首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Perovskite solar cells (PSCs) have recently experienced a rapid rise in power conversion efficiency (PCE), but the prevailing PSCs with conventional mesoscopic or planar device architectures still contain nonideal perovskite/hole‐transporting‐layer (HTL) interfaces, limiting further enhancement in PCE and device stability. In this work, CsPbBr3 perovskite nanowires are employed for modifying the surface electronic states of bulk perovskite thin films, forming compositionally‐graded heterojunction at the perovskite/HTL interface of PSCs. The nanowire morphology is found to be key to achieving lateral homogeneity in the perovskite film surface states resulting in a near‐ideal graded heterojunction. The hidden role of such lateral homogeneity on the performance of graded‐heterojunction PSCs is revealed for the first time. The resulting PSCs show high PCE up to 21.4%, as well as high operational stability, which is superior to control PSCs fabricated without CsPbBr3‐nanocrystals modification and with CsPbBr3‐nanocubes modification. This study demonstrates the promise of controlled hybridization of perovskite nanowires and bulk thin films for more efficient and stable PSCs.  相似文献   

2.
Recently, two‐dimensional (2D) structure on three‐dimensional (3D) perovskites (graded 2D/3D) has been reported to be effective in significantly improving both efficiency and stability. However, the electrical properties of the 2D structure as a passivation layer on the 3D perovskite thin film and resistance to the penetration of moisture may vary depending on the length of the alkyl chain. In addition, the surface defects of the 2D itself on the 3D layer may also be affected by the correlation between the 2D structure and the hole conductive material. Therefore, systematic interfacial study with the alkyl chain length of long‐chained alkylammonium iodide forming a 2D structure is necessary. Herein, the 2D interfacial layers formed are compared with butylammonium iodide (BAI), octylammonium iodide (OAI), and dodecylammonium iodide (DAI) iodide on a 3D (FAPbI3)0.95(MAPbBr3)0.05 perovskite thin film in terms of the PCE and humidity stability. As the length of the alkyl chain increased from BA to OA to DA, the electron‐blocking ability and humidity resistance increase significantly, but the difference between OA and DA is not large. The PSC post‐treated with OAI has slightly higher PCE than those treated with BAI and DAI, achieving a certified stabilized efficiency of 22.9%.  相似文献   

3.
All‐inorganic CsPbBrI2 perovskite has great advantages in terms of ambient phase stability and suitable band gap (1.91 eV) for photovoltaic applications. However, the typically used structure causes reduced device performance, primarily due to the large recombination at the interface between the perovskite, and the hole‐extraction layer (HEL). In this paper, an efficient CsPbBrI2 perovskite solar cell (PSC) with a dimensionally graded heterojunction is reported, in which the CsPbBrI2 material is distributed within bulk–nanosheet–quantum dots or 3D–2D–0D dimension‐profiled interface structure so that the energy alignment is optimized in between the valence and conduction bands of both CsPbBrI2 and the HEL layers. Specifically, the valence‐/conduction‐band edge is leveraged to bend with synergistic advantages: the graded combination enhances the hole extraction and conduction efficiency with effectively decreased recombination loss during the hole‐transfer process, leading to an enhanced built‐in electric field, hence a high VOC of as much as 1.19 V. The profiled structure induces continuously upshifted energy levels, resulting in a higher JSC of as much as 12.93 mA cm?2 and fill factor as high as 80.5%, and therefore record power conversion efficiency (PCE) of 12.39%. As far as it is known, this is the highest PCE for CsPbBrI2 perovskite‐based PSC.  相似文献   

