首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two metallothioneins (MTs) from bovine fetal liver were purified by a combination of gel filtration and ion-exchange chromatography. The primary structures of the isoproteins MT-1 and MT-2 were elucidated by peptide and amino acid sequence analysis. The amino-terminal part was deduced from automated Edman degradations of the pyridylethylated CNBr-cleaved derivatives. The remaining part of the sequence was established by a comparison of the carboxamidomethylated tryptic peptides to those from equine liver MT-1A and MT-2B. Peptides differing in either amino acid composition or retention time from high pressure liquid chromatography were further subjected to manual Edman degradations or carboxypeptidase Y digestion. The two isoproteins consist of 61 amino acids and show a sequence identity of 90%. When compared with the primary structures of other mammalian MTs, the 20 cysteinyl residues are totally conserved, in agreement with their function as metal ligands. The two isoproteins contain Cu and Zn at a ratio of 3:4. Spectroscopic data reveal absorption properties typical for both Cu- and Zn-thiolate transitions. The marked differences of MT-1 and MT-2 in the Cu-thiolate CD features can be attributed to the six amino acid substitutions occurring exclusively in the amino-terminal parts of the molecules. It is proposed that in bovine fetal MTs also the three copper ions are preferentially bound to the first 9 cysteinyl residues (cluster B) and the four zinc ions to the remaining 11 cysteinyl residues (cluster A) suggested previously by 113Cd NMR spectroscopy of calf liver MTs (Briggs, R. W., and Armitage, I. M. (1982) J. Biol. Chem. 257, 1259-1262).  相似文献   

2.
A glutathione S-transferase (GST) was purified from the larval cattle tick, Boophilus microplus (Acari: Ixodidae), by glutathione-affinity chromatography. The purified enzyme appeared as a single band on SDS-PAGE and has a molecular mass of 25.8 kDa determined by mass spectrometry. The N-terminus of the purified enzyme was sequenced. The full-length cDNA of the enzyme was isolated by RT-PCR using degenerate oligonucleotides derived from the N-terminal amino acid sequence. The cDNA contains an open reading frame encoding a 223-amino-acid protein with the N-terminus identical to the purified GST. Comparison of the deduced amino acid sequence with GSTs from other species revealed that the enzyme is closely related to the mammalian mu class GST.  相似文献   

3.
Metallothionein (MT) is an ubiquitous heavy metal-binding protein which has been identified in animals, plants, protists, fungi and bacteria. In insects, primary structures of MTs are known only for Drosophila and the collembolan, Orchesella cincta. The MT cDNA from O. cincta encodes a 77 amino acid protein with 19 cysteines. Isolations of the protein itself have demonstrated the presence of two smaller metal-binding peptides, whose amino acid sequences correspond to parts of the cDNA, and which apparently result from cleavage of the native protein. The present study was undertaken to complete the picture of cleavage sites within the MT protein by applying protein isolation techniques in combination with mass spectrometry and N-terminal sequence analysis. Further, recombinant expression allowed us to study the intrinsic stability of the MT and to perform in vitro cleavage studies. The results show that the MT from O. cincta is specifically cleaved at two sites, both after the amino acid sequence Thr-Gln (TQ). One of these sites is located in the N-terminal region and the other in the linker region between two putative metal-binding clusters. When expressed in Escherichia coli, the recombinant O. cincta MT can be isolated in an uncleaved form; however, this protein can be cleaved in vitro by the proteolytic activity of O. cincta. In combination with other studies, the results suggest that the length of the linker region is important for the stability of MT as a two domain metal-binding protein.  相似文献   

