenstephanensis, and Bacillus pseudomycoides (1). Genomics studies of B. cereus s.l. strains have shown a similar chromosomal gene composition within this group (27). Many phenotypes that distinguish B. cereus s.l. members, such as crystalline toxin production (8), emesis in humans (9), and anthrax virulence (10), are encoded by genes on large plasmids. Experimental conjugative transfer of plasmids between B. cereus s.l. strains has been demonstrated in vitro, in complex media, and in vector species (1113). Therefore there is a concern about transfer of virulence genes between genetic backgrounds creating new pathogen lineages. In this regard, there is an emerging evidence of natural dissemination of the pXO1 and pXO2 plasmids that encode the anthrax lethal toxin and capsule, respectively. For example, B. cereus G9241 carries a pXO1 plasmid and lethal toxin genes almost identical to those in B. anthracis (6), and a B. cereus strain, which causes anthrax-like illness in African great apes, apparently contains both pXO1 and pXO2 plasmids (14).The infectious agent of most if not all human B. cereus s.l. diseases is the spore. The spore is a dormant, environmentally resistant structure that persists in nutrient- or water-limiting conditions. Anthrax infection occurs after introduction of the B. anthracis spore into a skin abrasion or via inhalation or ingestion (10). The spore germinates inside host cells, and the resulting vegetative bacteria express toxins and capsules that elicit an immune response (10, 15, 16). Formation of the B. cereus spore involves asymmetric cell division during which a copy of the genome is partitioned into each of the sister cells. The smaller cell (prespore) develops into mature endospore, and the larger cell (mother cell) contributes to the differentiation process but undergoes autolysis following its completion to release the endospore into the surrounding medium. Synthesis of cortex, coat, and exosporium are a function mainly of the mother cell. The cortex and coat layers are in close proximity to one another, whereas the exosporium tends to appear as an irregularly shaped, loosely attached, balloon-like layer (1720). The coat and the exosporium contribute to the remarkable resistance of spores to extreme physical and chemical stresses including the exposure to extraterrestrial conditions (21, 22). Recent work on the structure, composition, assembly, and function of the spore coat and exosporium of pathogenic organisms like B. anthracis and B. cereus have highlighted the crucial link that exists between the origin of these layers (19, 23). There are differences in the appearance and thickness of the coat layers among the spores of various strains and species. In some B. thuringiensis strains, the inner coat is laminated but consists of a patchwork of striated packets, appearing either stacked or comblike, and the outer coat is granular (24), whereas in B. anthracis and other B. cereus s.l. isolates the coat appears compact (2527). The coat layers comprise about 30% of the total proteins present in the spore (19, 28). Intraspecies variation in the structure and composition of the spore surface layers may reflect the environmental conditions under which these spores are formed (2931).Because the spore is crucial to infection and persistence of B. anthracis and its close relatives, we undertook an investigation of its protein profile variability across the B. cereus s.l. group. Our goal in this study was to identify conserved antigenic spore proteins that may be transitioned in the future as candidates for immunodiagnostics, therapeutics, or vaccines. We used two high throughput approaches: genome-based bioinformatics analysis and comparative proteomics analysis of spores of B. cereus s.l. to select conserved targets. Our analysis revealed a list of conserved spore proteins within B. cereus but relatively few cross-reacting antigens. Two of these spore conserved antigens (Crd and MetN) have not been described previously for B. anthracis.  相似文献   

10.
  • 1.1. 31P nuclear magnetic resonance studies showed that heavily inactivated phospholipase C (Bacillus cereus) initially caused line broadening in the 31P resonance from sphingomyelin thus indicating enzyme-lipid association.
  • 2.2. Using larger amounts of enzyme or longer preincubation caused a displacement of the 31P resonance to a position suggesting phosphorylcholine formation.
  • 3.3. Incubation of the heavily inactivated enzyme with a phosphonolipid caused a displacement of the 31 P resonance suggesting hydrolysis.
  相似文献   

11.
Acrystalliferous strains of Bacillusthuringiensis subsp. kurstaki were isolated at a high frequency following heat treatment of spores. Spores of these strains lacked a 130,000 dalton glycoprotein, the major component common to both parasporal crystals and coats and were nontoxic to tobacco hornworm larvae. Moreover, the deficiency of this glycoprotein resulted in lysozyme sensitivity of the spores of some mutants and the presence of new spore coat proteins in others. All nontoxic acrystalliferous mutants lacked the complete array of at least six plasmids present in the wild type, implying a relationship between presence of plasmid(s) and toxicity. The unique capacity of this species to alter the surface coating of spores which appears to be related to crystal formation may provide flexibility for germination and growth in diverse soil environments.  相似文献   