4.
Interfacial studies and band alignment engineering on the electron transport layer (ETL) play a key role for fabrication of high‐performance perovskite solar cells (PSCs). Here, an amorphous layer of SnO2 (a‐SnO2) between the TiO2 ETL and the perovskite absorber is inserted and the charge transport properties of the device are studied. The double‐layer structure of TiO2 compact layer (c‐TiO2) and a‐SnO2 ETL leads to modification of interface energetics, resulting in improved charge collection and decreased carrier recombination in PSCs. The optimized device based on a‐SnO2/c‐TiO2 ETL shows a maximum power conversion efficiency (PCE) of 21.4% as compared to 19.33% for c‐TiO2 based device. Moreover, the modified device demonstrates a maximum open‐circuit voltage (Voc) of 1.223 V with 387 mV loss in potential, which is among the highest reported value for PSCs with negligible hysteresis. The stability results show that the device on c‐TiO2/a‐SnO2 retains about 91% of its initial PCE value after 500 h light illumination, which is higher than pure c‐TiO2 (67%) based devices. Interestingly, using a‐SnO2/c‐TiO2 ETL the PCE loss was only 10% of initial value under continuous UV light illumination after 30 h, which is higher than that of c‐TiO2 based device (28% PCE loss).  相似文献   

5.
The mixed perovskite (FAPbI3)1?x (MAPbBr3)x , prepared by directly mixing different perovskite components, suffers from phase competition and a low‐crystallinity character, resulting in instability, despite the high efficiency. In this study, a dual ion exchange (DIE) method is developed by treating as‐prepared FAPbI3 with methylammonium brodide (MABr)/tert‐butanol solution. The converted perovskite thin film shows an optimized absorption edge at 800 nm after reaction time control, and the high crystallinity can be preserved after MABr incorporation. More importantly, it is found that the threshold electrical field to initiate ion migration is greatly increased in DIE perovskite thin film because excess MABr on the surface can effectively heal structural defects located on grain boundaries during the ion exchange process. It contributes to the over‐one‐month moisture stability under ≈65% room humidity (RH) and greatly enhanced light stability for the bare perovskite film. As a result of preserved high crystallinity and simultaneous grain boundary passivation, the perovskite solar cells fabricated by the DIE method demonstrate reliable reproducibility with an average power conversion efficiency (PCE) of 17% and a maximum PCE of 18.1%, with negligible hysteresis.  相似文献   

6.
Discovery of the 9.7% efficiency, 500 h stable solid‐state perovskite solar cell (PSC) in 2012 triggered off a wave of perovskite photovoltaics. As a result, a certified power conversion efficiency (PCE) of 25.2% was recorded in 2019. Publications on PSCs have increased exponentially since 2012 and the total number of publications reached over 13 200 as of August 2019. PCE has improved by developing device structures from mesoscopic sensitization to planar p‐i‐n (or n‐i‐p) junction and by changing composition from MAPbI3 to FAPbI3‐based mixed cations and/or mixed anion perovskites. Long‐term stability has been significantly improved by interfacial engineering with hydrophobic materials or the 2D/3D concept. Although small area cells exhibit superb efficiency, scale‐up technology is required toward commercialization. In this review, research direction toward large‐area, stable, high efficiency PSCs is emphasized. For large‐area perovskite coating, a precursor solution is equally important as coating methods. Precursor engineering and formulation of the precursor solution are described. For hysteresis‐less, stable, and higher efficiency PSCs, interfacial engineering is one of the best ways as defects can be effectively passivated and thereby nonradiative recombination is efficiently reduced. Methodologies are introduced to minimize interfacial and grain boundary recombination.  相似文献   

7.
2D halide perovskite materials have shown great advantages in terms of stability when applied in a photovoltaic device. However, the impediment of charge transport within the layered structure drags down the device performance. Here for the first time, a 3D–2D (MAPbI3‐PEA2Pb2I4) graded perovskite interface is demonstrated with synergistic advantages. In addition to the significantly improved ambient stability, this graded combination modifies the interface energy level in such a way that reduces interface charge recombination, leading to an ultrahigh V oc at 1.17 V, a record for NiO‐based p‐i‐n photovoltaic devices. Moreover, benefiting from the graded structure induced continuously upshifts energy level, the photovoltaic device attains a high J sc of 21.80 mA cm?2 and a high fill factor of 0.78, resulting in an overall power conversion efficiency (PCE) of 19.89%. More importantly, it is showed that such a graded interface structure also suppresses ion migration in the device, accounting for its significantly enhanced thermal stability.  相似文献   

