首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A procedure has been developed which allows the T4 bacteriophage proteins corresponding to the products of genes 43, 44, 45, and 62 to be purified to near homogeneity from a single T4-infected cell lysate (greater than 90% single species as judged by sodium dodecyl sulfate polyacrylamide elctrophoresis). In these preparations, the major problem of removing all contaminating nucleases has been overcome. Each of the above proteins is known from genetic analysis to be essential for phage DNA replication. The protein product of gene 43 is T4 DNA polymerase, and its recovery can be monitored using a standard DNA polymerase assay. The other three gene products have been designated as "polymerase accessory proteins," since they directly enhance polymerase function on both single- and double-stranded DNA templates. Their activities were monitored by an "in vitro complementation assay," which measures the stimulation of DNA synthesis observed in a concentrated lysate of T4 mutant-infected Escherichia coli cells when the missing T4 wild type protein is added. Starting from 300 g of infected cell paste, we obtained 9.3 mg of gene 43 protein, 21 mg of gene 45 protein, and 70 mg of a tight complex made up of 44 and 62 proteins; final yields were estimated at 30%, 14%, and 28%, respectively, of the initial activity present in the lysate. When the above purified proteins are incubated with preparations of two other T4 DNA replication proteins (gene 41 and gene 32 proteins) plus deoxyribonucleoside and ribonucleoside triphosphates, extensive DNA synthesis occurs on both single- and double-stranded DNA templates. As reported elsewhere, this synthesis mimicks that catalyzed by the T4 DNA replication apparatus in vivo.  相似文献   

2.
N G Nossal 《FASEB journal》1992,6(3):871-878
The DNA replication system of bacteriophage T4 serves as a relatively simple model for the types of reactions and protein-protein interactions needed to carry out and coordinate the synthesis of the leading and lagging strands of a DNA replication fork. At least 10 phage-encoded proteins are required for this synthesis: T4 DNA polymerase, the genes 44/62 and 45 polymerase accessory proteins, gene 32 single-stranded DNA binding protein, the genes 61, 41, and 59 primase-helicase, RNase H, and DNA ligase. Assembly of the polymerase and the accessory proteins on the primed template is a stepwise process that requires ATP hydrolysis and is strongly stimulated by 32 protein. The 41 protein helicase is essential to unwind the duplex ahead of polymerase on the leading strand, and to interact with the 61 protein to synthesize the RNA primers that initiate each discontinuous fragment on the lagging strand. An interaction between the 44/62 and 45 polymerase accessory proteins and the primase-helicase is required for primer synthesis on 32 protein-covered DNA. Thus it is possible that the signal for the initiation of a new fragment by the primase-helicase is the release of the polymerase accessory proteins from the completed adjacent fragment.  相似文献   

3.
DNA-cellulose chromatography and two-dimensional gel electrophoresis have been used to demonstrate the DNA-binding capacity of bacteriophage T4 gpunf/alc. The unf/alc protein does not bind to DNA via an association with RNA polymerase; gpunf/alc was shown to bind to DNA after separation from RNA polymerase and other large proteins by Sephadex chromatography.  相似文献   

4.
5.
The proteolytic removal of about 60 amino acids from the COOH terminus of the bacteriophage T4 helix-destabilizing protein (gene 32 protein) produces 32*I, a 27,000-dalton fragment which still binds tightly and cooperatively to single-stranded DNA. The substitution of 32*I protein for intact 32 protein in the seven-protein T4 replication complex results in dramatic changes in some of the reactions catalyzed by this in vitro DNA replication system, while leaving others largely unperturbed. 1. Like intact 32 protein, the 32*I protein promotes DNA synthesis by the DNA polymerase when the T4 polymerase accessory proteins (gene 44/62 and 45 proteins) are also present. The host helix-destabilizing protein (Escherichia coli ssb protein) cannot replace the 32I protein for this synthesis. 2. Unlike intact 32 protein, 32*I protein strongly inhibits DNA synthesis catalyzed by the T4 DNA polymerase alone on a primed single-stranded DNA template. 3. Unlike intact 32 protein, the 32*I protein strongly inhibits RNA primer synthesis catalyzed by the T4 gene 41 and 61 proteins and also reduces the efficiency of RNA primer utilization. As a result, de novo DNA chain starts are blocked completely in the complete T4 replication system, and no lagging strand DNA synthesis occurs. 4. The 32*I protein does not bind to either the T4 DNA polymerase or to the T4 gene 61 protein in the absence of DNA; these associations (detected with intact 32 protein) would therefore appear to be essential for the normal control of 32 protein activity, and to account at least in part for observations 2 and 3, above. We propose that the COOH-terminal domain of intact 32 protein functions to guide its interactions with the T4 DNA polymerase and the T4 gene 61 RNA-priming protein. When this domain is removed, as in 32*I protein, the helix destabilization induced by the protein is controlled inadequately, so that polymerizing enzymes tend to be displaced from the growing 3'-OH end of a polynucleotide chain and are thereby inhibited. Eukaryotic helix-destabilizing proteins may also have similar functional domains essential for the control of their activities.  相似文献   

