首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organic photovoltaics (OPV) represent a thin‐film PV technology that offers attractive prospects for low‐cost and aesthetically appealing (colored, flexible, uniform, semitransparent) solar cells that are printable on large surfaces. In bulk heterojunction (BHJ) OPV devices, organic electron donor and acceptor molecules are intimately mixed within the photoactive layer. Since 2005, the power conversion efficiency of said devices has increased substantially due to insights in the underlying physical processes, device optimization, and chemical engineering of a vast number of novel light‐harvesting organic materials, either small molecules or conjugated polymers. As Nature itself has developed porphyrin chromophores for solar light to energy conversion, it seems reasonable to pursue artificial systems based on the same types of molecules. Porphyrins and their analogues have already been successfully implemented in certain device types, notably in dye‐sensitized solar cells, but they have remained largely unexplored in BHJ organic solar cells. Very recent successes do show, however, the strong (latent) prospects of porphyrinoid semiconductors as light‐harvesting and charge transporting materials in such devices. Here, an overview on the state‐of‐the‐art of porphyrin‐based solution‐processed BHJ OPV is provided and insights are given into the pathways to follow and hurdles to overcome toward further improvements of porphyrinic materials and devices.  相似文献   

2.
Owing to their high efficiency, low‐cost solution‐processability, and tunable bandgap, perovskite solar cells (PSCs) made of hybrid organic‐inorganic perovskite (HOIP) thin films are promising top‐cell candidates for integration with bottom‐cells based on Si or other low‐bandgap solar‐cell materials to boost the power conversion efficiency (PCE) beyond the Shockley‐Quiesser (S‐Q) limit. In this review, recent progress in such tandem solar cells based on the emerging PSCs is summarized and reviewed critically. Notable achievements for different tandem solar cell configurations including mechanically‐stacked, optical coupling, and monolithically‐integrated with PSCs as top‐cells are described in detail. Highly‐efficient semitransparent PSC top‐cells with high transmittance in near‐infrared (NIR) region are critical for tandem solar cells. Different types of transparent electrodes with high transmittance and low sheet‐resistance for PSCs are reviewed, which presents a grand challenge for PSCs. The strategies to obtain wide‐bandgap PSCs with good photo‐stability are discussed. The PCE reduction due to reflection loss, parasitic absorption, electrical loss, and current mismatch are analyzed to provide better understanding of the performance of PSC‐based tandem solar cells.  相似文献   

3.
Interfacial energetics determines the performance of organic photovoltaic (OPV) cells based on a thin film of organic semiconductor blends. Here, an approach to modulating the “carrier selectivity” at the charge collecting interfaces and the consequent variations in the nongeminate charge carrier recombination dynamics in OPV devices are demonstrated. A ferroelectric blend interfacial layer composed of a solution‐processable ferroelectric poly­mer and a wide bandgap semiconductor is introduced as a tunable electron selective layer in inverted OPV devices with non‐Ohmic contact electrodes. The direct rendering of dipole alignment within the ferroelectric blend layer is found to increase the carrier selectivity of the charge collecting interfaces up to two orders of magnitude. Transient photovoltaic analyses reveal that the increase of carrier selectivity significantly reduces the diffusion and recombination among minority carriers in the vicinity of the electrodes, giving rise to the 85% increased charge carrier lifetime. Furthermore, the carrier‐selective charge extraction leads to the constitution of the internal potential within the devices, even with energetically identical cathodes and anodes. With these carrier‐selectivity‐controlled interlayers, the devices based on various photoactive materials commonly display significant increments in the device performances, especially with the high fill factor of up to 0.76 under optimized conditions.  相似文献   

4.
Organic photovoltaic (OPV) solar cells that can be simply processed from solution are in the focus of the academic and industrial community because of their enormous potential to reduce cost. One big challenge in developing a fully solution‐processed OPV technology is the design of a well‐performing electrode system, allowing the replacement of ITO. Several solution‐processed electrode systems were already discussed, but none of them could match the performance of ITO. Here, we report efficient ITO‐free and fully solution‐processed semitransparent inverted organic solar cells based on silver nanowire (AgNW) electrodes. To demonstrate the potential of these AgNW electrodes, they were employed as both the bottom and top electrodes. Record devices achieved fill factors as high as 63.0%, which is comparable to ITO based reference devices. These results provide important progress for fully printed organic solar cells and indicate that ITO‐free, transparent as well as non‐transparent organic solar cells can indeed be fully solution‐processed without losses.  相似文献   

