首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The susceptibility to dissimilatory reduction of polynuclear oxo- and hydroxo-bridged Fe(III) complexes byShewanella putrefaciens intact cells and membranes has been investigated. These complexes were ligated by the potential tetradentates heidi (H3heidi =N-(2-hydroxyethyl)iminodiacetic acid) or nta (H3nta = nitrilotriacetic acid), or the potential tridentate ida (H2ida = iminodiacetic acid). A number of defined small complexes with varied nuclearity and solubility properties were employed, as well as undefined species prepared by mixing different molar ratios of ida or heidi:Fe(III) in solution. The rates of Fe(III) reduction determined by an assay for Fe(II) formation with ferrozine were validated by monitoringc-type cytochrome oxidation and re-reduction associated with electron transport. For the undefined Fe(III) polymeric species, reduction rates in whole cells and membranes were considerably faster in the presence of heidi compared to ida. This is believed to result from generally smaller and more reactive clusters forming with heidi as a consequence of the alkoxo function of this ligand being able to bridge between Fe(III) nuclei, with access to an Fe(III) reductase located at the cytoplasmic membrane being of some importance. The increases in reduction rates of the undefined ida species with Fe(III) using membranes relative to whole cells reinforce such a view. Using soluble synthetic Fe(III) clusters, slow reduction was noted for an oxo-bridged dimer coordinatively saturated with ida and featuring unligated carboxylates. This suggests that sterically hindering the cation can influence enzyme action. A heidi dimer and a heidi multimer (17 or 19 Fe(III) nuclei), which are both of poor solubility, were found to be reduced by whole cells, but dissimilation rates increased markedly using membranes. These data suggest that Fe(III) reductase activity may be located at both the outer membrane and the cytoplasmic membrane ofS. putrefaciens. Slower reduction of the heidi multimer relative to the heidi dimer reflects the presence of a central hydroxo(oxo)-bridged core containing nine Fe(III) nuclei within the former cluster. This unit is a poor substrate for dissimilation, owing to the fact that the Fe(III) is not ligated by aminocarboxylate. The faster reduction noted for the heidi dimer in membranes than for a soluble ida monomer suggests that the presence of ligating water molecules may relieve steric hindrance to enzyme attack. Furthermore, reduction of an insoluble oxo-bridged nta dimer featuring ligating water molecules in intact cells was faster than that of a soluble monomer coordinatively saturated by nta and possessing an unligated carboxylate. This suggests that steric factors may override solubility considerations with respect to the susceptibility to reduction of certain Fe(III) complexes by the bacterium.Previous paper in this series: Dobbin PS, Powell AK, McEwan AG, Richardson DJ. 1995 The influence of chelating agents upon the dissimilatory reduction of Fe(III) byShewanella putefraciens.BioMetals 8, 163–173.  相似文献   

2.
康博伦  袁媛  王珊  刘洪艳 《微生物学通报》2021,48(10):3497-3505
[背景] 异化铁还原细菌能够在还原Fe (III)的同时将毒性较大的Cr (VI)还原成毒性较小的Cr (III),解决铬污染的问题。[目的] 基于丁酸梭菌(Clostridium butyricum) LQ25异化铁还原过程制备生物磁铁矿,开展异化铁还原细菌还原Cr (VI)的特性研究。[方法] 构建以氢氧化铁为电子受体和葡萄糖为电子供体的异化铁培养体系。菌株LQ25培养结束时制备生物磁铁矿。设置不同初始Cr (VI)浓度(5、10、15、25和30 mg/L),分别测定菌株LQ25对Cr (VI)还原效率以及生物磁铁矿对Cr (VI)的还原效率。[结果] 菌株LQ25在设置的Cr (VI)浓度范围内都能良好生长。当Cr (VI)浓度为15 mg/L时,在异化铁培养条件下,菌株LQ25对Cr (VI)的还原率为63.45%±5.13%,生物磁铁矿对Cr (VI)的还原率为87.73%±9.12%,相比菌株还原Cr (VI)的效率提高38%。pH变化能影响生物磁铁矿对Cr (VI)的还原率,当pH 2.0时,生物磁铁矿对Cr (VI)的还原率最高,几乎达到100%。电子显微镜观察发现生物磁铁矿表面有许多孔隙,X-射线衍射图谱显示生物磁铁矿中Fe (II)的存在形式是Fe (OH)2[结论] 基于异化铁还原细菌制备生物磁铁矿可用于还原Cr (VI),这是一种有效去除Cr (VI)的途径。  相似文献   

