首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:我国发酵法生产L-色氨酸存在着产酸率、糖酸转化率和提取率较低以及检测速度较慢等不足之处,为了提升发酵控制水平及产物浓度的快速检测,采用近红外检测技术建立发酵过程中L-色氨酸浓度预测模型。方法:利用近红外光谱技术,结合偏最小二乘法,建立发酵液中L-色氨酸浓度预测模型。结果:在光谱预处理为二阶导数、波数范围为6101.8~5450 cm-1条件下获得最优L-色氨酸浓度预测模型。经验证,该模型具有一定的准确性和可靠性,其预测值与测量值仅有5.16%的偏差。结论:该模型具有较好的预测能力,可为大肠杆菌L-色氨酸发酵过程中浓度快速检测提供可靠数据,并为L-色氨酸发酵过程控制提供理论和实践依据。  相似文献   

2.
生物量是反映生物发酵过程进展的重要参数,对生物量进行实时监测可用于对发酵过程的调控优化。为克服目前主要采用的离线方法检测生物量时间滞后和人工测量误差较大等缺点,本研究针对1,3-丙二醇发酵过程设计了一个基于傅里叶变换近红外光谱实时分析技术的生物量在线监测实验平台,通过对实时采集光谱预处理以及敏感光谱段分析,应用偏最小二乘算法,建立了1,3-丙二醇发酵过程生物量变化的动态预测模型。以底物甘油浓度为60 g/L和40 g/L的发酵过程作为外部验证实验,分析得到模型的预测均方根误差分别为0.341 6和0.274 3,结果表明所建立的模型具有较好的实时预测能力,能够实现对1,3-丙二醇发酵过程中生物量的有效在线监测。  相似文献   

3.
生物量、葡萄糖浓度和乙醇浓度是乙醇发酵过程的重要参数,传统的方法通常对发酵液取样作离线测量,不仅需要采用多种仪器进行测试分析,而且耗时耗力,成为实时过程调控和优化的障碍。文中针对这些重要过程参数提出了一个基于近红外光谱技术的原位实时检测方法。通过采用浸入式近红外光谱仪对发酵溶液进行原位测量,基于多输出最小二乘支持向量机回归(MLS-SVR)方法建立了利用近红外光谱同时分析葡萄糖浓度、生物量和乙醇浓度的多输出预测模型。实验结果表明,该方法能实时准确地检测乙醇发酵过程中的葡萄糖浓度、生物量和乙醇浓度,而且相对于现有的偏最小二乘法(PLS)分别对各组分建模和预测,能明显提高测量准确性和可靠性。  相似文献   

4.
为建立近红外光谱技术测定荞麦蛋白质与淀粉含量的方法,本研究以217份荞麦样品为试验材料,采用最小二乘回归预测和交叉验证构建近红外预测模型。分析表明:前处理采用多元散射校正法(MSC),维数(Rank)分别为5和5,光谱区间6803.9~6094.2/cm所建立的荞麦蛋白质与淀粉含量模型的预测效果较好,其决定系数(R~2)分别为0.9481和0.9167,交叉验证均方根(RMSECV)分别为0.68和2.08,相对分析误差(RPD)分别为4.39和3.46,均大于3.0,外部验证相关系数均大于0.96。本试验所建立的蛋白质与淀粉含量近红外预测模型具有较高的准确度和稳健性,可用于荞麦品质的快速测定。  相似文献   

5.
籼稻品质分析的近红外光谱模型建立及其应用研究   总被引:1,自引:0,他引:1  
为了满足籼稻品质快速分析的需求,本研究利用籼稻精米粉近红外光谱建立了直链淀粉含量、蛋白质含量、碱消值、垩白度的回归预测模型.结果表明,本研究提供的预测模型具有良好的测定效果,用偏最小二乘法(PLS)获得的籼稻精米粉直链淀粉含量、蛋白质含量、碱消值、垩白度的回归模型和交叉验证显示最优校正决定系数(R~2)和交叉检验均方误差(RMSECV)分别为0.9561、1.55,0.9510、0.258,0.9076、0.283,0.9014、4.14.说明所建的近红外光谱预测模型具有实用价值.  相似文献   

