首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In perovskite solar cells (PSCs), the interfaces are a weak link with respect to degradation. Electrochemical reactivity of the perovskite's halides has been reported for both molecular and polymeric hole selective layers (HSLs), and here it is shown that also NiO brings about this decomposition mechanism. Employing NiO as an HSL in p–i–n PSCs with power conversion efficiency (PCE) of 16.8%, noncapacitive hysteresis is found in the dark, which is attributable to the bias‐induced degradation of perovskite/NiO interface. The possibility of electrochemically decoupling NiO from the perovskite via the introduction of a buffer layer is explored. Employing a hybrid magnesium‐organic interlayer, the noncapacitive hysteresis is entirely suppressed and the device's electrical stability is improved. At the same time, the PCE is improved up to 18% thanks to reduced interfacial charge recombination, which enables more efficient hole collection resulting in higher Voc and FF.  相似文献   

2.
3.
As perovskite solar cells (PSCs) are highly efficient, demonstration of high‐performance printed devices becomes important. 2D/3D heterostructures have recently emerged as an attractive way to relieving the film inhomogeneity and instability in perovskite devices. In this work, a 2D/3D ensemble with 2D perovskites self‐assembled atop 3D methylammonium lead triiodide (MAPbI3) via a one‐step printing process is shown. A clean and flat interface is observed in the 2D/3D bilayer heterostructure for the first time. The 2D perovskite capping layer significantly suppresses nonradiative charge recombination, resulting in a marked increase in open‐circuit voltage (VOC) of the devices by up to 100 mV. An ultrahigh VOC of 1.20 V is achieved for MAPbI3 PSCs, corresponding to 91% of the Shockley–Queisser limit. Moreover, notable enhancement in light, thermal, and moisture stability is obtained as a result of the protective barrier of the 2D perovskites. These results suggest a viable approach for scalable fabrication of highly efficient perovskite solar cells with enhanced environmental stability.  相似文献   

4.
Passivation of electronic defects is an effective strategy to boost the performance and operational stability of perovskite solar cells (PSCs). Identifying molecular materials that achieve this purpose is a key target of current research efforts. Here, adamantane (AD) and 1‐adamantylamine (ADA) are introduced as molecular modulators to abate electronic defects present within the bulk and at the perovskite–hole conductor interface. To this effect, the modulator is added either into the antisolvent (AS) to precipitate it together with the perovskite (AS method) or they are spin coated (SC) onto its surface (SC method). Time‐resolved photoluminescence measurements show substantially longer lifetimes for perovskite films treated with AD and ADA compared to the reference sample. In line with this observation, it is found that the presence of AD and ADA molecules at the interface between the perovskite film and the hole conductor increases all photovoltaic metrics, in particular the open circuit photovoltage (V oc) as well as the operational stability of the PSC.  相似文献   

5.
Layered low‐dimensional perovskite structures employing bulky organic ammonium cations have shown significant improvement on stability but poorer performance generally compared to their 3D counterparts. Here, a mixed passivation (MP) treatment is reported that uses a mixture of bulky organic ammonium iodide (iso‐butylammonium iodide, iBAI) and formammidinium iodide (FAI), enhancing both power conversion efficiency and stability. Through a combination of inactivation of the interfacial trap sites, characterized by photoluminescence measurement, and formation of an interfacial energetic barrier by which ionic transport is reduced, demonstrated by Kelvin probe force microscopy, MP treatment of the perovskite/hole transport layer interface significantly suppresses photocurrent hysteresis. Using this MP treatment, the champion mixed‐halide perovskite cell achieves a reverse scan and stabilized power conversion efficiency of 21.7%. Without encapsulation, the devices show excellent moisture stability, sustaining over 87% of the original performance after 38 d storage in ambient environment under 75 ± 20% relative humidity. This work shows that FAI/ i BAI, is a new and promising material combination for passivating perovskite/selective‐contact interfaces.  相似文献   