3.
The ability of S. putrefaciens to reduce Fe(III) complexed by a variety of ligands has been investigated. All of the ligands tested caused the cation to be more susceptible to reduction by harvested whole cells than when uncomplexed, although some complexes were more readily reduced than others. Monitoring rates of reduction by a ferrozine assay for Fe(II) formation proved inadequate using Fe(III) ligands giving Fe(II) complexes of low kinetic lability (e.g. EDTA). A more suitable assay for Fe(III) reduction in the presence of such ligands proved to be the observation of associated cytochrome oxidation and re-reduction. Where possible, an assay for Fe(III) reduction based upon the disappearance of Fe(III) complex was also employed. Reduction of all Fe(III) complexes tested was totally inhibited by the presence of O2, partially inhibited by HQNO and slower in the absence of a physiological electron donor. Upon cell fractionation, Fe(III) reductase activity was detected exclusively in the membranes. Using different physiological electron donors in assays on membranes, relative reduction rates of Fe(III) complexes complemented the data from whole cells. The differences in susceptibility to reduction of the various complexes are discussed, as is evidence for the respiratory nature of the reduction.  相似文献   

4.
刘洪艳  刘淼  袁媛 《微生物学通报》2020,47(9):2711-2719
【背景】一些铁还原细菌具有异化铁还原与产氢的能力,该类细菌在环境污染修复的同时能够解决能源问题。【目的】从海洋沉积物中富集获得异化铁还原菌群,明确混合菌群组成、异化铁还原及产氢性质。获得海洋沉积物中异化铁还原混合菌群组成,分析菌群异化铁还原和产氢性质。【方法】利用高通量测序技术分析异化铁还原菌群的优势菌组成,在此基础上,分析异化铁还原混合菌群在不同电子供体培养条件下异化铁还原能力和产氢性质。【结果】高通量数据表明,在不溶性氢氧化铁为电子受体和葡萄糖为电子供体厌氧培养条件下,混合菌群的优势菌属主要是梭菌(Clostridium),属于发酵型异化铁还原细菌。混合菌群能够利用电子供体蔗糖、葡萄糖以及丙酮酸钠进行异化铁还原及发酵产氢。葡萄糖为电子供体时,菌群累积产生Fe(Ⅱ)浓度和产氢量最高,分别是59.34±6.73 mg/L和629.70±11.42 mL/L。【结论】异化铁还原混合菌群同时具有异化铁还原和产氢能力,拓宽了发酵型异化铁还原细菌的种质资源,探索异化铁还原细菌在生物能源方面的应用。  相似文献   

5.
The discovery that all hyperthermophiles that have been evaluated have the capacity to reduce Fe(III) has raised the question of whether mechanisms for dissimilatory Fe(III) reduction have been conserved throughout microbial evolution. Many studies have suggested that c-type cytochromes are integral components in electron transport to Fe(III) in mesophilic dissimilatory Fe(III)-reducing microorganisms. However, Pyrobaculum islandicum, the hyperthermophile in which Fe(III) reduction has been most intensively studied, did not contain c-type cytochromes. NADPH was a better electron donor for the Fe(III) reductase activity in P. islandicum than NADH. This is the opposite of what has been observed with mesophiles. Thus, if previous models for dissimilatory Fe(III) reduction by mesophilic bacteria are correct, then it is unlikely that a single strategy for electron transport to Fe(III) is present in all dissimilatory Fe(III)-reducing microorganisms.  相似文献   

6.
A new, phylogenetically distinct, dissimilatory, Fe(III)-reducing bacterium was isolated from surface sediment of a hydrocarbon-contaminated ditch. The isolate, designated strain PAL-1, was an obligately anaerobic, non-fermentative, motile, gram-negative vibrio. PAL-1 grew in a defined medium with acetate as electron donor and ferric pyrophosphate, ferric oxyhydroxide, ferric citrate, Co(III)-EDTA, or elemental sulfur as sole electron acceptor. PAL-1 also used proline, hydrogen, lactate, propionate, succinate, fumarate, pyruvate, or yeast extract as electron donors for Fe(III) reduction. It is the first bacterium known to couple the oxidation of an amino acid to Fe(III) reduction. PAl-1 did not reduce oxygen, Mn(IV), U(VI), Cr(VI), nitrate, sulfate, sulfite, or thiosulfate with acetate as the electron donor. Cell suspensions of PAL-1 exhibited dithionite-reduced minus air-oxidized difference spectra that were characteristic of c-type cytochromes. Analysis of the 16S rRNA gene sequence of PAL-1 showed that the strain is not related to any of the described metal-reducing bacteria in the Proteobacteria and, together with Flexistipes sinusarabici, forms a separate line of descent within the Bacteria. Phenotypically and phylogenetically, strain PAl-1 differs from all other described bacteria, and represents the type strain of a new genus and species, Geovibrio ferrireducens. Received: 26 September 1995 / Accepted: 28 February 1996  相似文献   

