首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
H. A. Kordan 《Plant and Soil》1988,107(1):145-148
Tomato seeds exhibited high germination percentages on the chloride salts of the alkali metal cations Li, Na, K, Rb, and Cs. Root extension was normal in seedlings germinated in light or dark on Li, Na, or K but was severely suppressed on Rb and Cs in both environments. Germination percentages and root extension on alkali sulphate salts were similar to those observed on alkali chloride salts. Suppression of root extension by Rb and Cs was not cultivar specific.  相似文献   

2.
We studied the effects of alkali metal cations on the terminal stages of complement lysis of human and sheep HK erythrocytes. Sensitized erythrocytes (EA) were reacted with limited amounts of complement for 1 hr at 37 degrees C in buffer containing 147 mM NaCl (Na buffer), which resulted in 10-40% lysis. The unlysed cells were washed with Na buffer at 0-2 degrees C and incubated for 1 hr at 37 degrees C in buffers containing 147 mM of the various alkali metal cations. Although additional lysis (25 to 65%) occurred with K, Rb, or Cs buffer, only minor degrees developed with Na or Li buffer, only minor degrees developed with Na or Li buffer. Intermediate levels occurred with 100 mM of the divalent alkali cations. Halogen ions and SCN-(147 MM), Ca++ (0.15mM), and Mg++ (0.5 mM) did not alter the effect of the alkali metal cations. Lysis occurring in K+, Rb+ or Cs+ proceeded without lag, was temperature dependent with an optimum of 43 degrees C, and had a pH optimum of 6.5. Lysis in K and Na buffers was unaffected by 10(-3) to 10(-5) M ouabain. Experiments with mixtures of cations indicated that Na+ had a mild inhibitory effect that could be totally overcome by K+, partially by Rb+, and not at all by Cs+. Li+ had a strong inhibitory effect, 6 X 10(-5) M causing 50% inhibition in buffers containing 147 mM K+, Rb+, or Cs+. By using intermediate complexes of EA and purified complement components we demonstrated that K+ enhances the lytic action of C8 on EAC1-7 as well as that of C9 on EAC1-8. It was known that Li+ facilitates lysis when acting on the entire complement reaction. We found that Li+ enhanced the lytic action of C8 on EAC1-7, with a kinetic that differed from that of the K+ effect. In addition, Li+ inhibited the enhancing effect of K+ upon lysis of EAC1-8 by C9. This occurred at concentration of Li+ similar to those which inhibited the additional lysis by K+, Rb+, and Cs+ of cells that were pretreated in Na buffer with the entire complement sequence. We propose that the major effects of alkali metal cations on complement lysis are due to their interaction with C8 and/or membrane constitutes.  相似文献   

3.
The effects of the five Group I monovalent ions, Li, Na, K, Rb, and Cs, on [3H]acetylcholine binding to Triton X-100 solubilized acetylcholine receptor from Torpedo californica electroplax were examined. Acetylcholine binding was not greatly affected by Li or Na, but was inhibited by the other ions in the order Cs > Rb > K. The inhibition by K appeared to occur by a mechanism identical to that for d-tubocurarine inhibition of acetylcholine binding.  相似文献   

4.
The NDDO semiempirical methods MNDO, AM1, and PM3 have been extended to all the remaining non-radioactive elements of the main group, excluding the noble gases. Most of the new elements are of Groups I and II. 44 sets of parameters are presented for the following methods and elements. MNDO: Na, Mg, K, Ca, Ga, As, Se, Rb, Sr, In, Sb, Te, Cs, Ba, Tl, and Bi; AM1: Li, Be, Na, Mg, K, Ca, Ga, As, Se, Rb, Sr, In, Sn, Sb, Te, Cs, Ba, Tl, Pb, and Bi; PM3: B, Na, K, Ca, Rb, Sr, Cs, and Ba. Average errors are presented for heats of formation, molecular geometries, etc.  相似文献   