4.
5.
The cloning, sequencing and high-level expression of the gene encoding extracellular lipase from Streptomyces rimosus R6-554W have been recently described, and the primary structure of this gene product was deduced using a bioinformatic approach. In this study, capillary electrophoresis-on-the-chip and mass spectrometry were used to characterize native and overexpressed extracellular lipase protein from S. rimosus . The exact molecular mass of the wild-type and the overexpressed lipase, determined by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry, were in excellent agreement (Deltam=0.11 Da and Deltam=0.26 Da, respectively) with a value of 24165.76 Da calculated from the structure deduced from the nucleotide sequence, considering the mature enzyme with all six cysteines forming disulfide bridges. The primary structure derived from the nucleotide sequence was completely verified using a combination of tryptic digestion and formic acid cleavage of the protein, followed by peptide mass fingerprinting. Selected peptides were further investigated by MALDI low-energy collision-induced dissociation hybrid tandem mass spectrometry, allowing the unambiguous determination of their predicted amino acid sequence. No post-translational modifications of mature S. rimosus lipase were detected. Comparison of the peptide mass fingerprints from the reduced and non-reduced overexpressed enzyme unequivocally revealed three intramolecular disulfide bonds with the following linkages: C27-C52, C93-C101 and C151-C198.  相似文献   

6.
A new lectin, named UPL1, was purified from a green alga Ulvapertusa by an affinitychromatography on the bovine-thyroglobulin-Sepharose 4B column. The molecular mass of the algal lectinwas about 23 kD by SDS-PAGE, and it specifically agglutinated rabbit erythrocytes. The hemagglutinatingactivity for rabbit erythrocytes could be inhibited by bovine thyroglobulin and N-acetyl-D-glucosamine. Thelectin UPL1 required divalent cations for maintenance of its biological activity, and was heat-stable, and hadhigher activity within pH 6-8. The N-terminal amino acid sequence of the purified lectin was determined(P83209) and a set of degenerate primers were designed. The full-length cDNA of the lectin was cloned byrapid amplification ofcDNA ends (RACE) method (AY433960). Sequence analysis of upll indicated it was! 084 bp long, and encoded a premature protein of 203 amino acids. The N-terminal sequence of the matureUPL1 polypeptide started at amino acid 54 of the deduced sequence from the cDNA, indicating 53 aminoacids lost due to posttranslational modification. The primary structure of the Ulva pertusa lectin did not showamino acid sequence similarity with known plant and animal lectins. Hence, this protein may be the paradigmof a novel lectin family.  相似文献   

7.
We have previously reported the isolation in pure form of the human erythrocyte phosphoglycerate mutase isozyme B. We now report the sequence of the whole protein and the identification of its N-terminal blocking group. The protein tryptic peptides of phosphoglycerate mutase isozyme B were isolated by high performance liquid chromatography and their sequence determined by microsequencing. The sequence and the nature of the blocking group of the N-terminal tryptic peptide was shown to be N-acetyl-Ala-Ala-Tyr-Lys by mass spectrometry. Overlaps of the tryptic peptides were obtained by studying the V8 Staphylococcus aureus protease peptides of the aminoethylated phosphoglycerate mutase isozyme B either by microsequencing or by mass spectrometry. The procedure used allowed us to obtain the sequence on a very small amount of material and in a short period of time. Our data agree well with those derived from the cDNA nucleotide sequence described by Sakoda et al. (Sakoda, S., Shanske, S., DiMauro, S., and Schon, E. A. (1988) J. Biol. Chem. 263, 16899-16905). In addition, our data directly indicate that the initiation codon does not introduce a methionine as N-terminal amino acid and allowed the identification of the acetyl N-terminal group.  相似文献   

8.
PDM phosphatase was purified approximately 500-fold through six steps from the extract of dried powder of the culture filtrate of Fusarium moniliforme. The purified preparation appeared homogeneous on SDS-PAGE although the protein band was broad. Amino acid sequence information was collected on tryptic peptides from this preparation. cDNA cloning was carried out based on the information. A full-length cDNA was obtained and sequenced. The sequence had an open reading frame of 651 amino acid residues with a molecular mass of 69,988 Da. Cloning and sequencing of the genomic DNA corresponding to the cDNA was also conducted. The deduced amino acid sequence could account for many but not all of the tryptic peptides, suggesting presence of contaminant protein(s). SDS-PAGE analysis after chemical deglycosylation showed two proteins with molecular masses of 58 and 68 kDa. This implied that the 58 kDa protein had been copurified with PDM phosphatase. Homology search showed that PDM phosphatase belongs to the purple acid phosphatase family, which is widely distributed in the biosphere. Sequence data of fungal purple acid phosphatases were collected from the database. Processing of the data revealed presence of two types, whose evolutionary relationships were discussed.  相似文献   