6.
With the potential of achieving high efficiency and low production costs, perovskite solar cells (PSCs) have attracted great attention. However, their unstableness under moist condition has retarded the commercial development. Recently, 2D perovskites have received a lot of attention due to their high moisture resistance. In this work, four quasi 2D quasi perovskites are prepared, then their stability under moist condition is investigated. The surface morphology, crystal structure, optical properties, and photovoltaic performance are measured. Among the four quasi‐2D perovskites, (C6H5CH2NH3)2(FA)8Pb9I28 has the best performance: uniform and dense film, extremely well‐oriented crystal structure, strong absorption, and a high power conversion efficiency (PCE) of 17.40%. The aging tests show that quasi‐2D perovskites are more stable under moist conditions than FAPbI3 is. The (C6H5CH2NH3)2(FA)8Pb9I28 quasi‐2D perovskite devices exhibit high humidity stability, maintaining 80% of the starting PCE after 500 h under 80% relative humidity. Compared with other quasi‐2D perovskites, (C6H5CH2NH3)2(FA)8Pb9I28 has the highest humidity stability, due to their strongest hydrophobicity from C6H5CH2NH3+. This work demonstrates that the properties of perovskite materials can be modified by adding different ammonium salts into FAPbI3. Thus, by introducing ammonium salts with high hydrophobic properties the fabrication of highly efficient and stable 2D PSCs may be possible.  相似文献   

7.
Organic–inorganic hybrid perovskite solar cells (PSCs) are currently attracting significant interest owing to their promising outdoor performance. However, the ability of indoor light harvesting of the perovskites and corresponding device performance are rarely reported. Here, the potential of planar PSCs in harvesting indoor light for low‐power consumption devices is investigated. Ionic liquid of 1‐butyl‐3‐methylimidazolium tetrafluoroborate ([BMIM]BF4) is employed as a modification layer of [6,6]‐phenyl‐C61‐butyric acid methyl ester) (PCBM) in the inverted PSCs. The incorporation of [BMIM]BF4 not only paves the interface contact between PCBM and electrode, but also facilitates the electron transport and extraction owing to the efficient passivation of the surface trap states. Moreover, [BMIM]BF4 with excellent thermal stability can act as a protective layer by preventing the erosion of moisture and oxygen into the perovskite layer. The resulting devices present a record indoor power conversion efficiency (PCE) of 35.20% under fluorescent lamps of 1000 lux, and an impressive PCE of 19.30% under 1 sun illumination. The finding in this work verifies the excellent indoor performance of PSCs to meet the requirements of eco‐friendly economy.  相似文献   

8.
9.
10.
All‐inorganic CsPbBrI2 perovskite has great advantages in terms of ambient phase stability and suitable band gap (1.91 eV) for photovoltaic applications. However, the typically used structure causes reduced device performance, primarily due to the large recombination at the interface between the perovskite, and the hole‐extraction layer (HEL). In this paper, an efficient CsPbBrI2 perovskite solar cell (PSC) with a dimensionally graded heterojunction is reported, in which the CsPbBrI2 material is distributed within bulk–nanosheet–quantum dots or 3D–2D–0D dimension‐profiled interface structure so that the energy alignment is optimized in between the valence and conduction bands of both CsPbBrI2 and the HEL layers. Specifically, the valence‐/conduction‐band edge is leveraged to bend with synergistic advantages: the graded combination enhances the hole extraction and conduction efficiency with effectively decreased recombination loss during the hole‐transfer process, leading to an enhanced built‐in electric field, hence a high VOC of as much as 1.19 V. The profiled structure induces continuously upshifted energy levels, resulting in a higher JSC of as much as 12.93 mA cm?2 and fill factor as high as 80.5%, and therefore record power conversion efficiency (PCE) of 12.39%. As far as it is known, this is the highest PCE for CsPbBrI2 perovskite‐based PSC.  相似文献   

11.
A novel atomic stacking transporting layer (ASTL) based on 2D atomic sheets of titania (Ti1?δO2) is demonstrated in organic–inorganic lead halide perovskite solar cells. The atomically thin ASTL of 2D titania, which is fabricated using a solution‐processed self‐assembly atomic layer‐by‐layer deposition technique, exhibits the unique features of high UV transparency and negligible (or very low) oxygen vacancies, making it a promising electron transporting material in the development of stable and high‐performance perovskite solar cells. In particular, the solution‐processable atomically thin ASTL of 2D titania atomic sheets shows superior inhibition of UV degradation of perovskite solar cell devices, compared to the conventional high‐temperature sintered TiO2 counterpart, which usually causes the notorious instability of devices under UV irradiation. The discovery opens up a new dimension to utilize the 2D layered materials with a great variety of homostructrual or heterostructural atomic stacking architectures to be integrated with the fabrication of large‐area photovoltaic or optoelectronic devices based on the solution processes.  相似文献   