5.
Summary Absorption and accumulation of alkali (Li, Na, K, Rb, Cs) and alkaline earth (Mg, Ca, Sr, Ba) metals were investigated as taxonomic characteristics (in 62 plant species). Leaf and soil samples were collected from 9 sites in temperature forest in Japan and the above mentioned elements were analyzed. Considerable differences were found among species in their ability to accumulate alkali and alkaline earth metals. Very high concentrations of Li (45 ppm, D.W.), K (37×103 ppm), Rb (159 ppm) and Cs (8.2 ppm) were detected inLastrea japonica which were about 412, 12, 27 and 6 times higher than those of the species with the lowest concentrations. Na content was high inAcer micranthum (358 ppm) which was 16 times higher than species with the lowest concentration. Other species containing high levels of alkali metals wereHydrangea macrophylla, Struthiopteris niponica, Clethra barbinervis. Mean discrimination ratio (D.R.) for all investigated plant species for Li, Na, Rb, and Cs to K were 1.7, 0.44, 0.9 and 1.8 respectively. High concentrations of alkaline earth metals Ca (36×103 ppm), Sr (345 ppm), and Ba (241 ppm) were found in the leaves ofHydrangea paniculata which were about 31, 84, and 72 times higher than those for the species with the lowest concentration. Mg was very high inStruthiopteris niponica (83×102 ppm). Other species with high concentrations of alkaline earth metals belonged to the genus Viburnum. Mean D.Rs. for Mg, Sr, and Bavs Ca were 1.0, 0.7 and 0.08. Principal component analysis of interrelationships between the mineral content in leaf tissues indicated that these elements could be classified into 2 groups with respect to their accumulation behavior in plants. The alkali metals K, Li, Rb, and Cs behaved similarly in their accumulation in leaves but Na behaved independently. Alkaline earth metals Ca, Mg, Sr, and Ba were also found to behave similarly in their accumulation. Factors scores of 1st and 2nd components revealed three groups of plant species: alkaliphilic, alkaline earthphilic, and neutral (non-accumulators).  相似文献   

6.
The cation selectivity of the Na entry mechanism located in the outer membrane of the bullfrog (Rana catesbeiana) skin epithelium was studied. This selectivity was determined by measuring the short-circuit current when all of the external sodium was replaced by another cation and, also, by noting the relative degree of inhibition that the alkali metal cations produced on Na influx. The ability of the Group Ia cations to permeate the apical membrane was determined from the tracer uptake experiments. The results demonstrate that (a) only Li and Na are actively transported through the epithelium; (b) the alkali cations K, Rb, and Cs do not enter the epithelium through the apical border and, therefore, Na and Li are the only alkali cations translocated through this membrane; (c) these impermeable cations are competitive inhibitors of Na entry; (d) the cations NH4 and Tl exhibit more complex behavior but, under well-defined conditions, also inhibit Na entry; and (e) the selectivity of the cation binding site is in the sequence Li congruent to Na > Tl > NH4 congruent to K > Rb > Cs, which corresponds to a high field strength site with tetrahedral symmetry.  相似文献   

7.
The concentrations of 22 major and trace elements in livers from rats aging from 5 to 113 weeks old were determined. The rats investigated were the same rats previously reported with respect to 29 elements in bones (femur) and 26 elements in kidneys. The samples were decomposed with high-purity nitric acid and hydrogen peroxide. Seven elements (Na, Mg, P, K, Ca, Fe and Zn) were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES), and 15 elements (Mn, Co, Cu, As, Se, Rb, Sr, Mo, Cd, Sn, Sb, Cs, Ba, Pb and Bi) were determined by inductively coupled plasma mass spectrometry (ICP-MS). Analysis of variance (ANOVA) for age variations indicated that the concentrations of many elements, such as Mg, P, K, Mn, Fe, Cu, Zn, Sr, Mo and Cd, were almost constant across the ages of the rats with the exception of 5 weeks old (p > 0.05). Arsenic, Pb and Bi showed significant increasing trends, while Na and Co showed decreasing trends (p < 0.01). Selenium showed a decreasing trend except at the initial stage of 5–9 weeks old. Calcium, Rb, Sn, Sb, Cs and Ba showed significant age-related variations, but their patterns were not monotonic. The liver clearly contrasts with the kidneys, in which many elements showed significant age-related variations with increasing trends. The concentration ranges of Mg, P, K, Mn, Cu, Zn, and Mo were controlled within 15% across all ages of rats. The homeostasis of the aforementioned elements may be well established in the liver. The toxic elements, such as Cd, Pb and Bi, showed a narrow concentration range among age-matched rats.  相似文献   

