首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The involvement of cGMP in the regulation of the flowering of Pharbitis nil was investigated through exogenous applications of cGMP and chemicals that are able to change the cGMP level and analyses of endogenous cGMP level. Exogenous applications of cGMP and 8-pCPT-cGMP (a cyclic GMP non hydrolyzed analog) to P. nil plants, which were exposed to a 12-h-long subinductive night, significantly increased flowering response. NS-2028 (guanylyl cyclase inhibitor) inhibited flowering when that compound was applied during a 16-h-long inductive night, whereas SNP (guanylyl cyclase activator) increased the flowering when plants were subjected to a 12-h-long subinductive night. The inhibitors of cyclic nucleotides phosphodiesterase (isobutyl-methylxanthine and dipyridamole), which increase the cytosolic cGMP level, promoted the flowering and allowed the length of the dark period necessary for induction of flowering to be reduced. The endogenous cGMP level was also measured after the treatment of P. nil seedlings with those chemicals. Results have clearly shown that compounds that were used in physiological experiments modulated endogenous cGMP level. There was a significant difference in the cyclic GMP level between 16-h-long night conditions and a long night with a night-break. During a long inductive night the oscillation of cGMP was observed with four main peaks in 4, 7, 11, 14 h, whereas a 10 min flash of red light in the middle of the night was able to modify these rhythmical changes in the second half of the long night. These results have shown that there are oscillations in the concentration of cGMP in the night and the biosynthesis and/or deactivation of cGMP is affected by light treatment and therefore it may be involved in the regulation of photoinduction processes in cotyledons. From these combined results, we propose a hypothesis that cGMP is involved in the control of photoperiodic flower induction in Pharbitis nil.  相似文献   

2.
The role of gibberellins in the photoperiodic flower induction of short-day plant Pharbitis nil has been investigated. It has been found that the endogenous content of gibberellins in the cotyledons of P. nil is low before and after a 16-h-long inductive dark period. During the inductive night the content of gibberellins is high at the beginning of darkness and about the middle of the dark period. Exogenous GA3 when applied to the cotyledons of non-induced plants does not replace the effect of the inductive night but it can stimulate the intensity of flowering in plants cultivated on suboptimal photoperiods. GA3 could also reverse the inhibitory effect of end-of-day far-red light irradiation on P. nil flowering. 2-Chloroethyltri-methylammonium chloride (CCC) applied to the cotyledons during the inductive night also inhibited flowering. GA3 could reverse the inhibitory effect of CCC. The obtained results strongly suggest that gibberellins are involved in the phytochrome controlled transition of P. nil to flowering. Their effect could be additive to that of photoperiodic induction.  相似文献   

3.
Jasmonates Inhibit Flowering in Short-Day Plant Pharbitis nil   总被引:1,自引:0,他引:1  
The role of jasmonates in the photoperiodic flower induction of short-day plant Pharbitis nil was investigated. The plants were grown in a special cycle: 72 h of darkness, 24 h of white light with lowered intensity, 24-h long inductive night, 14 days of continuous light. At 4 h of inductive night the cotyledons of non-induced plants contained about two times the amount of endogenous jasmonates (JA/JA-Me) compared to those induced. A 15-min long pulse of far red light (FR) applied at the end of a 24-h long white light phase inhibited flowering of P. nil. The concentration of jasmonates at 2 and 4 h of inductive night in the cotyledons of the plants treated with FR was similar. Red light (R) could reverse the effect of FR. R light applied after FR light decreased the content of jasmonates by about 50%. Methyl jasmonate (JA-Me) applied to cotyledons, shoot apices and cotyledon petioles of P. nil inhibited the formation of flower buds during the first half of a 24-h long inductive or 14-h long subinductive night. Application of JA-Me to the cotyledons was the most effective. None of the plants treated with JA-Me on the cotyledons in the middle of the inductive night formed terminal flower buds. The aspirin, ibuprofen and phenidone, jasmonates biosynthesis inhibitors partially reversed the effect of FR, stimulating the formation of axillary and terminal flower buds. Thus, the results obtained suggests that phytochrome system control both the photoperiodic flower induction and jasmonates metabolism. Jasmonates inhibit flowering in P. nil.  相似文献   