5.
We present the addition of an energy relay dye to fullerenes resulting in increased light harvesting and significantly improved power conversion efficiency for organic photovoltaic (OPV) devices. Although exhibiting excellent properties as electron acceptors, visible light absorption of fullerenes is limited. Strongly light absorbing donor materials are needed for efficient light harvesting in the thin active layer of OPV devices. Therefore, photocurrent generation and thus power conversion efficiency of this type of solar cell is confined by the overlap of the relatively narrow absorption band of commonly used donor molecules with the solar spectrum. Herein the concept of fullerene dye sensitization is presented, which allows increased light harvesting on the electron acceptor side of the heterojunction. The concept is exemplarily shown for an UV absorbing small molecule and a near infrared absorbing polymer, namely hexa‐peri‐hexabenzocoronene (HBC) and Poly[2,1,3‐benzothiadiazole‐4,7‐diyl[4,4‐bis(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b:3,4‐b']dithiophene‐2,6‐diyl]] (PCPDTBT), respectively. In both systems remarkably higher power conversion efficiency is achieved via perylene sensitization of the fullerene acceptor. Steady state photoluminescence, transient absorption and transient photocurrent decay studies reveal pathways of the additionally generated excited states at the sensitizer molecule. The findings suggest fluorescence resonance energy transfer from the photo‐excited dye to the fullerene enabling decoupling of light absorption and charge transport. The presented sensitization method is proposed as a viable new concept for performance enhancement in organic photovoltaic devices.  相似文献   

6.
We report on the investigation of nickel cobalt oxide (NixCo3?xO4) thin films grown by pulsed laser deposition as hole‐transport interlayers (HTL) in organic photovoltaic (OPV) devices. Films of 7 nm thickness were grown under various oxygen deposition pressures (pO2) in the range of 2–200 mTorr. We explore both bulk and surface properties of these thin films. The workfunction (?) for each of the films was statistically similar (~4.7 eV), regardless of pO2. There was not a strong dependence of the power conversion efficiency (η) on the conductivities of the HTLs varying between 0.009 ‐ 10 S/cm. The observed differences in OPV efficiencies (ranging from 1.16 to 2.46%) were correlated to the near surface chemical composition of the NixCo3?xO4 HTL, as observed by differences in the relative surface hydroxyl concentration. The critical role of the near‐surface composition of the HTL at the HTL/organic interface was further explored by modifying the hydroxyl concentration using an oxygen plasma treatment. This treatment mitigated the impact of surface hydroxyl coverage, demonstrating either identical or increased values for ? and η, regardless of initial pO2 in the creation of the NixCo3?xO4 HTL. To further explore this we also employed a phosphonic acid surface modification agent on the HTL, increasing ? to 5.2 eV producing the best η value of 3.4%, equivalent to the PEDOT:PSS control devices. These results indicate that nickel cobalt oxide is a promising p‐type oxide for carrier‐selective interlayers in organic solar cells; however, for this to be fully realized the specific surface chemistry at the oxide/polymer interface must be controlled to increase ? and optimize device performance.  相似文献   

7.
In this work, a new combination of a wide bandgap polymer poly[4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]‐dithiophene‐alt‐N‐(2‐hexyldecyl)‐5′5‐bis[3‐(decylthio)thiophene‐2‐yl]‐2′2‐bithiophene‐3′3‐dicarboximide] (PBTIBDTT) and a non‐fullerene small molecule acceptor based on a bulky seven‐ring fused core (indacenodithieno[3,2‐b]thiophene) end‐capped with 2‐(3‐oxo‐2,3‐dihydroinden‐1‐ylidene)malononitrile groups with one fluorine substituent (ITIC‐F) is proposed, and as‐cast non‐fullerene organic solar cells (NFOSCs) with 11.2% efficiency are achieved. The device efficiencies are also insensitive to the variation of photoactive layer (PAL) thickness and can maintain over 9% efficiency as PAL thickness increases to 350 nm, which is one of the best results for as‐cast organic solar cells. More importantly, non‐fullerene organic photovoltaic (OPV) modules are demonstrated via laser ablation technique for the first time, which delivers a record efficiency of 8.6% (with active area of 3.48 cm2) among large‐area OPV modules. Furthermore, the morphology and performance evolutions of the as‐cast NFOSCs and the ones processed with solvent additive are systematically investigated. The results demonstrate the great advantage of as‐cast solar cells in achieving constant morphology and high performance with thick PALs. The NFOSCs fabricated with simple procedure, insensitive to film thickness and compatible with large‐area OPV modules, show significant potential for application the future.  相似文献   