8.
The effects on the potential difference across isolated frog skin (R. catesbeiana, R. pipiens) of changing the ionic composition of the bathing solutions have been examined. Estimates of mean values and precision are presented for the potential changes produced by substituting other alkali metal cations for Na at the outside border and for K at the inside border. In terms of ability to mimic Na at the outside border of bullfrog skin, the selectivity order is Li > Rb, K, Cs; at the outside border of leopard frog skin, Li > Cs, K, Rb. In terms of ability to mimic K at the inside border of bullfrog and leopard frog skin: Rb > Cs > Li > Na. Orders of anion selectivity in terms of sensitivity of the potential for the outside border of bullfrog skin are Br > Cl > NO3 > I > SO4, isethionate and of leopard frog skin are Br, Cl > I, NO3, SO4. An effect of the solution composition (ionic strength?) on the apparent Na-K selectivity of the outside border is described. The results of the investigation have been interpreted and discussed in terms of the application of the constant field equation to the Koefoed-Johnsen-Ussing frog skin model. These observations may be useful in constructing and testing models of biological ionic selectivity.  相似文献   

9.
The permeation of monovalent cations through the cGMP-gated channel of catfish cone outer segments was examined by measuring permeability and conductance ratios under biionic conditions. For monovalent cations presented on the cytoplasmic side of the channel, the permeability ratios with respect to extracellular Na followed the sequence NH4 > K > Li > Rb = Na > Cs while the conductance ratios at +50 mV followed the sequence Na approximately NH4 > K > Rb > Li = Cs. These patterns are broadly similar to the amphibian rod channel. The symmetry of the channel was tested by presenting the test ion on the extracellular side and using Na as the common reference ion on the cytoplasmic side. Under these biionic conditions, the permeability ratios with respect to Na at the intracellular side followed the sequence NH4 > Li > K > Na > Rb > Cs while the conductance ratios at +50 mV followed the sequence NH4 > K approximately Na > Rb > Li > Cs. Thus, the channel is asymmetric with respect to external and internal cations. Under symmetrical 120 mM ionic conditions, the single-channel conductance at +50 mV ranged from 58 pS in NH4 to 15 pS for Cs and was in the order NH4 > Na > K > Rb > Cs. Unexpectedly, the single-channel current-voltage relation showed sufficient outward rectification to account for the rectification observed in multichannel patches without invoking voltage dependence in gating. The concentration dependence of the reversal potential for K showed that chloride was impermeant. Anomalous mole fraction behavior was not observed, nor, over a limited concentration range, were multiple dissociation constants. An Eyring rate theory model with a single binding site was sufficient to explain these observations.  相似文献   

10.
Transformation of intact yeast cells treated with alkali cations   总被引:1373,自引:89,他引:1373       下载免费PDF全文
Intact yeast cells treated with alkali cations took up plasmid DNA. Li+, Cs+, Rb+, K+, and Na+ were effective in inducing competence. Conditions for the transformation of Saccharomyces cerevisiae D13-1A with plasmid YRp7 were studied in detail with CsCl. The optimum incubation time was 1 h, and the optimum cell concentration was 5 x 10(7) cells per ml. The optimum concentration of Cs+ was 1.0 M. Transformation efficiency increased with increasing concentrations of plasmid DNA. Polyethylene glycol was absolutely required. Heat pulse and various polyamines or basic proteins stimulated the uptake of plasmid DNA. Besides circular DNA, linear plasmid DNA was also taken up by Cs+-treated yeast cells, although the uptake efficiency was considerably reduced. The transformation efficiency with Cs+ or Li+ was comparable with that of conventional protoplast methods for a plasmid containing ars1, although not for plasmids containing a 2 microns origin replication.  相似文献   

