首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
RNA silencing technology has become the tool of choice for inducing resistance against viruses in plants. A significant discovery of this technology is that double-stranded RNA (dsRNA), which is diced into small interfering RNAs (siRNAs), is a potent trigger for RNA silencing. By exploiting this phenomenon in transgenic plants, it is possible to confer high level of virus resistance by specific targeting of cognate viral RNA. In order to maximize the efficiency and versatility of the vector-based siRNA approach, we have constructed a chimeric expression vector containing three partial gene sequences derived from the ORF2 gene of Potato virus X, Helper Component Protease gene of Potato virus Y and Coat protein gene of Potato leaf roll virus. Solanum tuberosum cv. Desiree and Kuroda were transformed with this chimeric gene cassette via Agrobacterium tumefaciens-mediated transformation and transgenic status was confirmed by PCR, Southern and double antibody sandwich ELISA detection. Due to simultaneous RNA silencing, as demonstrated by accumulation of specific siRNAs, the expression of partial triple-gene sequence cassette depicted 20% of the transgenic plants are immune against all three viruses. Thus, expression of a single transgene construct can effectively confer resistance to multiple viruses in transgenic plants.  相似文献   

4.
Niu QW  Lin SS  Reyes JL  Chen KC  Wu HW  Yeh SD  Chua NH 《Nature biotechnology》2006,24(11):1420-1428
Plant microRNAs (miRNAs) regulate the abundance of target mRNAs by guiding their cleavage at the sequence complementary region. We have modified an Arabidopsis thaliana miR159 precursor to express artificial miRNAs (amiRNAs) targeting viral mRNA sequences encoding two gene silencing suppressors, P69 of turnip yellow mosaic virus (TYMV) and HC-Pro of turnip mosaic virus (TuMV). Production of these amiRNAs requires A. thaliana DICER-like protein 1. Transgenic A. thaliana plants expressing amiR-P69(159) and amiR-HC-Pro(159) are specifically resistant to TYMV and TuMV, respectively. Expression of amiR-TuCP(159) targeting TuMV coat protein sequences also confers specific TuMV resistance. However, transgenic plants that express both amiR-P69(159) and amiR-HC-Pro(159) from a dimeric pre-amiR-P69(159)/amiR-HC-Pro(159) transgene are resistant to both viruses. The virus resistance trait is displayed at the cell level and is hereditable. More important, the resistance trait is maintained at 15 degrees C, a temperature that compromises small interfering RNA-mediated gene silencing. The amiRNA-mediated approach should have broad applicability for engineering multiple virus resistance in crop plants.  相似文献   

5.
6.
7.
8.
9.
10.
11.
Tomato leaf curl Taiwan virus (ToLCTWV) and Tomato spotted wilt virus (TSWV) are two major tomato viruses that cause serious economic losses. In this study, a partial C2 gene from ToLCTWV and the middle half of the N gene of TSWV were fused as a chimeric transgene to develop multiple virus resistance in transgenic plants. This construct was introduced into Nicotiana benthamiana and tomato by Agrobacterium-mediated transformation. Several transgenic lines showed no symptom post agro-inoculation with ToLCTWV and displayed high resistance to TSWV. The detection of siRNAs indicated that the resistance was via RNA silencing. This study demonstrated that linkage of gene segments from two viruses with distinct genomic organization, one DNA and the other RNA, can confer multiple virus resistance in transgenic plants via gene silencing.  相似文献   

12.
Artificial microRNA-mediated virus resistance in plants   总被引:11,自引:1,他引:11       下载免费PDF全文
Qu J  Ye J  Fang R 《Journal of virology》2007,81(12):6690-6699
RNA silencing in plants is a natural defense system against foreign genetic elements including viruses. This natural antiviral mechanism has been adopted to develop virus-resistant plants through expression of virus-derived double-stranded RNAs or hairpin RNAs, which in turn are processed into small interfering RNAs (siRNAs) by the host's RNA silencing machinery. While these virus-specific siRNAs were shown to be a hallmark of the acquired virus resistance, the functionality of another set of the RNA silencing-related small RNAs, microRNAs (miRNAs), in engineering plant virus resistance has not been extensively explored. Here we show that expression of an artificial miRNA, targeting sequences encoding the silencing suppressor 2b of Cucumber mosaic virus (CMV), can efficiently inhibit 2b gene expression and protein suppressor function in transient expression assays and confer on transgenic tobacco plants effective resistance to CMV infection. Moreover, the resistance level conferred by the transgenic miRNA is well correlated to the miRNA expression level. Comparison of the anti-CMV effect of the artificial miRNA to that of a short hairpin RNA-derived small RNA targeting the same site revealed that the miRNA approach is superior to the approach using short hairpin RNA both in transient assays and in transgenic plants. Together, our data demonstrate that expression of virus-specific artificial miRNAs is an effective and predictable new approach to engineering resistance to CMV and, possibly, to other plant viruses as well.  相似文献   