8.
Supported by the density functional theory (DFT) calculations, for the first time, a fluorinated aromatic cation, 2‐(4‐fluorophenyl)ethyl ammonium iodide (FPEAI), is introduced to grow in situ a low dimensional perovskite layer atop 3D perovskite film with excess PbI2. The resulted (p‐FC6H4C2H4NH3)2[PbI4] perovskite functions as a protective capping layer to protect the 3D perovskite from moisture. In the meantime, the thin layer facilitates charge transfer at the interfaces, thereby reducing the nonradiative recombination pathways. Laser scanning confocal microscopy unveils visually the distribution of the 2D perovskite layer on top of the 3D perovskite. When employing the 3D–2D perovskite as the absorbing layer in the photovoltaic cells, a high power conversion efficiency of 20.54% is realized. Superior device performance and moisture stability are observed with the modified perovskite over the whole stability test period.  相似文献   

9.
In perovskite solar cells (PSCs), the interfaces are a weak link with respect to degradation. Electrochemical reactivity of the perovskite's halides has been reported for both molecular and polymeric hole selective layers (HSLs), and here it is shown that also NiO brings about this decomposition mechanism. Employing NiO as an HSL in p–i–n PSCs with power conversion efficiency (PCE) of 16.8%, noncapacitive hysteresis is found in the dark, which is attributable to the bias‐induced degradation of perovskite/NiO interface. The possibility of electrochemically decoupling NiO from the perovskite via the introduction of a buffer layer is explored. Employing a hybrid magnesium‐organic interlayer, the noncapacitive hysteresis is entirely suppressed and the device's electrical stability is improved. At the same time, the PCE is improved up to 18% thanks to reduced interfacial charge recombination, which enables more efficient hole collection resulting in higher Voc and FF.  相似文献   

10.
The performance of perovskite solar cells (PSCs) relies on the synthesis method and chemical composition of the perovskite materials. So far, PSCs that have adopted two‐step sequential deposited perovskite with the state‐of‐art composition (FAPbI3)1?x(MAPbBr3)x (x < 0.05) have achieved record power conversion efficiency (PCE), while their one‐step antisolvent dripping counterparts with typical composition Cs0.05FA0.81MA0.14Pb(I0.85Br0.15)3 with more bromine have exhibited much better long‐term operational stability. Thus, halogen engineering that aims to elevate bromine content in sequential deposited perovskite film would push operational stability of PSCs toward that of antisolvent dripping deposited perovskite materials. Here, a Br‐rich seeding growth method is devised and perovskite seed solution with high bromine content is introduced into a PbI2 precursor, leading to bromine incorporation in the resulting perovskite film. Photovoltaic devices fabricated by Br‐rich seeding growth method exhibit a PCE of 21.5%, similar to 21.6% for PSCs having lower bromine content. Whereas, the operational stability of PSCs with higher bromine content is significantly enhanced, with over 80% of initial PCE retained after 500 h tracking at maximum power point under 1‐sun illumination. This work highlights the vital importance of halogen composition for the operational stability of PSCs, and introduces an effective way to incorporate bromine into mixed‐cation‐halide perovskite film via sequential deposition method.  相似文献   

11.
The high thermal stability and facile synthesis of CsPbI2Br all‐inorganic perovskite solar cells (AI‐PSCs) have attracted tremendous attention. As far as electron‐transporting layers (ETLs) are concerned, low temperature processing and reduced interfacial recombination centers through tunable energy levels determine the feasibility of the perovskite devices. Although the TiO2 is the most popular ETL used in PSCs, its processing temperature and moderate electron mobility hamper the performance and feasibility. Herein, the highly stable, low‐temperature processed MgZnO nanocrystal‐based ETLs for dynamic hot‐air processed Mn2+ incorporated CsPbI2Br AI‐PSCs are reported. By holding its regular planar “n–i–p” type device architecture, the MgZnO ETL and poly(3‐hexylthiophene‐2,5‐diyl) hole transporting layer, 15.52% power conversion efficiency (PCE) is demonstrated. The thermal‐stability analysis reveals that the conventional ZnO ETL‐based AI‐PSCs show a serious instability and poor efficiency than the Mg2+ modified MgZnO ETLs. The photovoltaic and stability analysis of this improved photovoltaic performance is attributed to the suitable wide‐bandgap, low ETL/perovskite interface recombination, and interface stability by Mg2+ doping. Interestingly, the thermal stability analysis of the unencapsulated AI‐PSCs maintains >95% of initial PCE more than 400 h at 85 °C for MgZnO ETL, revealing the suitability against thermal degradation than conventional ZnO ETL.  相似文献   