11.
Sze H  Hodges TK 《Plant physiology》1977,59(4):641-646
Influx of alkali cations (Li(+), Na(+), K(+), Rb(+), Cs(+)) across plasma membranes of cells of excised roots of Avena sativa cv. Goodfield was selective, but different, in the absence and in the presence of 1 mm CaSO(4). Ca(2+) reduced the influx rates of all of the alkali cations-especially Na(+) and Li(+). Transport selectivity changed as the external concentrations of the alkali cations increased.Plasma membrane ATPase, purified from Avena sativa roots, was differentially stimulated by alkali cations. This specificity, however, was not altered by Ca(2+) or the external cation concentrations. A close correspondence existed between the relative influx rates of K(+), Rb(+), and Cs(+) and the relative stimulation of the ATPase by these cations. A similar correspondence did not occur for Na(+) and Li(+).Selective cation transport in oat roots could result, in part, from the specificity of the plasma membrane ATPase, but other factors such as specific carriers or porters or differential diffusion rates must also be involved.  相似文献   

12.
Single Na+ channels from rat skeletal muscle were inserted into planar lipid bilayers in the presence of either 200 nM batrachotoxin (BTX) or 50 microM veratridine (VT). These toxins, in addition to their ability to shift inactivation of voltage-gated Na+ channels, may be used as probes of ion conduction in these channels. Channels modified by either of the toxins have qualitatively similar selectivity for the alkali cations (Na+ approximately Li+ greater than K+ greater than Rb+ greater than Cs+). Biionic reversal potentials, for example, were concentration independent for all ions studied. Na+/K+ and Na+/Rb+ reversal potentials, however, were dependent on the orientation of the ionic species with respect to the intra- or extracellular face of the channel, whereas Na+/Li+ biionic reversal potentials were not orientation dependent. A simple, four-barrier, three-well, single-ion occupancy model was used to generate current-voltage relationships similar to those observed in symmetrical solutions of Na, K, or Li ions. The barrier profiles for Na and Li ions were symmetric, whereas that for K ions was asymmetric. This suggests the barrier to ion permeation for K ions may be different than that for Na and Li ions. With this model, these hypothetical energy barrier profiles could predict the orientation-dependent reversal potentials observed for Na+/K+ and Na+/Rb+. The energy barrier profiles, however, were not capable of describing biionic Na/Li ion permeation. Together these results support the hypothesis that Na ions have a different rate determining step for ion permeation than that of K and Rb ions.  相似文献   

13.
Competition for solvent glycerol and solute phthalic acid by the alkali metal cations Li+, Na+, K+, Rb+ and Cs+ in cationization fast atom bombardment spectra is quantitated.  相似文献   

14.
Sodium is an obligate growth requirement for most currently recognized predominant species of rumen bacteria. The isoosmotic deletion of Na(+) from a nutritionally adequate defined medium completely eliminated growth of most species. Growth yields and rates were both a function of Na(+) concentration for Na(+)-requiring species, and Na(+) could not be replaced by Rb(+), Li(+), or Cs(+) when these ions were substituted for Na(+) at a concentration equivalent to an Na(+) concentration that supported abundant growth. Li(+), Cs(+), or Rb(+) was toxic at an Na(+)-replacing concentration (15 mM) but not at a K(+)-replacing concentration (0.65 mM). K(+) was also an obligate growth requirement for rumen bacteria in media containing Na(+) and K(+) as major monovalent cations, but K(+) could be replaced, for most species, by Rb(+). The quantities of Na(+) that support rapid and abundant growth of Na(+)-requiring rumen bacteria show that these organisms are slight halophiles. A growth requirement for Na(+) appears more frequent among nonmarine bacteria than has been previously believed.  相似文献   

15.
Complexation of alkali cation picrates with cyclogentiotetraose peracetate (CGD4Ac) have been studied by 1H-N.M.R. spectroscopy in acetone d6 and nitromethane d3. We determined the stability constants directly from the observed change of the chemical shifts of H-4 and H-6 pro S protons of CGD4Ac at constant ligand concentration with increasing amounts of alkali salt. The stability constants have also been determined by multinuclear n.m.r. spectroscopies, from the observed change of the chemical shifts of Lithium-7, Sodium-23, Potassium-39, Rubidium-87 and Cesium-133 at constant alkali salt concentration with increasing amount of CGD4Ac. The stabilities of the complexes varied in the order Cs+ greater than Rb+ greater than K+ greater than Na+ greater than Li+. The complexation of CGD4Ac with Cs+ induced conformational change, the gg conformer being predominant at the complexed state. In most cases the cationic exchanges between the free and complexed sites were rapid. However in the CsPic-CGD4Ac-Acetone system the exchange was slow enough to observe below 288 K two 133Cs+ resonances.  相似文献   