8.
A pair of polymers, PBDTBT and PBDTDTBT , was synthesized for application in polymer solar cells (PSCs). Although these two polymers have similar absorption bands and molecular energy levels, PBDTDTBT exhibits much better photovoltaic performance in polymer solar cell (PSC) devices with power conversion efficiency (PCE) of 7.4%. To understand the differences between PBDTDTBT and PBDTBT , we have investigated the correlations of the molecular structure, morphology, dynamics and efficiency of these two polymers. A theoretical investigation using density functional theory (DFT) and time‐dependent DFT (TDDFT) has been employed to investigate the electron density and electron delocalization extent of the unimers. TEM data showed that PBDTDTBT phase separates from PC71BM, while PBDTBT suffers from having a proper morphology on different processing conditions. Grazing incidence wide angle X‐ray diffraction (GIWAXD) was used to probe the crystal structure of the polymers in thin film. A polymorph crystal structure was observed for PBDTBT . Grazing incidence small angle X‐ray scattering (GISAXS) was used to probe the size scale of phase separation, with an optimized 25 nm feature size observed for PBDTDTBT /PC71BM blends, which agrees well with TEM results. Femtosecond transient absorption (TA) spectroscopy was used to probe the dynamics of the fundamental processes in organic photovoltaic (OPV) materials, such as charge separation and recombination. The enhanced absorption coefficient, good charge separation, optimal phase separation and higher charge mobility all contribute to the high PCE of the PBDTDTBT /PC71BM devices.  相似文献   

9.
The incorporation of multiple donors into the bulk‐heterojunction layer of organic polymer solar cells (PSCs) has been demonstrated as a practical and elegant strategy to improve photovoltaics performance. However, it is challenging to successfully design and blend multiple donors, while minimizing unfavorable interactions (e.g., morphological traps, recombination centers, etc.). Here, a new Förster resonance energy transfer‐based design is shown utilizing the synergistic nature of three light active donors (two small molecules and a high‐performance donor–acceptor polymer) with a fullerene acceptor to create highly efficient quaternary PSCs with power conversion efficiencies (PCEs) of up to 10.7%. Within this quaternary architecture, it is revealed that the addition of small molecules in low concentrations broadens the absorption bandwidth, induces cocrystalline molecular conformations, and promotes rapid (picosecond) energy transfer processes. These results provide guidance for the design of multiple‐donor systems using simple processing techniques to realize single‐junction PSC designs with unprecedented PCEs.  相似文献   

10.
Thin films of fullerene C60 and molybdenum oxide (MoO3) are ubiquitously used as the electron acceptor material and hole extraction interfacial layer for the fabrication of organic photovoltaic (OPV) cells. It is well known that light exposure induces color changes in MoO3 (photochromism) and the formation of intermolecular bonds between C60 molecules (photopolymerization). The influence of these photoinduced reactions on the long‐term stability of OPV cells, however, has not previously been studied in detail. Here, a study and discussion of the early (<5 days) aging mechanisms occurring in illuminated ITO/MoO3/organic cyanine dye/C60/Alq3/Ag bilayer solar cells under nitrogen atmosphere is presented. A degradation process at the organic heterojunction is identified and the formation of Mo5+ species during illumination is found to adversely affect cell behavior. For these widely used materials, the results suggest that light processing is a first necessary step before OPV characteristics can be meaningfully rated.  相似文献   