12.
Increasing the power conversion efficiency (PCE) of the two‐dimensional (2D) perovskite‐based solar cells (PVSCs) is really a challenge. Vertical orientation of the 2D perovskite film is an efficient strategy to elevate the PCE. In this work, vertically orientated highly crystalline 2D (PEA)2(MA)n–1PbnI3n+1 (PEA= phenylethylammonium, MA = methylammonium, n = 3, 4, 5) films are fabricated with the assistance of an ammonium thiocyanate (NH4SCN) additive by a one‐step spin‐coating method. Planar‐structured PVSCs with the device structure of indium tin oxide (ITO)/poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate)/(PEA)2(MA)n–1PbnI3n+1/[6,6]‐phenyl‐C61‐butyric acid methyl ester/bahocuproine/Ag are fabricated. The PCE of the PVSCs is boosted from the original 0.56% (without NH4SCN) to 11.01% with the optimized NH4SCN addition at n = 5, which is among the highest PCE values for the low‐n (n < 10) 2D perovskite‐based PVSCs. The improved performance is attributed to the vertically orientated highly crystalline 2D perovskite thin films as well as the balanced electron/hole transportation. The humidity stability of this oriented 2D perovskite thin film is also confirmed by the almost unchanged X‐ray diffraction patterns after 28 d exposed to the moisture in a humidity‐controlled cabinet (Hr = 55 ± 5%). The unsealed device retains 78.5% of its original PCE after 160 h storage in air atmosphere with humidity of 55 ± 5%. The results provide an effective approach toward a highly efficient and stable PVSC for future commercialization.  相似文献   

13.
A major limit for planar perovskite solar cells is the trap‐mediated hysteresis and instability, due to the defective metal oxide interface with the perovskite layer. Passivation engineering with fullerenes has been identified as an effective approach to modify this interface. The rational design of fullerene molecules with exceptional electrical properties and versatile chemical moieties for targeted defect passivation is therefore highly demanded. In this work, novel fulleropyrrolidine (NMBF‐X, X?H or Cl) monomers and dimers are synthesized and incorporated between metal oxides (i.e. TiO2, SnO2) and perovskites (i.e. MAPbI3 and (FAPbI3)x(MAPbBr3)1‐x). The fullerene dimers provide superior stability and efficiency improvements compared to the corresponding monomers, with chlorinated fullerene dimers being most effective at coordinating with both metal oxides and perovskite via the chlorine terminals. The non‐encapsulated planar device delivers a maximum power conversion efficiency of 22.3% without any hysteresis, while maintaining over 98% of initial efficiency after ambient storage for 1000 h, and exhibiting an order of magnitude improvement of the T80 lifetime.  相似文献   

14.
CsPbI2Br is emerging as a promising all‐inorganic material for perovskite solar cells (PSCs) due to its more stable lattice structure and moisture resistance compared to CsPbI3, although its device performance is still much behind this counterpart. Herein, a preannealing process is developed and systematically investigated to achieve high‐quality CsPbI2Br films by regulating the nucleation and crystallization of perovskite. The preannealing temperature and time are specifically optimized for a dopant‐free poly(3‐hexylthiophene) (P3HT)‐based device to target dopant‐induced drastic performance degradation for spiro‐OMeTAD‐based devices. The resulting P3HT‐based device exhibits comparable power conversion efficiency (PCE) to spiro‐OMeTAD‐based devices but much enhanced ambient stability with over 95% PCE after 1300 h. A diphenylamine derivative is introduced as a buffer layer to improve the energy‐level mismatch between CsPbI2Br and P3HT. A record‐high PCE of 15.50% for dopant‐free P3HT‐based CsPbI2Br PSCs is achieved by alleviating the open‐circuit voltage loss with the buffer layer. These results demonstrate that the preannealing processing together with a suitable buffer layer are applicable strategies for developing dopant‐free P3HT PSCs with high efficiency and stability.  相似文献   