12.
Cry2Aa, one of the major insecticidal proteins produced by Bacillus thuringiensis subsp. kurstaki HD1, is known to be active against both lepidopteran and dipteran larvae. In order to determine whether Cry2Aa could enhance or synergize the mosquitocidal activity of B. thuringiensis subsp. israelensis, we constructed a plasmid vector that harbored the cry2Aa operon and transformed crystalliferous and acrystalliferous strains of this bacterium. The wild-type B. thuringiensis subsp. israelensis, a recombinant B. thuringiensis subsp. israelensis producing Cry2A along with its native major mosquitocidal proteins, and a recombinant B. thuringiensis subsp. israelensis producing Cry2Aa alone were tested against three major mosquito species — Aedes aegypti, Anopheles gambiae and Culex quinquefasciatus. Our results demonstrated that Cry2Aa does not synergize or enhance the mosquitocidal activity of B. thuringiensis subsp. israelensis against these important vectors of disease.  相似文献   

13.
A lysozyme sensitive strain of B. thuringiensis (strain O 016) was isolated and shown to be effectively transformed with plasmids pC 194 and pHV 33 using the protoplast transformation technique. The plasmid pC 194 from one successful transformant, strain O 016–194, was subsequently transferred to B. thuringiensis subsp. israelensis by a “conjugation-like” process. The plasmid pBC 16 from B. cereus could also be transferred to B. thuringiensis subsp. israelensis with high frequency using the conjugation-like process. Further, both plasmids, pC 194 and pBC 16, were transferred between strains of B. thuringiensis subsp. israelensis to yield transcipient strains that harbored and expressed properties of both plasmids. This work constitutes effective gene transfer system in B. thuringiensis subsp. israelensis.  相似文献   

14.
Several groups of Gammarus lacustris adults were exposed to solutions containing 0.5 and 5.0 mg of Bacillus thuringiensis subsp. israelensis per liter for 1- or 24-h periods by using traditional static bioassay exposure procedures. During a postexposure holding period, fecal pellets were removed and plated on tryptic soy agar to determine B. thuringiensis subsp. israelensis spore content. The experiments verified that traditional exposure procedures assure ingestion of B. thuringiensis subsp. israelensis spores and provided a mean dose estimate of 1,948 spores ingested per test animal with a 95% confidence interval ranging from 891 to 4,296 (1-h exposure, 5.0 mg/liter). It was also found that dose level is highly dependent upon both exposure duration and concentration and that relatively short exposures can result in a relatively long-term retention of spores postexposure (≥30 days). Body burden experiments established that large numbers of spores adsorb to the bodies of test animals during exposure and may in part explain the long-term retention of spores in the test system postexposure. These results imply that in field applications of microbial control agents, toxicologically unaffected but exposed organisms might transport the agent to untreated sites, expanding the effective treatment area and the number of organisms exposed.  相似文献   

15.
DNA from over 300 Bacillus thuringiensis, Bacillus cereus, and Bacillus anthracis isolates was analyzed by fluorescent amplified fragment length polymorphism (AFLP). B. thuringiensis and B. cereus isolates were from diverse sources and locations, including soil, clinical isolates and food products causing diarrheal and emetic outbreaks, and type strains from the American Type Culture Collection, and over 200 B. thuringiensis isolates representing 36 serovars or subspecies were from the U.S. Department of Agriculture collection. Twenty-four diverse B. anthracis isolates were also included. Phylogenetic analysis of AFLP data revealed extensive diversity within B. thuringiensis and B. cereus compared to the monomorphic nature of B. anthracis. All of the B. anthracis strains were more closely related to each other than to any other Bacillus isolate, while B. cereus and B. thuringiensis strains populated the entire tree. Ten distinct branches were defined, with many branches containing both B. cereus and B. thuringiensis isolates. A single branch contained all the B. anthracis isolates plus an unusual B. thuringiensis isolate that is pathogenic in mice. In contrast, B. thuringiensis subsp. kurstaki (ATCC 33679) and other isolates used to prepare insecticides mapped distal to the B. anthracis isolates. The interspersion of B. cereus and B. thuringiensis isolates within the phylogenetic tree suggests that phenotypic traits used to distinguish between these two species do not reflect the genomic content of the different isolates and that horizontal gene transfer plays an important role in establishing the phenotype of each of these microbes. B. thuringiensis isolates of a particular subspecies tended to cluster together.  相似文献   

16.

Background

The detrimental effects of chemical insecticides on the environment and human health have lead to the call for biological alternatives. Today, one of the most promising solutions is the use of spray formulations based on Bacillus thuringiensis subsp. israelensis (Bti) in insect control programs. As a result, the amounts of Bti spread in the environment are expected to increase worldwide, whilst the common belief that commercial Bti is easily cleared from the ecosystem has not yet been clearly established.

