首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Responses of 375 primary somatosensory cortical neurons located in the projection area of the vibrissae to electrical stimulation of the infraorbital nerve and also to adequate stimulation of the vibrissae were investigated in unanesthetized cats immobilized with tubocurarine. Stimulation of the nerve and vibrissae most frequently evoked synaptic responses in the neurons, in the form of a short EPSP followed by an IPSP or, less frequently, as a primary IPSP; during extracellular recordings corresponding changes were observed in spike activity. In response to stimulation of the vibrissae, initial inhibition was found more often than to stimulation of the nerve (in 45 and 16% of neurons respectively). The difference between the minimal values of latent periods of IPSP and EPSP evoked by stimulation of the infraorbital nerve was 0.8 msec in different neurons, and the difference between the mean values 1.4 msec. Directional sensitivity of the cortical neurons was demonstrated (to a change in the direction of deflection of the vibrissae). Neurons located close together could differ in the character of their directional sensitivity during stimulation of the same vibrissae. It is concluded that short-latency inhibition arising in the primary projection area of the cat somatosensory cortex is predominantly afferent and not recurrent. The probable mechanisms of directional sensitivity of the neurons studied are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSSR, Kiev. Translated from Neirofiziologia, Vol. 11, No. 6, pp. 550–559, November, 1979.  相似文献   

2.
Extra- and intracellular responses of 128 neurons to paired stimulation of the infraorbital nerve and vibrissae, recorded in the projection zone of the vibrissae in cortical area SI, were studied in adult cats immobilized with tubocurarine. Conditioning stimulation completely suppressed the ability of different neurons to respond for periods of between 10 and 120 msec. The duration of the period of total suppression of test responses was shown to depend on the location of the stimulated vibrissa in the peripheral receptive field of the neurons studied. Excitatory and inhibitory responses of maximal intensity arose in the neurons to stimulation of receptive field centers. The functional role of the decrease in intensity of excitatory responses during stimulation of vibrissae located at different distances from centers of the receptive fields of cortical neurons is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 13, No. 2, pp. 117–124, April, 1981.  相似文献   

3.
The aim of this study was to investigate the role of inhibitory processes in S-1 cortex of cats. The inhibition was evoked by "natural" afferent stimulation of the fascial vibrissae. For this purpose, two neighboring vibrissae were sequentially stimulated by mechanical deflection; single unit activity was recorded simultaneously from the cortex. Results showed that conditioning by afferent stimulation significantly influenced the directional sensitivity of cortical neurons. These data and analysis of spatial pattern of stimulated vibrissa indicate that detector neurons could be quickly modified during sensory processing.  相似文献   

4.
Summary Neurones in the somatosensory cortex of unanaesthetized restrained cats were recorded during single trapezoid and repetitive sinusoidal displacements of single vibrissae. Responses to trapezoid displacements were similar to those described previously in anaesthetized cats (Hellweg et al., 1977).During repetitive mechanical stimulation cortical cells showed adaptive behaviour so that at higher stimulation frequencies the number of cell discharges per stimulus cycle decreased. The ability to follow the repetition of the stimulus at a one to one ratio was lost in the frequency range between 20 Hz and 60 Hz. A few exceptional cells, while not following at a one to one ratio, still showed some periodicities in their response histograms corresponding to repetition rates of up to 100 Hz. In about 10% of the cells nonmonotonic functions between stimulation frequency and response per cycle were found. These nonmonotonic functions as well as the different adaptive behaviour of cells could not be predicted on the basis of their response to trapezoid stimuli.Measurements of the phase differences between stimulus cycle and response peaks during repetitive stimulation showed that both can vary as a function of stimulation frequency. It is discussed whether these findings could be compatible with the concept of phase coding in the somatosensory cortex.  相似文献   

5.
6.
7.
The responses of motor cortex neurons in the cat to the presentation of a single auditory click and a series of 10 clicks presented with 1,000/sec frequency were studied under conditions of chronic experiments before and after the development of an instrumental food reflex. After reflex development a single presentation of a positive conditioned stimulus (single click) markedly influenced for 7 sec the appearance of instrumental movements. At the same time, the immediate responses of motor cortex neurons to presentation of the conditioned auditory stimulus had no impact on the appearance in the motor cortex of discharges leading to the realization of instrumental movements. Consequently, motor cortex neurons do not require activation from afferent sensory inputs for the generation of such discharges. The immediate neuronal responses to conditioned stimulation did not inhibit the realization of the instrumental reflex. It is proposed that they are associated with the realization of motor function in the unconditioned defensive response evoked by the presentation of an auditory stimulus. The presence or absence of responses to auditory conditioned stimulation was dependent upon the signal meaning of the stimulus, its physical parameters, and the degree of excitability of the animal.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 17, No. 4, pp. 539–550, July–August, 1985.  相似文献   