15.
To solve critical issues related to device stability and performance of perovskite solar cells (PSCs), FA0.026MA0.974PbI3?yCly‐Cu:NiO (formamidinium methylammonium (FAMA)‐perovskite‐Cu:NiO) and Al2O3/Cu:NiO composites are developed and utilized for fabrication of highly stable and efficient PSCs through fully‐ambient‐air processes. The FAMA‐perovskite‐Cu:NiO composite crystals prepared without using any antisolvents not only improve the perovskite film quality with large‐size crystals and less grain boundaries but also tailor optical and electronic properties and suppress charge recombination with reduction of trap density. A champion device based on the composites as light absorber and Al2O3/Cu:NiO interfacial layer between electron transport layer and active layer yields power conversion efficiency (PCE) of 20.67% with VOC of 1.047 V, JSC of 24.51 mA cm?2, and fill factor of 80.54%. More importantly, such composite‐based PSCs without encapsulation show significant enhancement in long‐term air‐stability, thermal‐ and photostability with retaining 97% of PCE over 240 d under ambient conditions (25–30 °C, 45–55% humidity).  相似文献   

16.
In p‐i‐n planar perovskite solar cells (pero‐SCs) based on methylammonium lead iodide (MAPbI3) perovskite, high‐quality MAPbI3 film, perfect interfacial band alignment and efficient charge extracting ability are critical for high photovoltaic performance. In this work, a hydrophilic fullerene derivative [6,6]‐phenyl‐C61‐butyric acid‐(3,4,5‐tris(2‐(2‐(2‐methoxyethoxy)ethoxy)ethoxy)phenyl)methanol ester (PCBB‐OEG) is introduced as additive in the methylammonium iodide precursor solution in the preparation of MAPbI3 perovskite film by two‐step sequential deposition method, and obtained a top‐down gradient distribution with an ultrathin top layer of PCBB‐OEG. Meanwhile, a high‐quality perovskite film with high crystallinity, less trap‐states, and dense‐grained uniform morphology can well grow on both hydrophilic (poly(3,4‐ethylenedioxythiophene)/poly(styrenesulfonic acid)) and hydrophobic (polytriarylamine, PTAA) hole transport layers. When the PCBB‐OEG‐containing perovskite film (pero‐0.1) is prepared in a p‐i‐n planar pero‐SC with the configuration of ITO/PTAA/pero‐0.1/[6,6]‐phenyl‐C61‐butyric acid methyl ester/Al, the device delivers a promising power conversion efficiency (PCE) of 20.2% without hysteresis, which is one of the few PCE over 20% for the p‐i‐n planar pero‐SCs. Importantly, the pero‐0.1‐based device shows an excellent stability that can retain 98.4% of its initial PCE after being exposed for 300 h under ambient atmosphere with a high humidity, and the flexible pero‐SCs based on pero‐0.1 also demonstrate a promising PCE of 18.1%.  相似文献   

17.
Two chemically tailored new conjugated copolymers, HSL1 and HSL2, were developed and applied as hole selective layers to improve the anode interface of fullerene/perovskite planar heterojunction solar cells. The introduction of polar functional groups on the polymer side chains increases the surface energy of the hole selective layers (HSLs), which promote better wetting with the perovskite films and lead to better films with full coverage and high crystallinity. The deep highest occupied molecular orbital levels of the HSLs align well with the valence band of the perovskite semiconductors, resulted in increase photovoltage. The high lying lowest unoccupied molecule orbital level provides sufficient electron blocking ability to prevent electrons from reaching the anode and reduces the interfacial trap‐assisted recombination at the poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate)/perovskite interface, resulting in a longer charge‐recombination lifetime and shorter charge‐extraction time. In the presence of the HSLs, high‐performance CH3NH3PbI x Cl3? x perovskite solar cells with a power conversion efficiency (PCE) of 16.6% (V oc: 1.07 V) and CH3NH3Pb(I0.3Br0.7) x Cl3? x cells with a PCE of 10.3% (V oc: 1.34 V) can be realized.  相似文献   