9.
We describe herein the use of reversed-phase high-performance liquid chromatography coupled with the novel application of short (10 cm or less) microbore columns (2 mm internal diameter) to fractionate and purify a number of tryptic peptides generated from approximately 200 pmol purified murine transferrin receptor. The use of reversed-phase microbore columns permits the recovery of submicrogram amounts of purified polypeptides in high yield (greater than 90%) in small eluent volumes (20-60 microliter). In this manner, purified polypeptides can be loaded directly onto the gas-phase sequencer without further manipulation. This procedure avoids sample loss, which frequently occurs with other forms of concentration (e.g. lyophilization, evaporation). The application of second-order-derivative ultraviolet spectroscopy, using a diode array detector, for the analysis of aromatic aminoacid-containing peptides in complex tryptic digests is described. N-terminal amino acid sequence analyses were performed on six tryptic peptides, yielding 105 unique assignments; this corresponds to approximately 14% of the molecule. A comparison of this amino acid sequence information with the primary structure of human transferrin receptor deduced from the mRNA sequence [Nature (Lond.) 311, 675-678 (1984); Cell 39, 267-274 (1984)] reveals, with the exception of one tryptic peptide, a very close sequence homology between the murine and human transferrin receptors.  相似文献   

10.
The N-terminal amino acid sequence of a neurotoxin from the venom of Latrodectus mactans tredecimguttatus (alpha-latrotoxin) was determined. Latrotoxin was subjected to the tryptic cleavage and total or partial amino acid sequences of 25 peptides were established. In total the tryptic fragments contained 252 amino acid residues. Essential structural information on cloning of the latrotoxin structural gene was obtained.  相似文献   

11.
Lysine 2,3-aminomutase (KAM, EC 5.4.3.2.) catalyzes the interconversion of L-lysine and L-beta-lysine, the first step in lysine degradation in Clostridium subterminale SB4. KAM requires S-adenosylmethionine (SAM), which mediates hydrogen transfer in a mechanism analogous to adenosylcobalamin-dependent reactions. KAM also contains an iron-sulfur cluster and requires pyridoxal 5'-phosphate (PLP) for activity. In the present work, we report the cloning and nucleotide sequencing of the gene kamA for C. subterminale SB4 KAM and conditions for its expression in Escherichia coli. The cyanogen bromide peptides were isolated and characterized by mass spectral analysis and, for selected peptides, amino acid and N-terminal amino acid sequence analysis. PCR was performed with degenerate oligonucleotide primers and C. subterminale SB4 chromosomal DNA to produce a portion of kamA containing 1,029 base pairs of the gene. The complete gene was obtained from a genomic library of C. subterminale SB4 chromosomal DNA by use of DNA probe analysis based on the 1,029-base pair fragment. The full-length gene consisted of 1,251 base pairs specifying a protein of 47,030 Da, in reasonable agreement with 47, 173 Da obtained by electrospray mass spectrometry of the purified enzyme. N- and C-terminal amino acid analysis of KAM and its cyanogen bromide peptides firmly correlated its amino acid sequence with the nucleotide sequence of kamA. A survey of bacterial genome databases identified seven homologs with 31 to 72% sequence identity to KAM, none of which were known enzymes. An E. coli expression system consisting of pET 23a(+) plus kamA yielded unsatisfactory expression and bacterial growth. Codon usage in kamA includes the use of AGA for all 29 arginine residues. AGA is rarely used in E. coli, and arginine clusters at positions 4 and 5, 25 and 27, and 134, 135, and 136 apparently compound the barrier to expression. Coexpression of E. coli argU dramatically enhanced both cell growth and expression of KAM. Purified recombinant KAM is equivalent to that purified from C. subterminale SB4.  相似文献   