12.
13.
Block‐copolymer templated chemical solution deposition is used to prepare mesoporous Nd‐doped TiO2 electrodes for perovskite‐based solar cells. X‐ray diffraction and photothermal deflection spectroscopy show substitutional incorporation into the TiO2 crystal lattice for low Nd concentration, and increasing interstitial doping for higher concentrations. Substitutional Nd‐doping leads to an increase in stability and performance of perovskite solar cells by eliminating defects and thus increasing electron transport and reducing charge recombination in the mesoporous TiO2. The optimized doping concentration of 0.3% Nd enables the preparation of perovskite solar cells with stabilized power conversion efficiency of >18%.  相似文献   

14.
15.
In this work, the authors realize stable and highly efficient wide‐bandgap perovskite solar cells that promise high power conversion efficiencies (PCE) and are likely to play a key role in next generation multi‐junction photovoltaics (PV). This work reports on wide‐bandgap (≈1.72 eV) perovskite solar cells exhibiting stable PCEs of up to 19.4% and a remarkably high open‐circuit voltage (VOC) of 1.31 V. The VOC‐to‐bandgap ratio is the highest reported for wide‐bandgap organic?inorganic hybrid perovskite solar cells and the VOC also exceeds 90% of the theoretical maximum, defined by the Shockley–Queisser limit. This advance is based on creating a hybrid 2D/3D perovskite heterostructure. By spin coating n‐butylammonium bromide on the double‐cation perovskite absorber layer, a thin 2D Ruddlesden–Popper perovskite layer of intermediate phases is formed, which mitigates nonradiative recombination in the perovskite absorber layer. As a result, VOC is enhanced by 80 mV.  相似文献   

16.
17.
A new naphthalene diimide (NDI)‐based polymer with strong electron withdrawing dicyanothiophene (P(NDI2DT‐TTCN)) is developed as the electron transport layer (ETL) in place of the fullerene‐based ETL in inverted perovskite solar cells (Pero‐SCs). A combination of characterization techniques, including atomic force microscopy, scanning electron microscopy, grazing‐incidence wide‐angle X‐ray scattering, near‐edge X‐ray absorption fine‐structure spectroscopy, space‐charge‐limited current, electrochemical impedance spectroscopy, photoluminescence (PL), and time‐resolved PL decay, is used to demonstrate the interface phenomena between perovskite and P(NDI2DT‐TTCN) or [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM). It is found that P(NDI2DT‐TTCN) not only improves the electron extraction ability but also prevents ambient condition interference by forming a hydrophobic ETL surface. In addition, P(NDI2DT‐TTCN) has excellent mechanical stability compared to PCBM in flexible Pero‐SCs. With these improved functionalities, the performance of devices based on P(NDI2DT‐TTCN) significantly outperform those based on PCBM from 14.3 to 17.0%, which is the highest photovoltaic performance with negligible hysteresis in the field of polymeric ETLs.  相似文献   

18.
19.
In most current state‐of‐the‐art perovskite solar cells (PSCs), high‐temperature (≈500 °C)‐sintered metal oxides are employed as electron‐transporting layers (ETLs). To lower the device processing temperature, the development of low‐temperature‐processable ETL materials (such as solution‐processed ZnO) has received growing attention. However, thus far, the use of solution‐processed ZnO is limited because the reverse decomposition reaction that occurs at ZnO/perovskite interfaces significantly degrades the charge collection and stability of PSCs. In this work, the reverse decomposition reaction is successfully retarded by sulfur passivation of solution‐processed ZnO. The sulfur passivation of ZnO by a simple chemical means, efficiently reduces the oxygen‐deficient defects and surface oxygen‐containing groups, thus effectively preventing reverse decomposition reactions during and after formation of the perovskite active layers. Using the low‐temperature‐processed sulfur‐passivated ZnO (ZnO–S), perovskite layers with higher crystallinity and larger grain size are obtained, while the charge extraction at the ZnO/perovskite interface is significantly improved. As a result, the ZnO–S‐based PSCs achieve substantially improved power‐conversion‐efficiency (PCE) (19.65%) and long‐term air‐storage stability (90% retention after 40 d) compared with pristine ZnO‐based PSCs (16.51% and 1% retention after 40 d). Notably, the PCE achieved is the highest recorded (19.65%) for low‐temperature ZnO‐based PSCs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号