7.
异化Fe(III)还原微生物是厌氧环境中广泛存在的一类主要微生物类群,它们的共同特征是可以利用Fe(III)作为末端电子受体而获能。异化Fe(III)还原微生物具有强大的代谢功能,可还原许多有毒重金属包括一些放射性核素,还可降解利用许多有机污染物,在污染环境的生物修复中具有重要的应用价值。本文对异化Fe(III)还原微生物的分布、分类,代谢功能多样性以及异化Fe(III)还原的意义做了评述,旨在加强相关领域的研究人员对此的了解和重视,通过学科的交叉和合作加快我国在这一领域的研究。  相似文献   

8.
Peatlands are sources of relevant greenhouse gases such as CH4, but the temporal presence of Fe(III) may inhibit methanogenesis. Because excess of carbon during the vegetation period might allow concomitant electron-accepting processes, Fe(III) reduction and methanogenesis were studied during an annual season in an acidic fen. The upper peat layer displayed the highest Fe(II)- and CH4-forming activities. The rates of Fe(II) formation did not change during the year and methanogenesis started mostly when Fe(II) formation reached a plateau. Most of the Fe(III) pool seemed to be bioavailable, and addition of nitrilotriacetic acid stimulated only light Fe(II) formation, whereas EDTA and anthraquinone-2,6-disulfonate had no effect. In the presence of an inhibitor for methanogenesis (sodium 2-bromoethanesulfonate), Fe(II) formation was inhibited to 45%. Addition of Fe(III) during ongoing methanogenesis led only to a partial inhibition of CH4 formation. The proportion of acetoclastic methanogenesis varied between 42% and 90%, but no trend with time was observed. The number of acetate-, ethanol- or lactate-utilizing Fe(III) reducers approximated 10(5)-10(6) cells g (fresh wt peat)(-1). Fermentative glucose-utilizing Fe(III)-reducers were most abundant. Our results suggest that (1) methanogens used Fe(III) as an electron acceptor and (2) fermenting bacteria, which do not compete with methanogens for common electron donors, dominated the reduction of Fe(III) in this fen.  相似文献   

9.
10.
The Fe(III) reductase activity was studied in the South African Fe(III)-reducing bacterium, Thermus scotoductus (SA-01). Fractionation studies revealed that the membrane as well as the soluble fraction contained NAD(P)H-dependent Fe(III) reductase activity. The membrane-associated enzyme was solubilized by KCl treatment and purified to electrophoretic homogeneity by hydrophobic interaction chromatography. A combination of ion-exchange and gel filtration chromatography was used to purify the soluble enzyme to apparent homogeneity. The molecular mass of the membrane-associated Fe(III) reductase was estimated to be 49 kDa, whereas the soluble Fe(III) reductase had an apparent molecular mass of 37 kDa. Optimum activity for the membrane-associated enzyme was observed at around 75 degrees C, whereas the soluble enzyme exhibited a temperature optimum at 60 degrees C.  相似文献   