4.
Hormones are included in the essential elements that control the induction of flowering. Ethylene is thought to be a strong inhibitor of flowering in short day plants (SDPs), whereas the involvement of abscisic acid (ABA) in the regulation of flowering of plants is not well understood. The dual role of ABA in the photoperiodic flower induction of the SDP Pharbitis nil and the interaction between ABA and ethylene were examined in the present experiments. Application of ABA on the cotyledons during the inductive 16-h-long night inhibited flowering. However, ABA application on the cotyledons or the shoot apices during the subinductive 12-h-long night resulted in slight stimulation of flowering. Application of ABA also resulted in enhanced ethylene production. Whereas nordihydroguaiaretic acid (NDGA) - an ABA biosynthesis inhibitor - applied on the cotyledons of 5-d-old seedlings during the inductive night inhibited both the formation of axillary and of terminal flower buds, application of 2-aminoethoxyvinylglycine (AVG) and 2,5-norbornadiene (NBD) - inhibitors of ethylene action - reversed the inhibitory effect of ABA on flowering. ABA levels in the cotyledons of seedlings exposed to a 16-h-long inductive night markedly increased. Such an effect was not observed when the inductive night was interrupted with a 15-min-long red light pulse or when seedlings were treated at the same time with gaseous ethylene during the dark period. Lower levels of ABA were observed in seedlings treated with NDGA during the inductive night. These results may suggest that ABA plays an important role in the photoperiodic induction of flowering in P. nil seedlings, and that the inhibitory effect of ethylene on P. nil flowering inhibition may depend on its influence on the ABA level. A reversal of the inhibitory effect of ethylene on flower induction through a simultaneous treatment of induced seedlings with both ethylene and ABA strongly supports this hypothesis.  相似文献   

5.
The photoperiodic sensitivity 5 (se5) mutant of rice, a short-day plant, has a very early flowering phenotype and is completely deficient in photoperiodic response. We have cloned the SE5 gene by candidate cloning and demonstrated that it encodes a putative heme oxygenase. Lack of responses of coleoptile elongation by light pulses and photoreversible phytochromes in crude extracts of se5 indicate that SE5 may function in phytochrome chromophore biosynthesis. Ectopic expression of SE5 cDNA by the CaMV 35S promoter restored the photoperiodic response in the se5 mutant. Our results indicate that phytochromes confer the photoperiodic control of flowering in rice. Comparison of se5 with hy1, a counterpart mutant of Arabidopsis, suggests distinct roles of phytochromes in the photoperiodic control of flowering in these two species.  相似文献   

6.
7.
It is known that the level of cGMP is modulated in plant cells in response to a number of stimuli but intracellular events dependent on cGMP metabolism are not clear. Guanylyl cyclases (GCs) are enzymes which are responsible for synthesis of cGMP in eukaryotic and prokaryotic cells. To collect evidence for the participation of cGMP in light signal transduction we isolated enzyme with guanylyl cyclase activity from Pharbitis nil and analysed its level and activity during photoperiodic flower induction. Soluble proteins were isolated from seedlings of a model short-day plant P. nil, partly purified and identified by in vivo and in vitro enzyme assay. In green plants enzyme activity amounted to 484 nmol cGMP/min/mg protein, whereas in etiolated plants it was three times lower (158 nmol cGMP/min/mg protein). Analyse cyclase consists of a single polypeptide of Mr 40 kDa. In order to determine if changes in guanylyl cyclase activity occurred in response to a long, inductive night, we measured enzyme activity in 4-h intervals and observed its increase at 4, 8 and 16 h of darkness. This pattern also fits well with changes in the endogenous cGMP level during a 16 h long flower inductive night. Immunocytochemical analysis confirmed these observations and revealed that changes in the GC level during light/dark conditions appeared. During 16 h long inductive night the strongest signal was observed in cotyledons after 4 and 16 h of the darkness. A high level of fluorescence was generally distributed in mesophyll, however, it was also observed in guard cells. Staining was apparently absent in the veins and cotyledon body. Furthermore, the location inside the cell was analysed. The protein was immunolocalized preferentially in the cytosol, chloroplasts and peroxysomes. Taken together, these data demonstrate in Pharbitis nil the presence of an enzyme which is able to convert GTP to cGMP. Because its level and activity are affected by light we believe that GC/cGMP play a substantial role in light/dark dependent process in plants, such as photoperiodic flower induction.  相似文献   