12.
The Gal beta 1,3(4)GlcNAc alpha 2,3-sialyltransferase forms the NeuAc alpha 2,3Gal beta 1,3(4)GlcNAc sequences found in terminal carbohydrate groups of glycoproteins and glycolipids. High energy collision-induced dissociation analysis of tryptic peptides from only 300 pmol of the purified Gal beta 1,3(4)GlcNAc alpha 2,3-sialyltransferase provided 25% of the total amino acid sequence and led to the successful cloning of this enzyme. The peptide sequence information was used to design short degenerate primers for use in the polymerase chain reaction. A long specific cDNA fragment was amplified which was used to isolate a clone from a rat liver cDNA library. The cloned cDNA encodes a 374-amino acid protein containing an amino-terminal signal-anchor sequence characteristic of all cloned glycosyltransferases and produced sialyltransferase activity when transiently expressed in COS-1 cells. When compared with two other cloned sialyltransferases, the primary structure of Gal beta 1,3(4)GlcNAc alpha 2,3-sialyltransferase revealed a homologous region in all three enzymes consisting of a stretch of 55 amino acids located in their catalytic domains. This feature together with lack of homology in the remaining 85% of the sequence of the three sialyltransferases defines a pattern of sequence homology not found in cloned cDNAs of other glycosyltransferase families.  相似文献   

13.
H Tai  J G Jaworski 《Plant physiology》1993,103(4):1361-1367
A cDNA clone encoding spinach (Spinacia oleracea) 3-ketoacyl-acyl carrier protein synthase III (KAS III), which catalyzes the initial condensing reaction in fatty acid biosynthesis, was isolated. Based on the amino acid sequence of tryptic digests of purified spinach KAS III, degenerate polymerase chain reaction (PCR) primers were designed and used to amplify a 612-bp fragment from first-strand cDNA of spinach leaf RNA. A root cDNA library was probed with the PCR fragment, and a 1920-bp clone was isolated. Its deduced amino acid sequence matched the sequences of the tryptic digests obtained from the purified KAS III. Northern analysis confirmed that it was expressed in both leaf and root. The clone contained a 1218-bp open reading frame coding for 405 amino acids. The identity of the clone was confirmed by expression in Escherichia coli BL 21 as a glutathione S-transferase fusion protein. The deduced amino acid sequence was 48 and 45% identical with the putative KAS III of Porphyra umbilicalis and KAS III of E. coli, respectively. It also had a strong local homology to the plant chalcone synthases but had little homology with other KAS isoforms from plants, bacteria, or animals.  相似文献   

14.
The amino acid sequence of mouse liver NAD(P)H:quinone acceptor oxidoreductase (EC 1.6.99.2) has been determined by tandem mass spectrometry and deduced from the nucleotide sequence of the cDNA encoding for the enzyme. The electrospray mass spectral analyses revealed, as previously reported (Prochaska HJ, Talalay P, 1986, J Biol Chem 261:1372-1378), that the 2 forms--the hydrophilic and hydrophobic forms--of the mouse liver quinone reductase have the same molecular weight. No amino acid sequence differences were found by tandem mass spectral analyses of tryptic peptides of the 2 forms. Moreover, the amino-termini of the mouse enzymes are acetylated as determined by tandem mass spectrometry. Further, only 1 cDNA species encoding for the quinone reductase was found. These results suggest that the 2 forms of the mouse quinone reductase have the same primary sequences, and that any difference between the 2 forms may be attributed to a labile posttranslational modification. Analysis of the mouse quinone reductase cDNA revealed that the enzyme is 273 amino acids long and has a sequence homologous to those of rat and human quinone reductases. In this study, the mouse quinone reductase cDNA was also ligated into a prokaryotic expression plasmid pKK233.2, and the constructed plasmid was used to transform Escherichia coli strain JM109. The E. coli-expressed mouse quinone reductase was purified and characterized. Although mouse quinone reductase has an amino acid sequence similar to those of the rat and human enzymes, the mouse enzyme has a higher NAD(P)H-menadione reductase activity and is less sensitive to flavones and dicoumarol, 2 known inhibitors of the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Studies on the southern bean mosaic virus coat protein have established the molecular weight of this protein, its amino acid composition, the nature of its C-terminal amino acid, and the blockage of the N-terminal residue by an acetyl group. After hydrolysis of the protein by trypsin, the hydrolysate was fractionated by ion-exchange chromatography. Among the purified tryptic peptides were isolated the N- and the C-terminal peptides where sequences were determined, principally by mass spectrometry.  相似文献   