16.
The concentrations of 26 major to trace elements in rat kidneys aging from 5 to 113 weeks old were determined. The rats investigated were the same rats used previously reported to have 29 elements in bones (femurs). The samples were decomposed by high purity nitric acid and hydrogen peroxide. Eight elements (Na, Mg, Si, P, K, Ca, Fe and Zn) were determined using inductively coupled plasma atomic emission spectrometry (ICP-AES) and 18 elements (Mn, Co, Ni, Cu, As, Se, Rb, Sr, Mo, Cd, Sn, Sb, Cs, Ba, Tl, Pb, Bi and U) were determined using inductively coupled plasma mass spectrometry (ICP-MS). The aging effects on the concentrations of these elements and mutual elemental relationships were investigated. Analysis of variance (ANOVA) for age variations indicated that the concentrations of P, K, Mn and Mo were almost constant across the age of rats (p > 0.3). The concentration of many elements such as Na, Mg, Ca, Fe, Co, Cu, Zn, As, Se, Cd, Sn, Sb, Tl, Pb and Bi, showed significant increasing trends (p < 0.01) with different patterns. Rubidium, Cs, Pb and Bi showed significant age variations but not monotonic trends. Silicon, Ni, Sr, Ba and U showed large concentration scatterings without any significant trends (p > 0.01). The metabolism of these elements may not be well established in the kidney. Many toxic elements such as As, Cd, Sn, Pb and Bi showed a narrow concentration range among age-matched rats. The kidney may have established metabolic mechanisms to confine or accumulate these toxic elements even though their concentrations are very low (e.g., 10 ng g?1 of Cd). These elements also closely coupled with Fe. A cluster analysis was performed using an elemental correlation matrix and indicated that these elements, including Fe, formed a cluster. However, another cluster analysis using “an aging effect eliminated” elemental correlation showed different clustering in which the Fe, Cd cluster disappeared.  相似文献   

17.
The effects of alkali metal cations on the rates at which Ca2+ and phosphatidic acid were cotransported from aqueous to hydrocarbon medium were examined. The alkali metal cations remained in the aqueous phase yet specifically influenced the transport of Ca2+ into the hydrocarbon solvent. For the physiological cations, Na+ and K+, there were critical concentration ranges in which small changes in concentration effected sharp changes in transport rates. The maximal rate observed with Na+ was an order of magnitude greater than that with K+; however, unlike Na+, K+ promoted low levels of transport below the critical concentration range. Li+ effected only low levels of transport even at high concentrations, whereas Rb+ and Cs+ induced transport at rates proportional to their concentrations. These results are discussed in terms of a classical ionophore model for the complex composed of a neutral phosphatidic acid dimer bridged by Ca2+.  相似文献   

18.
Relative permeabilities to the alkali cations were determined, from the reversal potential (VRev), for the Na channel of internally perfused voltage-clamped Myxicola giant axons. PLi/PNa and PK/PNa are 0.94 and 0.076, respectively. Rb and Cs are not measurably permeant. VRev vs. the internal Na activity was well described by the constant field equation over a 300-fold range of internal Na concentrations. In agreement with findings on squid axons, the PK/PNa was found to increase when the K content of the internal perfusate was reduced (equivalent per equivalent substitution with TMA). Internal Rb and Cs also decreased the PK/PNa. The order of effectiveness of internal K, Rb, and Cs in increasing the Na selectivity of the Na channel was Cs greater than Rb greater than or equal to K. External Li increases the PK/PNa but this may be due to the formation of LiF internally. It may be that substances do not have to traverse the channel in order to affect the selectivity filter. Evidence is presented which suggests that the selectivity of the Na channel may be higher for Na in intact as compared to perfused giant axons. It was concluded that the channel selectivity properities do not reflect only some fixed structural features of the channel, but the selectivity filter has a labile organization.  相似文献   