8.
It was revealed that cGMP is involved in the control of photoperiodic flower induction. Further insight into the signalling function of cGMP is likely to be obtained by analysis of its effectors. Therefore, in the present study, we used various agents that cause changes in cGMP-dependent kinase (PKG) activity and examined their effects on the activity of kinase isolated from Pharbitis nil and flower induction. It was found that exogenous applications of PKG activators (cGMP, 8-pCPT-cGMP, 8-Br-cGMP, 8-pCPT-PET-cGMP) to cotyledons which were exposed to a 12-h-long subinductive night significantly increased flowering response. From among the many antagonists of cGMP-dependent protein kinase Rp-8-Br-PET-cGMPS, Rp-8-pCPT-cGMP and the synthetic heptapeptide inhibitor of PKG were used for our analysis. When Rp-8-Br-PET-cGMPS and Rp-8-pCPT-cGMP were applied during a 16-h-long inductive night, significant reduction in the number of flower buds was observed, whereas synthetic heptapeptide did not change the intensity of flowering. The influence of the analysed chemicals on protein kinase activity was also examined in vitro. With the exception of synthetic heptapeptide, which seems ineffective, the enzyme activity was stimulated by all agonists and significantly reduced by all antagonists. The activity of protein kinase was assayed in P. nil soluble protein fractions from plants grown under flower-inducing and non-inducing conditions. In vitro phosphorylation was slightly greater in the soluble fraction obtained from plants grown under the flower-inducing condition, reaching 1.05 nmol/min/mg protein, when compared to the control 0.81 nmol/min/mg protein. In relation to the results described above, we can conclude that cGMP as a mediator participating in photoperiodic flower induction may govern this process by the phosphorylation mechanism via its influence on cGMP-dependent protein kinase activity.  相似文献   

9.
Kim DH  Kang JG  Yang SS  Chung KS  Song PS  Park CM 《The Plant cell》2002,14(12):3043-3056
Reversible protein phosphorylation, which is catalyzed by functionally coupled protein kinases and protein phosphatases, is a major signaling mechanism in eukaryotic cellular functions. The red and far-red light-absorbing phytochrome photoreceptors are light-regulated Ser/Thr-specific protein kinases that regulate diverse photomorphogenic processes in plants. Here, we demonstrate that the phytochromes functionally interact with the catalytic subunit of a Ser/Thr-specific protein phosphatase 2A designated FyPP. The interactions were influenced by phosphorylation status and spectral conformation of the phytochromes. Recombinant FyPP efficiently dephosphorylated oat phytochrome A in the presence of Fe(2+) or Zn(2+) in a spectral form-dependent manner. FyPP was expressed predominantly in floral organs. Transgenic Arabidopsis plants with overexpressed or suppressed FyPP levels exhibited delayed or accelerated flowering, respectively, indicating that FyPP modulates phytochrome-mediated light signals in the timing of flowering. Accordingly, expression patterns of the clock genes in the long-day flowering pathway were altered greatly. These results indicate that a self-regulatory phytochrome kinase-phosphatase coupling is a key signaling component in the photoperiodic control of flowering.  相似文献   

10.
Cyclic adenosine diphosphate ribose (cADPR) is a potent endogenous calcium-mobilizing agent synthesized from NAD+ by ADP-ribosyl cyclases described for several animal cells. Pharmacological studies suggest that cADPR is an endogenous modulator of Ca2+-induced Ca2+ release channels. There is also information about the sub-micromolar concentration of cADPR in plant cells. Whether cADPR can act as a Ca2+-mobilizing intracellular messenger in plant tissue is an unresolved question. Despite the obvious importance of monitoring cADPR cellular levels under various physiological conditions in plants, its measurement has been technically difficult and requires specialized reagents. In the present study a widely applicable sensitivity assay for cADPR is described. We show that Pharbitis nil tissue from cotyledons contains a certain cADPR level. To explain the possible roles of this second messenger in photoperiodic flower induction, some physiological experiments were also performed. The exogenous applications of cADPR to Pharbitis nil plants, which were exposed to a 12-h-long subinductive night, significantly increased flowering response. Nevertheless 8-Br-cADPR inhibited flowering when these compounds were applied during a 16-h-long inductive night. The effect of ruthenium red, a calcium channel blocker and ryanodine, a calcium channel stimulator, on the photoperiodic induction of flowering was also studied. Ruthenium red, when applied before and during an inductive 16-h dark period, slightly inhibited flowering, whereas ryanodine, when applied before and during a 12-h long subinductive night, stimulated flower bud formation. We also confirmed evidence that Ca2+ ions are involved in the photoperiodic induction of flowering. Thus, the obtained results may suggest the involvement of cyclic ADPR-activated Ca2+ mobilization in the photoperiodic flower induction process in Pharbitis nil.  相似文献   