16.
Antithrombin Northwick Park and antithrombin Glasgow are functionally variant antithrombins with impaired abilities to interact with thrombin. Thrombosis is associated with their inheritance. Both of the purified, reduced, and S-carboxymethylated variant antithrombins were treated with cyanogen bromide and the major pools of each containing the amino acid sequence Gly339-Met423 were isolated. Following treatment of these pools with trypsin, fast atom bombardment mass spectrometry identified tryptic peptides (found also in normal antithrombin treated in the same way) that corresponded to amino acid sequences Gly339-Lys370 and Val400-Met423. The tryptic peptides, corresponding to amino acid sequences Ala371-Arg393 and Ser394-Arg399 were present in both variant preparations in greatly reduced amounts compared to a normal antithrombin preparation. However, two novel tryptic peptides of molecular mass (M + H)+ 2976 and 2952 were identified in the digests of antithrombin Northwick Park and Glasgow, respectively. Further analyses of these novel tryptic peptides were carried out by V8 protease treatment and sequential Edman degradation coupled with mass spectrometric analysis of the shortened peptides. This established that these peptides comprised the amino acid sequence Ala371-Arg399, but with single amino acid substitutions at the reactive site, Arg393 replaced by Cys (in antithrombin Northwick Park) and by His (in antithrombin Glasgow).  相似文献   

17.
18.
19.
A cDNA library was constructed using RNA isolated from the livers of chickens which had been treated with zinc. This library was screened with a RNA probe complementary to mouse metallothionein-I (MT), and eight chicken MT cDNA clones were obtained. All of the cDNA clones contained nucleotide sequences homologous to regions of the longest (376 bp) cDNA clone. The latter contained an open reading frame of 189 bp, and the deduced amino acid sequence indicates a protein of 63 amino acids of which 20 are cysteine residues. Amino acid composition and partial amino acid sequence analyses of purified chicken MT protein agreed with the amino acid composition and sequence deduced from the cloned cDNA. Amino acid sequence comparisons establish that chicken MT shares extensive homology with mammalian MTs, but is more closely related to the MT-II than to the MT-I isoforms from various mammals. The nucleotide sequence of the coding region of chicken MT shares approximately 70% homology with the consensus sequence for the mammalian MTs. Southern blot analysis of chicken DNA indicates that the chicken MT gene is not a part of a large family of related sequences, but rather is likely to be a unique gene sequence. In the chicken liver, levels of chicken MT mRNA were rapidly induced by metals (Cd2+, Zn2+, Cu2+), glucocorticoids and lipopolysaccharide. MT mRNA was present in low levels in embryonic liver and increased to high levels during the first week after hatching before decreasing again to the basal levels found in adult liver. The results of this study establish that MT is highly conserved between birds and mammals and is regulated in the chicken by agents which also regulate expression of mammalian MT genes. However, in contrast to the mammals, the results suggest the existence of a single isoform of MT in the chicken.  相似文献   

20.
The DNA encoding the elastase of Pseudomonas aeruginosa IFO 3455 was cloned, and its complete nucleotide sequence was determined. When the cloned gene was ligated to pUC18, the Escherichia coli expression vector, bacteria carrying the gene exhibited high levels of both elastase activity and elastase antigens. The amino acid sequence, deduced from the nucleotide sequence, revealed that the mature elastase consisted of 301 amino acids with a relative molecular mass of 32,926 daltons. The amino acid composition predicted from the DNA sequence was quite similar to the chemically determined composition of purified elastase reported previously. We also observed nucleotide sequence encoding a signal peptide and "pro" sequence consisting of 197 amino acids upstream from the mature elastase protein gene. The amino acid sequence analysis revealed that both the N-terminal sequence of the purified elastase and the N-terminal side sequences of the C-terminal tryptic peptide as well as the internal lysyl peptide fragment were completely identical to the deduced amino acid sequences. The pattern of identity of amino acid sequences was quite evident in the regions that include structurally and functionally important residues of Bacillus subtilis thermolysin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号