6.
RNA priming of DNA replication by bacteriophage T4 proteins   总被引:13,自引:0,他引:13  
Bacteriophage T4 DNA replication proteins have been shown previously to require ribonucleoside triphosphates to initiator new DNA chains on unprimed single-stranded DNA templates in vitro. This DNA synthesis requires a protein controlled by T4 gene 61, as well as the T4 gene 41, 43 (DNA polymerase), 44, 45, and 62 proteins, and is stimulated by the gene 32 (helix-destabilizing) protein. In this paper, the nature of the RNA primers involved in DNA synthesis by the T4 proteins has been determined, using phi X174 and f1 DNA as model templates. The T4 41 and "61" proteins synthesize pentanucleotides with the sequence pppA-C(N)3 where N in positions 3 and 4 can be G, U, C, or A. The same group of sequences is found in the RNA at the 5' terminus of the phi X174 DNA product made by the seven T4 proteins. The DNA product chains begin at multiple discrete positions on the phi X174 DNA template. The characteristics of the T4 41 and "61" protein priming reaction are thus appropriate for a reaction required to initiate the synthesis of discontinuous "Okazaki" pieces on the lagging strand during the replication of duplex DNA.  相似文献   

7.
8.
The bacteriophage T4 gene 41 protein is a 5' to 3' DNA helicase which unwinds DNA ahead of the growing replication fork and, together with the T4 gene 61 protein, also functions as a primase to initiate DNA synthesis on the lagging strand. Proteolytic cleavage by trypsin approximately 20 amino acids from the COOH terminus of the 41 protein produces 41T, a 51,500-dalton fragment (possibly still associated with small COOH-terminal fragments) which still retains the ssDNA-stimulated GTPase (ATPase) activity, the 61 protein-stimulated DNA helicase activity, and the ability to act with 61 protein to synthesize pentaribonucleotide primers. In the absence of the T4 gene 32 ssDNA binding protein, the primase-helicase composed of the tryptic fragment (41T) and 61 proteins efficiently primes DNA synthesis on circular ssDNA templates by the T4 DNA polymerase and the three T4 polymerase accessory proteins. In contrast, the 41T protein is defective as a helicase or a primase component on 32 protein-covered DNA. Thus, unlike the intact protein, 41T does not support RNA-dependent DNA synthesis on 32 protein-covered ssDNA and does not stimulate strand displacement DNA synthesis on a nicked duplex DNA template. High concentrations of 32 protein strongly inhibit RNA primer synthesis with either 41 T or intact 41 protein. The 44/62 and 45 polymerase accessory proteins (and even the 44/62 proteins to some extent) substantially reverse the 32 protein inhibition of RNA primer synthesis with intact 41 protein but not with 41T protein. We propose that the COOH-terminal region of the 41 protein is required for its interaction with the T4 polymerase accessory proteins, permitting the synthesis and utilization of RNA primers and helicase function within the T4 replication complex. When this region is altered, as in 41T protein, the protein is unable to assemble a functional primase-helicase in the replication complex. An easy and rapid purification of T4 41 protein produced by a plasmid encoding this gene (Hinton, D. M., Silver, L. L., and Nossal, N. G. (1985) J. Biol. Chem. 260, 12851-12857) is also described.  相似文献   

9.
In vitro biochemical assays are typically performed using very dilute solutions of macromolecular components. On the other hand, total intracellular concentrations of macromolecular solutes are very high, resulting in an in vivo environment that is significantly "volume-occupied." In vitro studies with the DNA replication proteins of bacteriophage T4 have revealed anomalously weak binding of T4 gene 45 protein to the rest of the replication complex. We have used inert macromolecular solutes to mimic typical intracellular solution conditions of high volume occupancy to investigate the effects of "macromolecular crowding" on the binding equilibria involved in the assembly of the T4 polymerase accessory proteins complex. The same approach was also used to study the assembly of this complex with T4 DNA polymerase (gene 43 protein) and T4 single-stranded DNA binding protein (gene 32 protein) to form the five protein "holoenzyme". We find that the apparent association constant (Ka) of gene 45 for gene 44/62 proteins in forming both the accessory protein complex and the holoenzyme increases markedly (from approximately 7 x 10(6) to approximately 3.5 x 10(8) M-1) as a consequence of adding polymers such as polyethylene glycol and dextran. Although the processivity of the polymerase alone is not directly effected by the addition of such polymers to the solution, macromolecular crowding does significantly stabilize the holoenzyme and thus indirectly increases the observed processivity of the holoenzyme complex. The use of macromolecular crowding to increase the stability of multienzyme complexes in general is discussed, as is the relevance of these results to DNA replication in vivo.  相似文献   