11.
A short exposure to light in the middle of the night causes inhibition of flowering in short-day plants. This phenomenon is called night break (NB) and has been used extensively as a tool to study the photoperiodic control of flowering for many years. However, at the molecular level, very little is known about this phenomenon. In rice (Oryza sativa), 10 min of light exposure in the middle of a 14-h night caused a clear delay in flowering. A single NB strongly suppressed the mRNA of Hd3a, a homolog of Arabidopsis thaliana FLOWERING LOCUS T (FT), whereas the mRNAs of OsGI and Hd1 were not affected. The NB effect on Hd3a mRNA was maximal in the middle of the 14-h night. The phyB mutation abolished the NB effect on flowering and Hd3a mRNA, indicating that the NB effect was mediated by phytochrome B. Because expression of the other FT-like genes was very low and not appreciably affected by NB, our results strongly suggest that the suppression of Hd3a mRNA is the principal cause of the NB effect on flowering in rice.  相似文献   

12.
We have investigated the involvement of phytochrome B in the early-flowering response of Arabidopsis thaliana L. seedlings to low red:far-red (R/FR) ratio light conditions. The phytochrome B-deficient hy3 (phyB) mutant is early flowering, and in this regard it resembles the shade-avoidance phenotype of its isogenic wild type. Seedlings carrying the hy2 mutation, resulting in a deficiency of phytochrome chromophore and hence of active phytochromes, also flower earlier than wild-type plants. Whereas hy3 or hy2 seedlings show only a slight acceleration of flowering in response to low R/FR ratio, seedlings that are doubly homozygous for both mutations flower earlier than seedlings carrying either phytochrome-related mutation alone. This additive effect clearly indicates the involvement of one or more phytochrome species in addition to phytochrome B in the flowering response as well as indicating the presence of some functional phytochrome B in hy2 seedlings. Seedlings that are homozygous for the hy3 mutation and one of the fca, fwa, or co late-flowering mutations display a pronounced early-flowering response to low R/FR ratio. A similar response to low R/FR ratio is displayed by seedlings doubly homozygous for the hy2 mutation and any one of the late-flowering mutations. Thus, placing the hy3 or hy2 mutations into a late-flowering background has the effect of uncovering a flowering response to low R/FR ratio. Seedlings that are triply homozygous for the hy3, hy2 mutations and a late-flowering mutation flower earlier than the double mutants and do not respond to low R/FR ratio. Thus, the observed flowering responses to low R/FR ratio in phytochrome B-deficient mutants can be attributed to the action of at least one other phytochrome species.  相似文献   

13.
Partitioning of [14C]-labeled assimilates was studied in relation to photoperiodic floral induction and evocation in one-week-old Pharbitis nil Choisy cv. 'Violet' seedlings. In plants kept under 16 h photoperiods, one 15 h night induced 100% axillary flowering whereas a 24 h night induced both terminal and axillary flowering. A 15 min night break of red light given 8 h after the beginning of the dark period inhibited flowering. Total [14C]-assimilate distribution among major sinks (plumules + epicotyl and roots + hypocotyl) from a single source cotyledon was unchanged by one inductive night; however, import of [14C]-assimilates into shoot apices was increased in induced plants compared to vegegative controls. This increase was several-fold in plants subjected to a 24 h night. N6-Benzyladenine (BA) application to cotyledons or plumules under non-saturating night lengths increased the number of floral buds per plant without affecting the position of the first floral bud (i.e. the speed of induction). The same treatment caused increased label accumulation in induced apices, while it only slightly affected non-induced ones. The mode of action of BA on flowering through growth stimulation and resulting assimilate mobilization is discussed.  相似文献   

14.
Melatonin ( N -acetyl-5-methoxytryptamine) is an animal hormone synthesized predominantly at night. It often serves as a signal of darkness that regulates circadian rhythmicity and photoperiodism. Melatonin has also been found in algae and higher plants, including the short-day flowering plant Chenopodium rubrum . To test its involvement in plant photoperiodism, melatonin solutions were applied to the cotyledons and plumules of 5-day-old-seedlings of Chenopodium rubrum L., ecotype 374. 3H-labelled melatonin was readily taken up by the plants and was very stable for a period of 37 h from application. Treatment with 100 and 500 µ M melatonin significantly reduced flowering of plants exposed to a single inductive 12-h darkness. Melatonin was efficient only when applied before lights off or during the first half of the dark period. This indicates that melatonin affects some early steps of the transition to flowering. However, it had no effect on the period or phase of a circadian rhythm in photoperiodic time measurement. Melatonin agonists (2-I-melatonin, 6-Cl-melatonin, CGP 52608) and 5-hydroxytryptamine also reduced flowering, whereas 5-methoxytryptamine did not. The results demonstrate that exogenous melatonin is able to influence the early stages of photoperiodic flower induction and/or flower development in a higher plant. Possible mechanisms for this effect are discussed.  相似文献   