6.
【目的】提高重组谷氨酸棒杆菌发酵L-苯丙氨酸(L-phenylalanine,L-Phe)的产量。【方法】使用正交试验设计以及响应面优化法分别对种子培养基及发酵培养基进行优化,确定了重组谷氨酸棒杆菌发酵L-Phe的最佳种子培养基及最佳发酵培养基。【结果】重组谷氨酸棒杆菌发酵L-Phe最佳种子培养基(g/L):葡萄糖25.0,玉米浆25.0,硫酸铵15.0,硫酸镁1.0,磷酸二氢钾2.0,尿素2.0,p H 6.8-7.0;最佳发酵培养基(g/L):葡萄糖110.0,玉米浆7.0,硫酸铵25.0,硫酸镁1.0,磷酸二氢钾1.0,柠檬酸钠2.0,谷氨酸1.0,碳酸钙25.0,p H 6.8-7.0;在最佳培养基条件下L-Phe产量最高达到9.14 g/L,较优化前的7.46 g/L提高了22.5%。【结论】通过正交试验和响应面分析对重组谷氨酸棒杆菌发酵L-Phe培养基进行优化,明显提高了L-Phe的产量,并确定了葡萄糖、玉米浆和硫酸铵为发酵培养基中影响L-Phe产量的3个关键因子。研究结果为L-Phe的发酵放大提供了依据。  相似文献   

7.
应用近红外光谱预测水稻叶片氮含量   总被引:4,自引:1,他引:3       下载免费PDF全文
以水稻(Oryza sativa)新鲜叶片和干叶粉末两种状态的样品为研究对象, 基于近红外光谱(NIRS)技术, 应用偏最小二乘法(PLS)、主成分回归(PCR)和逐步多元回归(SMLR), 建立并评价了水稻叶片氮含量(NC)近红外光谱模型。结果表明, 基于PLS建立的模型表现最好, 鲜叶氮含量近红外光谱校正模型校正决定系数RC2为0.940, 校正标准误差RMSEC为0.226; 干叶粉末氮含量的近红外光谱校正模型RC2为0.977, RMSEC为0.136。模型的内部交叉验证分析表明, 预测鲜叶氮含量内部验证决定系数RCV2为0.866, 内部验证标准误差RMSECV为0.243; 预测干叶粉末氮含量RCV2为0.900, RMSECV为0.202。模型的外部验证分析表明, 预测水稻鲜叶氮含量的外部验证决定系数RV2大于0.800, 外部验证标准误差RMSEP小于0.500, 预测干叶粉末氮含量的RV2为0.944, RMSEP为0.142。说明, 近红外光谱分析技术与化学分析方法一致性较好, 且基于干叶粉末建立的近红外光谱预测模型的准确性和精确度较新鲜叶片高。  相似文献   

8.
【目的】为准确快速地了解紫色红曲菌固态发酵中生物量的变化,【方法】采用理化方法测定菌体量和氨基葡萄糖含量,研究了不同培养时间、培养基组成、培养方式下菌体量与氨基葡萄糖含量的关系,建立生物量和氨基葡萄糖含量的换算关系式;构建关联该菌固态培养物近红外光谱数据与实测氨基葡萄糖含量的PLS模型。【结果】建立了可通过近红外光谱法测定氨基葡萄糖来快速预测固态发酵生物量的方法,其中最优近红外模型的校正集内部交叉验证均方根误差(RMSECV)为0.209 4,预测集相关系数(Rp)和均方根误差(RMSEP)分别为0.993 4和0.217 3;同时利用所建的换算关系式也大大提高了生物量计算的准确性。【结论】基于所建立的生物量和氨基葡萄糖的换算关系式,利用近红外光谱法可以快速并且较准确地测定紫色红曲菌固态发酵过程中生物量的变化。  相似文献   

9.
建立了谷氨酸棒杆菌合成L色氨酸(LTry)的代谢流量平衡模型,应用该模型计算出发酵中后期的代谢流分布并通过MATLAB软件线性规划得到Try理想代谢流分布。结果表明75.15%的碳架进入糖酵解,24.85%的碳架进入HMP途径;但与理想代谢流相比,应从遗传改造和发酵控制方面降低 TCA循环的代谢流,减少副产氨基酸的生成,摸索最适的溶氧控制对提高Try产率至关重要。  相似文献   

10.
采用谷氨酸棒杆菌S9114和枯草芽胞杆菌NTG-4在10 L自控发酵罐上进行混菌发酵,探索混菌发酵生产γ-聚谷氨酸的可行性并进行工艺优化。结果表明:温度、接种量、pH及溶氧对聚谷氨酸发酵有较大影响,发酵前期维持32℃,6 h提温至37℃变温控制,谷氨酸棒杆菌和枯草芽胞杆菌接种量分别为5%和0.5%,pH 7.0,溶氧20%最有利于γ-聚谷氨酸发酵,在此条件下发酵32 hγ-聚谷氨酸最高产量为38.3 g/L。  相似文献   