11.
The metabolism of dissimilatory iron-reducing bacteria (DIRB) may provide a means of remediating contaminated subsurface soils. The factors controlling the rate and extent of bacterial F(III) mineral reduction are poorly understood. Recent research suggests that molecular-scale interactions between DIRB cells and Fe(III) mineral particles play an important role in this process. One of these interactions, cell adhesion to Fe(III) mineral particles, appears to be a complex process that is, at least in part, mediated by a variety of surface proteins. This study examined the hypothesis that the flagellum serves as an adhesin to different Fe(III) minerals that range in their surface area and degree of crystallinity. Deflagellated cells of the DIRB Shewanella algae BrY showed a reduced ability to adhere to hydrous ferric oxide (HFO) relative to flagellated cells. Flagellated cells were also more hydrophobic than deflagellated cells. This was significant because hydrophobic interactions have been previously shown to dominate S. algae cell adhesion to Fe(III) minerals. Pre-incubating HFO, goethite, or hematite with purified flagella inhibited the adhesion of S. algae BrY cells to these minerals. Transposon mutagenesis was used to generate a flagellum-deficient mutant designated S. algae strain NF. There was a significant difference in the rate and extent of S. algae NF adhesion to HFO, goethite, and hematite relative to that of S. algae BrY. Amiloride, a specific inhibitor of Na + -driven flagellar motors, inhibited S. algae BrY motility but did not affect the adhesion of S. algae BrY to HFO. S.algae NF reduced HFO at the same rate as S. algae BrY. Collectively, the results of this study support the hypothesis that the flagellum of S. algae functions as a specific Fe(III) mineral adhesin. However, these results suggest that flagellum-mediated adhesion is not requisite for Fe(III) mineral reduction.  相似文献   

12.
Six sustainable enrichment cultures of thermophilic H2-oxidizing microorganisms utilizing Fe(III) as an electron acceptor were obtained from geothermally heated environments located on two continents (America, Eurasia) and on islands in the Northern (Iceland) and Southern (Fiji) hemispheres, demonstrating the wide distribution of these microorganisms. The main products of amorphic Fe(III) oxide reduction were magnetite and siderite. The observed temperature range for Fe(III) reduction in growing cultures was from 55°C to 87°C, extending the known limits for growth of Fe(III)-reducing microorganisms producing extracellular magnetite to nearly 90°C. Received: August 13, 1996 / Accepted: January 17, 1997  相似文献   

13.
Studies on the microorganisms living in hydrocarbon-contaminated sediments in San Diego Bay, California led to the isolation of a novel Fe(III)-reducing microorganism. This organism, designated strain SDBY1, was an obligately anaerobic, non-motile, non-flagellated, gram-negative rod. Strain SDBY1 conserves energy to support growth from the oxidation of acetate, lactate, succinate, fumarate, laurate, palmitate, or stearate. H2 was also oxidized with the reduction of Fe(III), but growth with H2 as the sole electron donor was not observed. In addition to various forms of soluble and insoluble Fe(III), strain SDBY1 also coupled growth to the reduction of fumarate, Mn(IV), or S0. Air-oxidizedminus dithionite-reduced difference spectra exhibited peaks at 552.8, 523.6, and 422.8 nm, indicative ofc-type cytochrome(s). Strain SDBY1 shares physiological characteristics with organisms in the generaGeobacter, Pelobacter, andDesulfuromonas. Detailed analysis of the 16S rRNA sequence indicated that strain SDBY1 should be placed in the genusDesulfuromonas. The new species nameDesulfuromonas palmitatis is proposed.D. palmitatis is only the second marine organism found (afterD. acetoxidans) to oxidize multicarbon organic compounds completely to carbon dioxide with Fe(III) as an electron acceptor and provides the first pure culture model for the oxidation of long-chain fatty acids coupled to Fe(III) reduction.  相似文献   