13.
14.
Since the discovery of microRNA (miRNA)-guided processing, a new type of RNA silencing, the possibility that such a mechanism could play a role in virus defense has been proposed. In this work, we have analyzed whether Plum pox virus (PPV) chimeras bearing miRNA target sequences (miR171, miR167, and miR159), which have been reported to be functional in Arabidopsis, were affected by miRNA function in three different host plants. Some of these PPV chimeras had clearly impaired infectivity compared with those carrying nonfunctional miRNA target sequences. The behaviors of PPV chimeras were similar but not identical in all the plants tested, and the deleterious effect on virus infectivity depended on the miRNA sequence cloned and on the site of insertion in the viral genome. The effect of the miRNA target sequence was drastically alleviated in transgenic plants expressing the silencing suppressor P1/HCPro. Furthermore, we show that virus chimeras readily escape RNA silencing interference through mutations within the miRNA target sequence, which mainly affected nucleotides matching the 5'-terminal region of the miRNA.  相似文献   

15.
16.
17.
Plum pox virus (PPV) is a member of the Potyvirus genus that, in nature, infects trees of the Prunus genus. Although PPV infects systemically several species of the Nicotiana genus, such as N. clevelandii and N. benthamiana, and replicates in the inoculated leaves of N. tabacum, it is unable to infect systemically the last host. The long-distance movement defect of PPV was corrected in transgenic tobacco plants expressing the 5"-terminal region of the genome of tobacco etch virus (TEV), a potyvirus that infects systemically tobacco. The fact that PPV was unable to move to upper noninoculated leaves in tobacco plants transformed with the same TEV transgene, but with a mutation in the HC protein (HC-Pro)-coding sequences, identifies the multifunctional HC-Pro as the complementing factor, and strongly suggests that a defect in an HC-Pro activity is responsible for the long-distance movement defect of PPV in tobacco. Whereas PPV HC-Pro strongly intensifies the symptoms caused by potato virus X (PVX) in the PPV systemic hosts N. clevelandii and N. benthamiana, it has no apparent effect on PVX pathogenicity in tobacco, supporting the hypothesis that long-distance movement and pathogenicity enhancement are related activities of the potyviral HC proteins. The movement defect of PPV in tobacco could also be complemented by cucumber mosaic virus in a mixed infection, demonstrating that at least some components of the long-distance machinery of the potyviruses are not strictly virus specific. A general conclusion of this work is that the HC-Pro might be a relevant factor for controlling the host range of the potyviruses.  相似文献   

18.
19.
Tomato chlorotic mottle virus (ToCMoV) is a begomovirus found widespread in tomato fields in Brazil. ToCMoV isolate BA-Se1 (ToCMoV-[BA-Se1]) was shown to trigger the plant RNA silencing surveillance in different host plants and, coinciding with a decrease in viral DNA levels, small interfering RNAs (siRNAs) specific to ToCMoV-[BA-Se1] accumulated in infected plants. Although not homogeneously distributed, the siRNA population in both infected Nicotiana benthamiana and tomato plants represented the entire DNA-A and DNA-B genomes. We determined that in N. benthamiana, the primary targets corresponded to the 5' end of AC1 and the embedded AC4, the intergenic region and 5' end of AV1 and overlapping central part of AC5. Subsequently, transgenic N. benthamiana plants were generated that were preprogrammed to express double-stranded RNA corresponding to this most targeted portion of the virus genome by using an intron-hairpin construct. These plants were shown to indeed produce ToCMoV-specific siRNAs. When challenge inoculated, most transgenic lines showed significant delays in symptom development, and two lines had immune plants. Interestingly, the levels of transgene-produced siRNAs were similar in resistant and susceptible siblings of the same line. This indicates that, in contrast to RNA viruses, the mere presence of transgene siRNAs corresponding to DNA virus sequences does not guarantee virus resistance and that other factors may play a role in determining RNA-mediated resistance to DNA viruses.  相似文献   

20.
RNA-mediated virus resistance   总被引:13,自引:0,他引:13  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号