11.
<正> 一、前言 1957年木下等发表谷氨酸棒杆菌(Corynebacterium glutamicum)进行谷氨酸的工业生产以来,日本的氨基酸发酵生产的研究有很大的进展。很多氨基酸已能用发酵法生产。谷氨酰胺和N-乙酰-I-谷氨酰胺(N-AGM)作为胃溃疡、十二指肠溃疡病等的抗溃疡病药物正在大量应用。作者等应用谷氨酸产生菌谷氨酸棒杆菌的野生株,通过控制环境因素使谷氨酸发酵转换成谷氨酰胺和N-AGM发酵,建立了这些氨基酸的工业生产方法。同时也研究了从谷氨酸发酵转换生产脯氨酸的方法。通过改变培养条件,用谷氨酸棒杆菌使发  相似文献   

12.
新筛选L-精氨酸产生菌发酵培养基的响应面优化   总被引:1,自引:0,他引:1  
目的:优化谷氨酸棒杆菌YHR-09的发酵培养基以提高L-精氨酸的产量.方法:在研究葡萄糖、硫酸铵、玉米浆和生物素4个单因素实验的基础上,用Design Expert软件的Central Composite Design建立响应曲面模型.结果:YHR-09最佳产酸条件 为:葡萄糖112.95g/L,玉米浆22.61g/L,硫酸铵49.44g/L.在此条件下L-精氨酸的产量为29.36g/L,与预测值(29.57g/L)吻合度较高.结论:通过发酵对比实验可见,菌体浓度的明显提高是L-精氨酸产量上升的重要因素.  相似文献   

13.
由于生化反应过程的复杂性和高度非线性,多数简单的数学模型不能准确描述。该文基于Matlab软件,利用改进的支持向量机(υ-SVR)对植物乳酸杆菌发酵这一典型生化过程进行研究,应用遗传算法估计模型最优参数,建立植物乳杆菌的菌体密度预测模型。同时建立传统的logistic动力学模型以进行比较。结果表明,采用结合遗传算法的υ-SVR预测模型拟合误差小,皮尔森相关系数(R)更高,可以较好地预测乳酸杆菌的发酵过程,为其优化控制及放大提供依据。  相似文献   

14.
γ-聚谷氨酸在食品、化妆品、生物医药等领域具有广泛的应用,目前主要的生产菌株是谷氨酸依赖型菌株,在生产过程中需要添加谷氨酸作为前体,因而生产γ-聚谷氨酸的成本较高。文中主要研究从糖质原料一步法发酵合成γ-聚谷氨酸的生产工艺。首先,从产γ-聚谷氨酸的菌株枯草芽孢杆菌中克隆γ-聚谷氨酸合成酶的基因簇pgs BCA,在谷氨酸棒杆菌模式菌株ATCC13032中进行诱导型和组成型表达,结果显示,仅诱导型表达菌株可以积累γ-聚谷氨酸,产量为1.43 g/L。进一步对诱导条件进行优化,确定诱导时间为2 h,IPTG浓度为0.8 mmol/L,γ-聚谷氨酸产量为1.98g/L。在此基础上,在一株高产谷氨酸的谷氨酸棒杆菌F343中外源表达pgs BCA,对重组菌进行发酵,结果表明,在摇瓶发酵中γ-聚谷氨酸产量达到10.23g/L,在5L发酵罐中产量达到20.08g/L;继而对γ-聚谷氨酸进行分子量测定,结果显示,产自F343重组菌的γ-聚谷氨酸的重均分子量比产自枯草芽孢杆菌的提高34.77%。文中构建了一步法发酵糖质原料生产γ-聚谷氨酸的新途径,同时为开发其潜在应用奠定了基础。  相似文献   

15.
微生物发酵过程是细胞新陈代谢进行物质转化的过程,为了提高目标产物的转化率,需要对微生物发酵动态特性进行实时分析,以便实时优化发酵过程。拉曼光谱(Raman spectroscopy)量化测试作为一种有应用前景的在线过程分析技术,可以在避免微生物污染的条件下,实现精准监测,进而用于优化控制微生物发酵过程。【目的】以运动发酵单胞菌(Zymomonas mobilis)为例,建立微生物发酵过程中葡萄糖、木糖、乙醇和乳酸浓度拉曼光谱预测模型,并进行准确性验证。【方法】采用浸入式在线拉曼探头,收集运动发酵单胞菌发酵过程中多个组分的拉曼光谱,采用偏最小二乘法对光谱信号进行预处理和多元数据分析,结合离线色谱分析数据,对拉曼光谱进行建模分析和浓度预测。【结果】针对运动发酵单胞菌,首先实现拉曼分析仪对单一产品乙醇发酵过程的精准检测,其次基于多元变量分析,建立葡萄糖、乙醇和乳酸浓度变化的预测模型,实现对发酵过程中各成分浓度变化的准确有效分析。【结论】成功建立了一种评价资源微生物尤其是工业菌株发酵液多种组分的拉曼光谱分析方法。该方法为运动发酵单胞菌等工业菌株利用多组分底物工业化生产不同产物的实时检测,以及其他微生物尤其工业菌株的选育和过程优化提供了新方法。  相似文献   