8.
9.
In the cat primary visual cortex (area 17) the response magnitude and latency were studied in 280 neurons sensitive to bar or cross-like-figure. Under natural conditions half of the studied 195 cells preferred bar (first group) or cross (second group). In the first group responses to both figures were near equal, while in the second one cross evoked much stronger response. Response latencies with the optimal bar in the first group were shorter than in the second group and longer to a cross than to a bar while in the second group they were considerably shorter to a cross than to bar. Under local blockage of GABA-ergic inhibition by microiontophoretic application of bicuculline about one-fourth of 85 neurons generated greater responses and were bar-sensitive irrespective to presence or absence of inhibition. Other neurons were cross-sensitive at least in one of the conditions (with and/or without of inhibition). They responses grew under bicuculline action relatively more than in the first group. Significance of the data obtained for tuning to image features and temporal succession of their detection is discussed.  相似文献   

10.
Responses of 251 neurons in the anterior part of the middle suprasylvian gyrus to stimulation of primary sensory (auditory, visual, somatosensory) areas and also to acoustic, visual, and somatosensory stimuli were studied in acute experiments on cats anesthetized with chloralose (40 mg/kg) and pentobarbital (20 mg/kg). Three groups of neurons were distinguished by their responses to stimulation of the primary sensory areas: those responding by an increased firing rate (117) or by inhibition (35) and those not responding (99). Responses of 193 neurons to stimulation of the peripheral afferent systems were analyzed. Neurons of the parietal associative cortex responded more frequently to cortical stimulation than to peripheral. By the duration of the latent period of their response to cortical stimulation the neurons were divided into three groups: those with short (less than 20 msec), medium (20–30 msec), and long latent periods (over 30 msec). The first group was the largest.Kemerovo State Medical Institute. Translated from Neirofiziologiya, Vol. 4, No. 5, pp. 524–530, September–October, 1972.  相似文献   

11.
Unit responses in the primary auditory cortex of anesthetized cats to stationary and apparently moving stimuli resulted from a static and dynamically varying interaural delay (ITD) were recorded. The static stimuli consisted of binaurally presented tones and clicks. The dynamic stimuli were produced by in-phase and out-of-phase binaurally presented click trains with time-varying ITD. Sensitivity to ITDs was mostly seen in responses of the neurons with low characteristic frequency (below 2.8 kHz). All cells sampled with static stimuli responded to simulated motion. A motion effect could take the form of a difference in response magnitude depending on the direction of stimulus motion and a shift in the ITD-function opposite the direction of motion. The magnitude of motion effects was influenced by the position of motion trajectory relative to the ITD-function. The greatest motion effect was produced by motion crossing the ITD-function slopes.  相似文献   

12.
13.
Of 103 neurons in the rostral part of the posterior sigmoid gyrus of the cat cortex 30 responded to stimulation of the ventro-posterolateral and ventrolateral nuclei of the thalamus (VPL and VL), 42 responded to stimulation of VL only, and 31 to stimulation of VPL only. It was shown by intracellular recording that stimulation of VPL induces a spike response with or without subsequent IPSPs in some neurons and an initial IPSP in others. The spike frequency of single neurons reached 60/sec, but the IPSP frequency never exceeded 10–20/sec. Stimulation of VL was accompanied by: a) antidromic spike responses; b) short-latency monosynaptic EPSPs and spikes capable of following a stimulation frequency of 100/sec; c) long-latency polysynaptic EPSPs and spikes appearing in response to stimulation at 4–8/sec; d) short-latency IPSPs; e) long-latency IPSPs increasing in intensity on repetition of infrequent stimuli. It is concluded that the afferent inputs from the relay nuclei to neurons of the somatosensory cortex are heterogeneous. An important role is postulated for recurrent inhibition in the genesis of the long-latency IPSPs arising in response to stimulation of VL, and for direct afferent inhibition during IPSPs evoked by stimulation of VPL. It is shown that the rostral part of the posterior sigmoid gyrus performs the role of somatic projection and motor cortex simultaneously.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 4, No. 3, pp. 245–255, May–June, 1972.  相似文献   

14.
The response properties of 123 trigeminal ganglion neurons were studied, using controlled whisker deflections in different directions. When the distal end of the whisker was initially displaced 5.7 degrees (1 mm) from its neutral position, 81% of the cells responded with statistically more spikes/stimulus to movements in one to three of eight cardinal (45 degrees increment) directions than to the others. The more directionally selective the cell, the more vigorous was its response. On the basis of statistical criteria, 75% of the cells were classified as slowly adapting, 25% as rapidly adapting. A number of quantitative analyses indicated that slowly adapting units respond more selectively than rapidly adapting cells to the direction of whisker movement. Differences in directional sensitivities of rapidly and slowly adapting cells appear to parallel differences between their putative mechanoreceptive endings and the relationships between those endings and the vibrissa follicle's structure. Comparisons between the response properties of peripheral and central neurons in the vibrissa-lemniscal system indicate that the afferent neural signal is progressively and substantially transformed by mechanisms that function to integrate information from different peripheral receptors and from different, individual vibrissae.  相似文献   