19.
With inductively coupled plasma-mass spectrometry (ICP-MS), the 18 trace elements Ba, (Be), (Bi), Cd, Co, Cs, Cu, La, Li, Mn, Mo, Pb, Rb, (Sb), (Sn), Sr, (Tl), and Zn were quantified in the digests of 13 formulas based on cow milk, of two formulas based on soy protein, of two milk powders, from which formulas were prepared, of two samples of Austrian cow milk, and in the water, with which the powders were suspended. Concentrations in parentheses were at or below the method detection limits in the formulas. The accuracy and precision of the analytical procedure tested with milk powder reference materials BCR 063 and BCR 150 were satisfactory. The concentrations of trace elements in the powders vary considerably from batch to batch. The ratios of high to low concentrations ranged from 1.1 to 4.8 and were higher for the essential trace elements Co, Cu, Mn, Mo, Sn, and Zn than for nonessential or toxic elements. The contribution of tap water from the water system of the city of Graz, Austria to the concentrations of trace elements in the formulas ranges from 45% for Pb to 0.2% for Rb and is negligible, for instance, for Cd, Cs, La, Mo, and Sn. Preformulas and follow-up formulas are partly supplemented with the essential trace elements Cu, Mn, and Zn and, therefore, concentrations of these trace elements in the formulas vary considerably. However, supplementation of a formula with a particular element must not necessarily result in higher concentrations compared to nonsupplemented formulas. Concentrations of the essential elements were in the following ranges for preformulas, follow-up formulas, soy-based formulas (in μg/kg): Co, 8.3–11.2, 4.5–13, 5.0–5.7; Cu, 330–750, 27–730, 440–530; Mn, 33–580, 40–390, 440–530; Mo, 10–32, 9–39, 44-6; Sn, <0.44-3.8, <0.44-1.0, <0.44-5.8; Zn, 3340-11,380, 4120–7100, 5590-6,840. A preformula supplemented with Mn had a 10 times higher manganese concentration than preformulas without supplementation. Concentrations of all trace elements quantified were lower in cow milk than in formulas and do not meet the dietary requirements of infants.  相似文献   

20.
The interactions of the monovalent ions Li+, Na+, K+, NH4+, Rb+ and Cs+ with adenosine-5'-monophosphoric acid (H2-AMP), guanosine-5'-monophosphoric acid (H2-GMP) and deoxyguanosine-5'-monophosphoric acid (H2-dGMP) were investigated in aqueous solution at physiological pH. The crystalline salts M2-nucleotide.nH2O, where M = Li+, Na+, K+ NH4+, Rb+ and Cs+, nucleotide = AMP, GMP and dGMP anions and n = 2-4 were isolated and characterized by Fourier Transform infrared (FTIR) and 1H-NMR spectroscopy. Spectroscopic evidence showed that these ions are in the form of M(H2O)n+ with no direct metal-nucleotide interaction, in aqueous solution. In the solid state, Li+ ions bind to the base N-7 site and the phosphate group (inner-sphere), while the NH4+ cations are in the vicinity of the N-7 position and the phosphate group, through hydrogen bonding systems. The Na-nucleotides and K-nucleotides are structurally similar. The Na+ ions bind to the phosphate group of the AMP through metal hydration shell (outer-sphere), whereas in the Na2-GMP, the hydrated metal ions bind to the base N-7 or the ribose hydroxyl groups (inner-sphere). The Na2-dGMP contains hydrated metal-carbonyl and metal-phosphate bindings (inner-sphere). The Rb+ and Cs+ ions are directly bonded to the phosphate groups and indirectly to the base moieties (via H2O). The ribose moiety shows C2'-endo/anti conformation for the free AMP acid and its alkali metal ion salts. In the free GMP acid, the ribose ring exhibits C3'-endo/anti conformer, while a C2'-endo/anti sugar pucker was found in the Na2-GMP and K2-GMP salts and a C3'-endo/anti conformation for the Li+, NH4+, Rb+ and Cs+ salts. The deoxyribose has C3'-endo/anti conformation in the free dGMP acid and O4'-endo/anti in the Na2-dGMP, K2-dGMP and a C3'-endo/anti for the Li+, NH4+, Rb+ and Cs+ salts. An equilibrium mixture of the C2'-endo/anti and C3'-endo/anti sugar puckers was found for these metal-nucleotide salts in aqueous solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号