15.
The properties of phytochrome have been measured by dual-wavelength spectropho-tometry in the cotyledons of the short-day plant Pharbitis nil Choisy cv. Violet, where it is known to play a role in flower induction. In plants de-etiolated by a single white light period (4 h or longer), destruction of the far-red absorbing form of phytochrome (Pfr) was twice as rapid as after 10 min red light. A small fraction of Pfr was stable. After de-etiolation by a period of white light (6 h or longer) the rapid decrease of Pfr during the first 30 min was accompanied by a rapid increase of the red absorbing form of phytochrome (Pfr). This rapid increase of Pfr is probably due to dark reversion. Long term synthesis of phytochrome was inhibited by the presence of Pfr. Phytochrome synthesised in darkness showed the etiolated-plant type characteristics and underwent rapid destruction upon photoconversion to Pfr. The stable Pfr identified here is possibly that pool of phytochrome associated with the long term promotive process in flower induction, and the rapidly reverting Pfr is that pool associated with the night break inhibition of flowering.  相似文献   

16.
17.
The purpose of the study was to determine inhibitory effect of calcium chelator; ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA) on flowering of a short-day (SD) plant Pharbitis nil. It was found that 20 mM solution of EGTA applied on cotyledons of 5-d-old P. nil seedlings four hours before the start of 16-h-long induction night decreased the flowering response by 55% compared to the control plants not treated with this Ca2+ chelator. It also caused a very significant decrease of photosynthesis rate, transpiration rate and stomatal conductance both in light and darkness conditions. The results of this study confirm earlier hypothesis suggesting the effect of Ca2+ and its modulators on P. nil flowering is due to their influence on the stomata.  相似文献   

18.
Chenopodium rubrum L. ecotype 184 is a qualitative short-day plant with critical length of the night of eight hours that must be exceeded in order to flower: Five days after sowing, the plants were exposed to a various number of inductive cycles (14/10 h of däy/night cycle) to test the optimal photoperiodic conditions for flowering. In our experimental conditions the plants flowered with high percentage after more than four received inductive cycles, but there was no flowering below that. The plants grown on the herbicide Norflurazon (photobleached plants) showed different photoperiodic characteristics. There was negligible flowering of photobleached plants in the same experimental conditions as for the green ones.  相似文献   

19.
The influence on photoperiodic flowering of (2-chloroethyl)trimethylmmonium chloride (CCC), an inhibitor of gibberellin (GA) biosynthesis, was studied in the short-day plant Pharbitis nil cv. Violet. The cotyledons contained high levels of endogenous bioactive gibberellins, whereas in the plumules and first leaves the levels were low or undetectable. The first leaf responded to a single'dark treatment by inducing flowering when it was 10 mm or wider. Similar seedlings, but without cotyledons, were used as the assay plants to study the effect of CCC on photoperiodic flowering. Treatment with CCC had no effect on flowering of seedlings without cotyledons, although stem elongation was inhibited. By contrast. CCC inhibited flowering of the intact seedlings with cotyledons. Gibberellic acid applied to the shoot apex or to the first leaf promoted flowering in the CCC-treated seedlings without cotyledons. The results indicate thai gibberellins are not essential for the flower induction process in leaves, but that they promote flower initiation and/or later processes in the shoot apices.  相似文献   

20.
Masuda J  Ozaki Y  Okubo H 《Planta》2007,226(4):909-915
We examined photoperiodic response of lotus (Nelumbo nucifera) rhizome morphogenesis (its transition to a storage organ) by using seed-derived plants. Rhizome enlargement (increase in girth) was brought about under 8, 10 and 12 h photoperiods, whereas the rhizomes elongated under 13 and 14 h photoperiods. Rhizomes elongated under 14 h light regimes supplied as 8 h of natural light plus 6 h supplemental hours of white, yellow or red light, but similar treatments with supplemental blue, green or far red light, caused enlargement in girth of the rhizomes. A 2 h interruption of the night with white, yellow or red light, in plants entrained to 8 h photoperiod brought rhizome elongation, whereas 2 h-blue, green or far red light night breaks still resulted in rhizome increase in girth. The inhibitory effect of a red (R) light night break on rhizome increase in girth was reversed by a far-red (FR) light given immediately afterwards. Irradiation with R/FR/R inhibited the rhizome increase in girth. FR light irradiation following R/FR/R irradiation cancelled the effect of the last R light irradiation. It was demonstrated that the critical photoperiod for rhizome transition to storage organ is between 12 and 13 h photoperiod. It was also evident that the optimal light quality range for interruption of dark period (night break) is between yellow and red light and that a R/FR reversible reaction is observed. From these results, we propose that phytochrome plays an important role in photoperiodic response of rhizome increase in girth in lotus. This is the first report on phytochrome-dependent morphogenesis of storage organs in rhizomous plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号