15.
Responses of 189 neurons of the somatosensory cortex to stimulation of the nonspecific reticular (R) and anteroventral (AV) nuclei of the thalamus were studied in cats anesthetized with thiopental and immobilized with tubocurarine. In the series of experiments with stimulation of R and, for comparison, of the specific ventral posterolateral nucleus (VPL), 132 neurons were recorded, of which 22 (16.7%) did not respond to stimulation of these nuclei, 77 (58.3%) responded only to stimulation of VPL, and 33 (25%) responded to stimulation of both VPL and R. In the series of experiments in which AV was stimulated, 57 neurons were recorded. Eight (14.8%) responded to neither stimulus and 25 (43.1%) responded only to stimulation of VPL; 24 responded to stimulation of AV (42.1%), and of these, 10 also responded to stimulation of VPL. A characteristic feature of unit responses in the somatosensory cortex to stimulation of the nonspecific nuclei was the irregularity of the responses and their longer latent period. Only five cells responded sooner to stimulation of the nonspecific nuclei than to stimulation of VPL. Responses of the nonspecific nuclei to stimulation appeared clearly only if the stimulation was repetitive. Preliminary stimulation of R blocks the response to stimulation of VPL during the subsequent 40–60 msec.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol.4, No.4, pp. 384–390, July–August, 1972.  相似文献   

16.
The morphology and topography of neurons whose axons form the nonspecific thalamic input in the primary somatosensory area were studied in the cat forebrain by the retrograde axonal horseradish peroxidase transport method. Stained cells were found in the dorsolateral part of the nucleus ventralis anterior, and were diffusely distributed in the nucleus centralis, lateralis, the lateral part of the nucleus dorsalis medialis, and the dorsal part of the centrum medianum. In the nucleus paracentralis only solitary, palely stained neurons were detected. Cells stained with horse-radish peroxidase were multipolar, triangular, or fusiform. The results are evidence that besides the ventrobasal complex, the nonspecific nuclei of the diencephalon also project into the somatosensory cortex. This indicates the existence of multiple afferent thalamic inputs into the somatic cortex.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 11, No. 5, pp. 435–440, September–October, 1979.  相似文献   

17.
Bulbar locomotor and inhibitory sites were located in the pons of mesencephalic decerebellate cats. Rhythmic stimulation of locomotor sites through microelectrodes at the rate of 60 Hz elicited stepping movements in the forelimbs which were halted when the inhibitory sites were rhythmically stimulated. Neuronal response was elicited by single or paired stimulation of locomotor sites at the rate of 1.5 Hz or by applying a series of 2–4 stimuli spaced 2 msec apart to the inhibitory site. Medial neurons generated synaptic responses (postsynaptic potentials or action potentials) to stimulation of the inhibitory site twice as frequently as when the locomotor site was stimulated. Responses in lateral neurons, however, occurred twice as frequently to stimulation of the locomotor site, while IPSP were only observed half as often as EPSP in neurons of both groups. In neurons excited by stimulation of the locomotor site, stimulation of the inhibitory site did not normally produce IPSP. Possible mechanisms underlying the halt of locomotion occurring in response to stimulation of the inhibitory site are discussed.Information Transmission Institute, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 18, No. 4, pp. 525–533, July–August, 1986.  相似文献   

18.
19.
The effect of auditory cortex blockade on response patterns of parietal association cortex neurons responding to different frequency tones was investigated in the cat. Blockade was produced by two methods: bilateral isolation and application of a 6% Nembutal solution to the auditory cortex surface. Frequency threshold curves were plotted for all test neurons. The majority of test neurons (84%) displayed one or two characteristic frequencies before blockade, as against only 63% of all neurons responding following blockade. Changes also affect the range of frequencies at which the cells could respond. Virtually all test neurons responded to application of a broad spectrum of frequencies under normal conditions. After blockade of the auditory cortex 69% of neurons no longer responded to tones above 8–10 kHz. This would suggest that mainly information on high frequency tones is transmitted via the auditory cortex. The question of where acoustic information for parietal association cortex neurons mostly originates is also discussed; association thalamic nuclei are thought to be the main source.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 3, pp. 354–360, May–June, 1986.  相似文献   

20.
During acute experiments on 20 cats a comparative study was made of neuronal reaction to a tone, as recorded during the first few hours after administration of Nembutal and after an interval of 10–30 h. No spontaneous activity was seen in 89% of auditory cortex neurons of the anesthetized cats; these produced a sterotyped on- response to the optimal frequency tone. Late neuronal spike discharges at distinct intervals of 100–150 msec appeared in response to the setting up of acoustic stimulation after a brief latent reaction lasting 9–15 msec. It was shown that this stimulation did not produce an off-response in the cortical neurons. When the animals emerged from Nembutal anesthesia, the neurons reacted very differently to the optimal frequency tone. About 76% of the cells produced an on, on-off or off response, while about 21% responded with either tonic spike discharges or total inhibition of these throughout the acoustic stimulation. In unanesthetized cats the vast majority of AI cortical neurons were capable of reacting as long as the stimulus lasted. It is shown how this ability is lost under deep Nembutal anesthetic.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 17, No. 6, pp. 728–737, November–December, 1985.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号