16.
对谷氨酸棒杆菌(Corynebacteriuin glutamicum)HCJ46产L-谷氨酸的补料分批发酵条件进行研究.结果表明:最适初糖质量浓度和最佳残糖维持质量浓度分别为100和(10~20)g/L;对发酵控温方式进行研究,确定了最佳温度控制策略为0~8h维持32℃,8~16h维持34℃、16~32h维持36℃,同时发现相对溶氧控制在30%左右时产酸最高.在以上的优化条件下,L-谷氨酸产量从72g/L提高到95g/L,提高了31.9%.  相似文献   

17.
用谷氨酸棒杆菌固定化细胞可以大大提高谷氨酸的容积产量,但葡萄糖到谷氨酸的转化率仍较低(Amin Get al.Bioresourse Tech,1993,待发表).葡萄糖转化成谷氨酸的理论值是81.74%(w/w)。由于发酵中产生许多种副产物和有大量细胞生长,因此实际值要低些。这些副产物的合成和外界条件关系密切,特别是溶解氧浓度能影响谷氨酸终浓度和胞外氨基酸组成。  相似文献   

18.
【目的】通过改造谷氨酸棒杆菌JNR中双功能尿苷酰转移/去除酶GlnD,减弱尿苷酰去除酶的活性,增强NH_4~+的转运和利用,提高L-精氨酸的合成。【方法】本文对来源于谷氨酸棒杆菌的突变菌株JNR中的双功能尿苷酰转移/去除酶GlnD进行整合突变,采用同源重组的方法将H_(414)和D_(415)位点突变为两个丙氨酸AA,在此菌株的基础上过量表达PII蛋白GlnK,并对其进行尿苷酰化研究,离子色谱检测摇瓶发酵过程中NH4+的浓度,并对最终的改造菌株进行连续流加发酵分析。【结果】该双功能尿苷酰转移/去除酶在谷氨酸棒杆菌中成功进行整合突变,有效减弱了尿苷酰去除酶的活性;同时过表达PII蛋白GlnK,其酰基化程度明显增强。摇瓶发酵结果表明菌株L4消耗NH_4~+增加,L-精氨酸产量为36.2±1.2 g/L,比对照菌株L3高出22.7%。5-L发酵罐实验结果显示改造菌株L4的L-精氨酸的产量为52.2 g/L,较野生型菌株L0提高了25.3%。【结论】谷氨酸棒杆菌合成L-精氨酸的过程中氮源是必不可少的。减弱GlnD尿苷酰去除酶的活性后,胞内尿苷酰化的GlnK-UMP增加,GlnK-UMP与氮转录调控因子AmtR结合,转运至胞内的NH_4~+浓度提高,促使L-精氨酸产量显著提高。  相似文献   

19.
分批补料培养对L-异亮氨酸发酵的影响   总被引:6,自引:0,他引:6  
刘勇  张长铠  曹光宇  房敏 《工业微生物》2000,30(2):26-29,33
以钝齿棒杆菌(Corynebacterium crenatum Met-,Bio-,AECr,AHVr)的分批补料技术进行L-异亮氨酸(L-ILE)发酵调控的研究.采用间歇恒速补料方式,当初糖浓度由7%下降至1%~2%,补糖为23g/L·h,整个发酵过程糖浓度一直维持在2%,μ、x值都提高,qp为最大;L-亮氨酸产率达17.4g/L,产酸率提高21%,结果明显优于分批培养.  相似文献   

20.
应用近红外光谱法估测小麦叶片糖氮比   总被引:3,自引:0,他引:3  
糖氮比能够反映作物碳氮代谢的协调程度,及时、准确地监测糖氮比对于作物氮素营养诊断和调控具有重要意义.本研究以不同年份、品种、施氮水平的小麦大田试验为基础,获取鲜叶和粉末状干叶近红外(NIR)光谱及糖氮比信息,分别运用偏最小二乘法(partial least squares, PLS)、BP神经网络(back propagation neural network, BPNN)和小波神经网络(wavelet neural network, WNN)3种方法建立了小麦叶片糖氮比预测模型,并利用随机选择的样品集对所建模型进行测试和检验.结果表明: 小麦鲜叶光谱模型预测性能不佳;而干叶片预测模型表现了较好的准确性,在1655~2378 nm谱区范围内基于3种方法构建的干叶粉末糖氮比估算模型,其预测均方根误差均低于0.3%,决定系数均高于0.9.比较而言,WNN法表现最佳.总体显示,近红外光谱法可以准确预测小麦叶片糖氮比状况,为科学诊断糖氮比提供了理论基础和技术途径.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号