18.
In this work, the authors realize stable and highly efficient wide‐bandgap perovskite solar cells that promise high power conversion efficiencies (PCE) and are likely to play a key role in next generation multi‐junction photovoltaics (PV). This work reports on wide‐bandgap (≈1.72 eV) perovskite solar cells exhibiting stable PCEs of up to 19.4% and a remarkably high open‐circuit voltage (VOC) of 1.31 V. The VOC‐to‐bandgap ratio is the highest reported for wide‐bandgap organic?inorganic hybrid perovskite solar cells and the VOC also exceeds 90% of the theoretical maximum, defined by the Shockley–Queisser limit. This advance is based on creating a hybrid 2D/3D perovskite heterostructure. By spin coating n‐butylammonium bromide on the double‐cation perovskite absorber layer, a thin 2D Ruddlesden–Popper perovskite layer of intermediate phases is formed, which mitigates nonradiative recombination in the perovskite absorber layer. As a result, VOC is enhanced by 80 mV.  相似文献   

19.
High‐quality charge carrier transport materials are of key importance for stable and efficient perovskite‐based photovoltaics. This work reports on electron‐beam‐evaporated nickel oxide (NiOx) layers, resulting in stable power conversion efficiencies (PCEs) of up to 18.5% when integrated into solar cells employing inkjet‐printed perovskite absorbers. By adding oxygen as a process gas and optimizing the layer thickness, transparent and efficient NiOx hole transport layers (HTLs) are fabricated, exhibiting an average absorptance of only 1%. The versatility of the material is demonstrated for different absorber compositions and deposition techniques. As another highlight of this work, all‐evaporated perovskite solar cells employing an inorganic NiOx HTL are presented, achieving stable PCEs of up to 15.4%. Along with good PCEs, devices with electron‐beam‐evaporated NiOx show improved stability under realistic operating conditions with negligible degradation after 40 h of maximum power point tracking at 75 °C. Additionally, a strong improvement in device stability under ultraviolet radiation is found if compared to conventional perovskite solar cell architectures employing other metal oxide charge transport layers (e.g., titanium dioxide). Finally, an all‐evaporated perovskite solar mini‐module with a NiOx HTL is presented, reaching a PCE of 12.4% on an active device area of 2.3 cm2.  相似文献   

20.
With the potential of achieving high efficiency and low production costs, perovskite solar cells (PSCs) have attracted great attention. However, their unstableness under moist condition has retarded the commercial development. Recently, 2D perovskites have received a lot of attention due to their high moisture resistance. In this work, four quasi 2D quasi perovskites are prepared, then their stability under moist condition is investigated. The surface morphology, crystal structure, optical properties, and photovoltaic performance are measured. Among the four quasi‐2D perovskites, (C6H5CH2NH3)2(FA)8Pb9I28 has the best performance: uniform and dense film, extremely well‐oriented crystal structure, strong absorption, and a high power conversion efficiency (PCE) of 17.40%. The aging tests show that quasi‐2D perovskites are more stable under moist conditions than FAPbI3 is. The (C6H5CH2NH3)2(FA)8Pb9I28 quasi‐2D perovskite devices exhibit high humidity stability, maintaining 80% of the starting PCE after 500 h under 80% relative humidity. Compared with other quasi‐2D perovskites, (C6H5CH2NH3)2(FA)8Pb9I28 has the highest humidity stability, due to their strongest hydrophobicity from C6H5CH2NH3+. This work demonstrates that the properties of perovskite materials can be modified by adding different ammonium salts into FAPbI3. Thus, by introducing ammonium salts with high hydrophobic properties the fabrication of highly efficient and stable 2D PSCs may be possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号