14.
Bacterial crystalline Fe(III) oxide reduction has the potential to significantly influence the biogeochemistry of anaerobic sedimentary environments where crystalline Fe(III) oxides are abundant relative to poorly crystalline (amorphous) phases. A review of published data on solid-phase Fe(III) abundance and speciation indicates that crystalline Fe(III) oxides are frequently 2- to S 10-fold more abundant than amorphous Fe(III) oxides in shallow subsurface sediments not yet subjected to microbial Fe(III) oxide reduction activity. Incubation experiments with coastal plain aquifer sediments demonstrated that crystalline Fe(III) oxide reduction can contribute substantially to Fe(II) production in the presence of added electron donors and nutrients. Controls on crystalline Fe(III) oxide reduction are therefore an important consideration in relation to the biogeochemical impacts of bacterial Fe(III) oxide reduction in subsurface environments. In this paper, the influence of biogenic Fe(II) on bacterial reduction of crystalline Fe(III) oxides is reviewed and analyzed in light of new experiments conducted with the acetate-oxidizing, Fe(III)-reducing bacterium (FeRB) Geobacter metallireducens . Previous experiments with Shewanella algae strain BrY indicated that adsorption and/or surface precipitation of Fe(II) on Fe(III) oxide and FeRB cell surfaces is primarily responsible for cessation of goethite ( f -FeOOH) reduction activity after only a relatively small fraction (generally < 10%) of the oxide is reduced. Similar conclusions are drawn from analogous studies with G. metallireducens . Although accumulation of aqueous Fe(II) has the potential to impose thermodynamic constraints on the extent of crystalline Fe(III) oxide reduction, our data on bacterial goethite reduction suggest that this phenomenon cannot universally explain the low microbial reducibility of this mineral. Experiments examining the influence of exogenous Fe(II) (20 mM FeCl 2 ) on soluble Fe(III)-citrate reduction by G. metallireducens and S. algae showed that high concentrations of Fe(II) did not inhibit Fe(III)-citrate reduction by freshly grown cells, which indicates that surface-bound Fe(II) does not inhibit Fe(III) reduction through a classical end-product enzyme inhibition mechanism. However, prolonged exposure of G. metallireducens and S. algae cells to high concentrations of soluble Fe(II) did cause inhibition of soluble Fe(III) reduction. These findings, together with recent documentation of the formation of Fe(II) surface precipitates on FeRB in Fe(III)-citrate medium, provide further evidence for the impact of Fe(II) sorption by FeRB on enzymatic Fe(III) reduction. Two different, but not mutually exclusive, mechanisms whereby accumulation of Fe(II) coatings on Fe(III) oxide and FeRB surfaces may lead to inhibition of enzymatic Fe(III) oxide reduction activity (in the absence of soluble electron shuttles and/or Fe(III) chelators) are identified and discussed in relation to recent experimental work and theoretical considerations.  相似文献   

15.
An obligatory anaerobic bacterium was isolated from a mediator-less microbial fuel cell using starch processing wastewater as the fuel and designated as EG3. The isolate was Gram-positive, motile and rod (2.8–3.0 μm long, 0.5–0.6 μm wide). The partial 16S rRNA gene sequence and analysis of the cellular fatty acids profile suggested that EG3 clusters with Clostridium sub-phylum and exhibited the highest similarity (98%) with Clostridium butyricum. The temperature and pH optimum for growth were 37°C and 7.0, respectively. The major products of glucose and glucose/Fe(O)OH metabolism were lactate, formate, butyrate, acetate, CO2and H2. Growth was faster at the initial phase and the cell yield was higher when the medium was supplemented with Fe(O)OH than without Fe(O)OH. These results suggest that Fe(III) ion is utilised as an electron sink. Cyclic voltammetry showed that Clostridium butyricum EG3 cells were electrochemically active. It is a novel characteristic of strict anaerobic Gram-positive bacteria.  相似文献   

16.
17.
18.
Acidic, ochre-precipitating springs at Mam Tor, East Midlands, UK, are analogous to sites impacted by acid mine drainage over prolonged periods of time, and were studied for the presence of Fe(III)-reducing bacteria. From enrichment cultures inoculated with Mam Tor sediment, a facultative anaerobe capable of reducing Fe(III) at pH values as low as three was isolated. 16S rRNA gene analysis showed that this bacterium is a close relative of Serratia species and not previously shown to respire using Fe(III) as an electron acceptor. Direct cell counts of the isolate grown with Fe(III)-NTA coupled with protein assays suggest that this bacterium is able to conserve energy for growth through Fe(III) reduction.  相似文献   

19.
20.
NAD(P)H:quinone oxidoreductase (NQO1; EC 1.6.99.2) catalyzes a two-electron transfer involved in the protection of cells from reactive oxygen species. These reactive oxygen species are often generated by the one-electron reduction of quinones or quinone analogs. We report here on the previously unreported Fe(III) reduction activity of human NQO1. Under steady state conditions with Fe(III) citrate, the apparent Michaelis-Menten constant (Km(app)) was approximately 0.3 nM and the apparent maximum velocity (Vmax(app)) was 16 U mg(-1). Substrate inhibition was observed above 5 nM. NADH was the electron donor, Km(app)= 340 microM and Vmax(app) = 46 Umg(-1). FAD was also a cofactor with a Km(app) of 3.1 microM and Vmax(app) of 89 U mg(-1). The turnover number for NADH oxidation was 25 s(-1). Possible physiological roles of the Fe(III) reduction by this enzyme are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号