10.
A preparation of bacteriophage T4-induced deoxyribonucleotide synthetase complex is described. This very large complex of enzymes can be separated by centrifugation at 100,000 X g, by sucrose step gradient centrifugation, or with molecular exclusion columns. By direct assay and by unidimensional and two-dimensional acrylamide electrophoretic separations the following T4-coded enzymes were shown to be associated with the complex: ribonucleoside diphosphate reductase, dCMP deaminase, dCTP/dUTPase, dCMP hydroxymethylase, dTMP synthetase, and DNA polymerase. Other phage-coded prereplicative proteins related to DNA replication and other phage functions such as the proteins coded by genes 32, 46, rIIA, and rIIB as well as many unidentified proteins were also consistently associated with the isolated fractions. T4 DNA topoisomerase, a membrane-bound enzyme, was found in quantity in all purified fractions of the complex, even in preparations apparently free of membrane and of T4 DNA. The functional integrity of a segment of the complex was followed by measuring the conversion of [5-3H]CDP to the level of 5-hydroxymethyl dCMP. This series of reactions requires the actions of T4-coded ribonucleoside diphosphate reductase and its associated reducing system, dCTP/dUTPase and dCMP hydroxymethylase, 3H being lost to water at the last step. In this reaction sequence an intermediate, [5-3H]dCMP, is maintained at low steady state concentrations, and argument is presented that the synthesis of deoxyribonucleotides is channeled and normally tightly coupled to DNA replication. One of the primary characteristics of this complex is its ready dissociation of dilution into smaller complexes of proteins and to the free forms of the proteins. That the complex is held together by weak electrostatic forces was supported by its sensitivity to dissociation at moderate salt concentrations. Not only the enzymes required in deoxyribonucleotide synthesis but T4 DNA polymerase, T4 DNA topoisomerase, and a number of other proteins dissociate to varying degrees from the larger complexes under these conditions.  相似文献   

11.
L Roberts  P Sadowski  J T Wong 《Biochemistry》1982,21(23):6000-6005
Bacteriophage T7 codes for a single-stranded DNA binding protein. This protein is the product of gene 2.5 and has been found previously to stimulate specifically the activity of the phage-coded DNA polymerase. We report here that the T7 DNA binding protein also stimulates the activity of the phage-coded exonuclease. The gene 6 exonuclease is a double-stranded DNA specific 5'-exonuclease that has been implicated in destruction of bacterial DNA, removal of RNA primers during DNA replication, genetic recombination, and DNA maturation. The enzyme is markedly inhibited by physiological concentrations of NaCl. This inhibition, which is due to a marked reduction in the Vmax of the enzyme, can be largely overcome by the phage-coded DNA binding protein. This stimulation is specific since the Escherichia coli DNA binding protein is without effect. The stimulation by the binding protein is apparently not due to its coating of the 3' single-stranded tails generated during the digestion. Kinetic studies show that the stimulation is due to a combined effect on both the Km and Vmax of the exonuclease. These studies are consistent with a loose binding of the binding protein to either the DNA or the exonuclease.  相似文献   

12.
The bacteriophage T4 61/41 protein primase-helicase is part of a seven T4 protein system needed for DNA synthesis in vitro. Although both 41 and 61 proteins are required for the synthesis and utilization of the normal pppApC(pN)3 pentanucleotide primer, we show in the accompanying paper (Hinton, D. M., and Nossal, N. G. (1987) J. Biol. Chem. 262, 10873-10878) that high concentrations of 61 protein alone carry out a limited, template-dependent oligonucleotide synthesis with the dimers pppApC and pppGpC as the major products labeled with [alpha-32P]CTP. At these high concentrations, 61 protein alone primes DNA synthesis by T4 DNA polymerase and the T4 genes 44/62 and 45 polymerase accessory proteins, or by Escherichia coli DNA polymerase I. The addition of T4 replication proteins other than 41 protein does not change the size distribution of oligonucleotides made by 61 protein. However, the primers used for DNA synthesis in the absence of 41 protein are not dimers, but rather trace quantities of longer oligonucleotides (5 to about 45 bases) which begin predominantly with pppGpC. These results show that 41 protein is required to prime with oligonucleotides beginning with pppApC and suggest that 41 protein, either alone or in conjunction with 61 protein, helps to stabilize the usual short pentamer primers on the template until they are elongated by the DNA polymerase. Moreover, since 61 protein by itself can only initiate DNA synthesis with primers beginning with pppGpC, but cannot make oligonucleotides starting with pppGpC on T4 DNA in which all the C is glucosylated and hydroxymethylated, both the T4 41 and 61 proteins are essential to prime DNA synthesis on their normal template. In our analysis of RNA-primed DNA, we demonstrate that although RNA primers at the 5' ends of DNA chains are relatively resistant to the 3' to 5' exonuclease of T4 DNA polymerase (Kurosawa, Y., and Okazaki, T. (1979) J. Mol. Biol. 135, 841-861), pppNpNpNpNpN oligomers are digested to a greater extent than the dephosphorylated pentamers NpNpNpNpN.  相似文献   