Methodology/Main Findings

In this study, we aimed to determine the nature and origin of the high toxicity toward mosquito larvae found in decaying leaf litter collected in several natural mosquito breeding sites in the Rhône-Alpes region. From the toxic fraction of the leaf litter, we isolated B. cereus-like bacteria that were further characterized as B. thuringiensis subsp. israelensis using PCR amplification of specific toxin genes. Immunological analysis of these Bti strains showed that they belong to the H14 group. We finally used amplified length polymorphism (AFLP) markers to show that the strains isolated from the leaf litter were closely related to those present in the commercial insecticide used for field application, and differed from natural worldwide genotypes.

Conclusions/Significance

Our results raise the issue of the persistence, potential proliferation and environmental accumulation of human-spread Bti in natural mosquito habitats. Such Bti environmental persistence may lengthen the exposure time of insects to this bio-insecticide, thereby increasing the risk of resistance acquisition in target insects, and of a negative impact on non-target insects.  相似文献   

17.
The spores of crystal-forming (Cry+) and non-crystal-forming (Cry-) strains of Bacillus thuringiensis var. kurstaki and Bacillus cereus were tested for the ability to be activated by 0.1 m K2CO3 (pH 10). Only the spores of crystal-forming strains could be activated, and this phenotype was independent of whether crystals were present with the spores in the activation solution. The spores of a B. thuringiensis var. kurstaki strain that is temperature sensitive for protoxin accumulation could be activated by the alkaline solution when produced at the permissive temperature, whereas spores produced at the nonpermissive temperature were not activated. The results indicate that protoxin in the spore coat is responsible for the alkaline-activation phenotype and may serve an ecological function for the organism.  相似文献   

18.
  • 1.1. Under denaturing conditions (SDS-PAGE) the two natural vitellins of Bacillus taxa released five different polypeptides (A1, A2, A3, B1, B2).
  • 2.2. A2 and B2 bands from the two bisexual species (B. rossius and B. grandii) were found to differ; furthermore a non-vitellin yolk protein characterizes the subsepecies B.g. benazzii.
  • 3.3. From gels and their densitometric scanning profiles it is clear that parental polypeptides are expressed in the thelytokous parthenogenetic hybrids (B. whitei, B. lynceorum) and in the hybridogenetic B. rossius-grandii benazzii.
  • 4.4. A comparative approach of vitellin patterns appears fully adequate for tracing phylogenetic relationships and recognizing cladogenetic events.
  相似文献   

19.
A novel mosquitocidal bacterium, Bacillus thuringiensis subsp. jegathesan, and one of its toxins, Cry11B, in a recombinant B. thuringiensis strain were evaluated for cross-resistance with strains of the mosquito Culex quinquefasciatus that are resistant to single and multiple toxins of Bacillus thuringiensis subsp. israelensis. The levels of cross-resistance (resistance ratios [RR]) at concentrations which caused 95% mortality (LC95) between B. thuringiensis subsp. jegathesan and the different B. thuringiensis subsp. israelensis-resistant mosquito strains were low, ranging from 2.3 to 5.1. However, the levels of cross-resistance to Cry11B were much higher and were directly related to the complexity of the B. thuringiensis subsp. israelensis Cry toxin mixtures used to select the resistant mosquito strains. The LC95 RR obtained with the mosquito strains were as follows: 53.1 against Cq4D, which was resistant to Cry11A; 80.7 against Cq4AB, which was resistant to Cry4A plus Cry4B; and 347 against Cq4ABD, which was resistant to Cry4A plus Cry4B plus Cry11A. Combining Cyt1A with Cry11B at a 1:3 ratio had little effect on suppressing Cry11A resistance in Cq4D but resulted in synergism factors of 4.8 and 11.2 against strains Cq4AB and Cq4ABD, respectively; this procedure eliminated cross-resistance in the former mosquito strain and reduced it markedly in the latter strain. The high levels of activity of B. thuringiensis subsp. jegathesan and B. thuringiensis subsp. israelensis, both of which contain a complex mixture of Cry and Cyt proteins, against Cry4- and Cry11-resistant mosquitoes suggest that novel bacterial strains with multiple Cry and Cyt proteins may be useful in managing resistance to bacterial insecticides in mosquito populations.  相似文献   

20.
Summary Cultured tissue cells from lepidopteran and dipteran sources displayed an order-specific response to entomocidal protein from crystals ofBacillus thuringiensis. Protein isolated from crystals ofB. thuringiensis subsp.kurstaki was effective against cells of the spruce budworm (Choristoneura fumiferana) and the tobacco hornworm (Manduca sexta), but was inactive against both mosquito cell lines tested (Aedes aegypti andAnopheles gambiae). Conversely, protein from inclusion bodies ofB. thuringiensis subsp.israelensis was fully active only against the mosquito cell lines but displayed reduced (four- to seven-fold) toxicity for the lepidopteran cell lines. One exception to this pattern of specificity was observed with aPlodia interpunctella cell line, which failed to respond to either crystal protein preparation. The moth toxin was stable at 4° C for months, whereas the mosquito toxin was susceptible to proteolytic degradation and was unstable for periods longer than 2 wk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号