13.
The bacteriophage T4 primase, composed of the T4 proteins 41 and 61, synthesizes pentaribonucleotides used to prime DNA synthesis on single-stranded DNA in vitro. 41 protein is also a DNA helicase that opens DNA in the same direction as the growing replication fork. Previously, Mattson et al. (Mattson, T., Van Houwe, G., Bolle, A., Selzer, G., and Epstein, R. (1977) Mol. Gen. Genet. 154, 319-326) located part of gene 41 on a 3400-base pair EcoRI fragment of T4 DNA (map units 24.3 to 21.15). In this paper, we report the cloning of T4 DNA representing map units 24.3 to 20.06 in a multicopy plasmid vector. Extracts of cells containing this plasmid complement gene 41- extracts in a DNA synthesis assay, indicating that this region contains all the information necessary for the expression of active 41 protein. We located gene 41 more precisely between T4 map units 22.01 to 20.06 since our cloning of this region downstream of the strong lambda promoter PL results in the production of active 41 protein at a level 100-fold greater than after T4 infection. We have purified 133 mg of homogeneous 41 protein from 27 g of these cells. Like the 41 protein from T4 infected cells, the purified 41 protein in conjunction with the T4 gene 61 priming protein catalyzes primer formation (assayed by RNA primer-dependent DNA synthesis with T4 polymerase, the genes 44/62 and 45 polymerase accessory proteins, and the gene 32 helix-destabilizing protein) and is a helicase whose activity is stimulated by T4 61 protein.  相似文献   

14.
Single-pulse (approximately 8 ns) ultraviolet laser excitation of protein-nucleic acid complexes can result in efficient and rapid covalent cross-linking of proteins to nucleic acids. The reaction produces no nucleic acid-nucleic acid or protein-protein cross-links, and no nucleic acid degradation. The efficiency of cross-linking is dependent on the wavelength of the exciting radiation, on the nucleotide composition of the nucleic acid, and on the total photon flux. The yield of cross-links/laser pulse is largest between 245 and 280 nm; cross-links are obtained with far UV photons (200-240 nm) as well, but in this range appreciable protein degradation is also observed. The method has been calibrated using the phage T4-coded gene 32 (single-stranded DNA-binding) protein interaction with oligonucleotides, for which binding constants have been measured previously by standard physical chemical methods (Kowalczykowski, S. C., Lonberg, N., Newport, J. W., and von Hippel, P. H. (1981) J. Mol. Biol. 145, 75-104). Photoactivation occurs primarily through the nucleotide residues of DNA and RNA at excitation wavelengths greater than 245 nm, with reaction through thymidine being greatly favored. The nucleotide residues may be ranked in order of decreasing photoreactivity as: dT much greater than dC greater than rU greater than rC, dA, dG. Cross-linking appears to be a single-photon process and occurs through single nucleotide (dT) residues; pyrimidine dimer formation is not involved. Preliminary studies of the individual proteins of the five-protein T4 DNA replication complex show that gene 43 protein (polymerase), gene 32 protein, and gene 44 and 45 (polymerase accessory) proteins all make contact with DNA, and can be cross-linked to it, whereas gene 62 (polymerase accessory) protein cannot. A survey of other nucleic acid-binding proteins has shown that E. coli RNA polymerase, DNA polymerase I, and rho protein can all be cross-linked to various nucleic acids by the laser technique. The potential uses of this procedure in probing protein-nucleic acid interactions are discussed.  相似文献   

15.
N Raghavan  M Ishaq    A Kaji 《Journal of virology》1980,35(2):551-554
Rts1 is a plasmid which confers upon the host bacteria the capacity to restrict T4 bacteriophage growth at 32 degrees C but not at 42 degrees C. Pulse-labeling of phage-infected cells showed that Rts1 restricts the synthesis of T1 DNA. Despite efficient restriction of T4 phage growth and DNA synthesis, infected Escherichia coli 20SO harboring Rts1 synthesized both early and late T4 phage RNA. Synthesis of early T4 phage RNA under restrictive conditions (32 degrees C) was almost equal to that found under nonrestrictive conditions, and a lesser, but significant, amount of late T4 phage RNA was made in almost complete absence of T4 DNA synthesis. Moreover, very little, if any, T4 phage-coded lysozyme was detected in the infected E. coli 20SO/Rts1 at 32 degrees C, whereas normal amounts of lysozyme were present at 42 degrees C.  相似文献   

16.
Summary DNA synthesis in vitro using intact duplex T7 DNA as template is dependent on a novel group of three phage T7-induced proteins: DNA-priming protein (activity which complements a cell extract lacking the T7 gene 4-protein), T7 DNA polymerase (gene 5-protein plus host factor), and T7 DNA-binding protein. The reaction requires, in addition to the four deoxyribonucleoside triphosphates, all four ribonucleoside triphosphates and is inhibited by low concentrations of actinomycin D. Evidence is presented that the priming protein serves as a novel RNA polymerase to form a priming segment which is subsequently extended by T7 DNA polymerase. T7 RNA polymerase (gene 1-protein) can only partially substitute for the DNA-priming protein. At 30°C, deoxyribonucleotide incorporation proceeds for more than 2 hours and the amount of newly synthesized DNA can exceed the amount of template DNA by 10-fold. The products of synthesis are not covalently attached to the template and sediment as short (12S) DNA chains in alkaline sucrose gradients. Sealing of these fragments into DNA of higher molecular weight requires the presence of E. coli DNA polymerase I and T7 ligase. Examination of the products in the electron microscope reveals many large, forked molecules and a few eye-shaped structures resembling the early replicative intermediates normally observed in vivo.  相似文献   

17.
The T4 bacteriophage dda protein is a DNA-dependent ATPase and DNA helicase that is the product of an apparently nonessential T4 gene. We have examined its effects on in vitro DNA synthesis catalyzed by a purified, multienzyme T4 DNA replication system. When DNA synthesis is catalyzed by the T4 DNA polymerase on a single-stranded DNA template, the addition of the dda protein is without effect whether or not other replication proteins are present. In contrast, on a double-stranded DNA template, where a mixture of the DNA polymerase, its accessory proteins, and the gene 32 protein is required, the dda protein greatly stimulates DNA synthesis. The dda protein exerts this effect by speeding up the rate of replication fork movement; in this respect, it acts identically with the other DNA helicase in the T4 replication system, the T4 gene 41 protein. However, whereas a 41 protein molecule remains bound to the same replication fork for a prolonged period, the dda protein seems to be continually dissociating from the replication fork and rebinding to it as the fork moves. Some gene 32 protein is required to observe DNA synthesis on a double-stranded DNA template, even in the presence of the dda protein. However, there is a direct competition between this helix-destabilizing protein and the dda protein for binding to single-stranded DNA, causing the rate of replication fork movement to decrease at a high ratio of gene 32 protein to dda protein. As shown elsewhere, the dda protein becomes absolutely required for in vitro DNA synthesis when E. coli RNA polymerase molecules are bound to the DNA template, because these molecules otherwise stop fork movement (Bedinger, P., Hochstrasser, M., Jongeneel, C.V., and Alberts, B. M. (1983) Cell 34, 115-123).  相似文献   

18.
Detailed procedures are presented which allow reproducible preparation of T4 gene 32 protein, a helix-destabilizing protein essential for DNA replication and genetic recombination in T4 bacteriophage-infected Escherichia coli cells. Although 32 protein can be purified to better than 99% homogeneity by any one of several procedures, these methods have been developed to remove trace amounts of contaminating deoxyribonucleases, which are present in high levels in the original infected cells. Two alternative preparations are presented, each involving three chromatographic steps. Both 32 proteins obtained are essentially "nuclease-free," when tested at physiological salt concentrations. However, we show here that the phenyl-Sepharose chromatography step, which is necessary to remove an exonuclease activity active only at low salt concentrations, also removes a second protein present in trace amounts. In some cases, retention of this second protein is desirable, since it is essential for obtaining RNA primed, de novo DNA chain starts in an in vitro DNA replication system, when this system is constructed by mixing highly purified preparations of each of the six replication proteins coded for by T4 genes 32, 43, 44, 62, 45, and 41.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号