11.
The surface defects of solution‐processed ZnO films lead to various intragap states. When the solution‐processed ZnO films are used as electron transport interlayers (ETLs) in inverted organic solar cells, the intragap states act as interfacial recombination centers for photogenerated charges and thereby degrade the device performance. Here, a simple passivation method based on ethanedithiol (EDT) treatment is demonstrated, which effectively removes the surface defects of the ZnO nanocrystal films by forming zinc ethanedithiolates. The passivation by EDT treatment modulates the intragap states of the ZnO films and introduces a new intragap band. When the EDT‐treated ZnO nanocrystal films are used as ETLs in inverted organic solar cells, both the power conversion efficiency and stability of the devices are improved. The control studies show that the solar cells with EDT‐treated ZnO films exhibit reduced charge recombination rates and enhanced charge extraction properties. These features are consistent with the fact that the modulation of the intragap states results in reduction of interfacial recombination as well as the improved charge selectivity and electron transport properties of the ETLs. It is further demonstrated that the EDT treatment‐based passivation method can be extended to ZnO films deposited from sol–gel precursors.  相似文献   

12.
The reduction in electronic recombination losses by the passivation of surfaces is a key factor enabling high‐efficiency solar cells. Here a strategy to passivate surface trap states of TiO2 films used as cathode interlayers in organic photovoltaics (OPVs) through applying alumina (Al2O3) or zirconia (ZrO2) insulating nanolayers by thermal atomic layer deposition (ALD) is investigated. The results suggest that the surface traps in TiO2 are oxygen vacancies, which cause undesirable recombination and high electron extraction barrier, reducing the open‐circuit voltage and the short‐circuit current of the complete OPV device. It is found that the ALD metal oxides enable excellent passivation of the TiO2 surface followed by a downward shift of the conduction band minimum. OPV devices based on different photoactive layers and using the passivated TiO2 electron extraction layers exhibit a significant enhancement of more than 30% in their power conversion efficiencies compared to their reference devices without the insulating metal oxide nanolayers. This is a result of significant suppression of charge recombination and enhanced electron extraction rates at the TiO2/ALD metal oxide/organic interface.  相似文献   

13.
There has been considerable progress over the last decade in development of the perovskite solar cells (PSCs), with reported performances now surpassing 25.2% power conversion efficiency. Both long‐term stability and component costs of PSCs remain to be addressed by the research community, using hole transporting materials (HTMs) such as 2,2′,7,7′‐tetrakis(N,N′‐di‐pmethoxyphenylamino)‐9,9′‐spirbiuorene(Spiro‐OMeTAD) and poly[bis(4‐phenyl)(2,4,6‐trimethylphenyl)amine] (PTAA). HTMs are essential for high‐performance PSC devices. Although effective, these materials require a relatively high degree of doping with additives to improve charge mobility and interlayer/substrate compatibility, introducing doping‐induced stability issues with these HTMs, and further, additional costs and experimental complexity associated with using these doped materials. This article reviews dopant‐free organic HTMs for PSCs, outlining reports of structures with promising properties toward achieving low‐cost, effective, and scalable materials for devices with long‐term stability. It summarizes recent literature reports on non‐doped, alternative, and more stable HTMs used in PSCs as essential components for high‐efficiency cells, categorizing HTMs as reported for different PSC architectures in addition to use of dopant‐free small molecular and polymeric HTMs. Finally, an outlook and critical assessment of dopant‐free organic HTMs toward commercial application and insight into the development of stable PSC devices is provided.  相似文献   

14.
Encapsulation is of key importance to improve the stability and lifetime of organic conductors and devices, mainly in applications such as flexible electrodes or organic photovoltaics (OPV). Here, a single‐layer conformal encapsulation method is demonstrated via initiated chemical vapor deposition (iCVD) for organic conductor, poly (3,4‐ethylenedioxythiophene) (PEDOT). The accelerated degradation tests at 100 °C show that the conductivity of encapsulated PEDOT can be retained up to 17 times longer than that of the unencapsulated counterpart. PEDOT degradation and encapsulation mechanisms are also discussed. Furthermore, the versatility of the iCVD encapsulation on a top‐illuminated OPV architecture that can be used to produce low‐cost photovoltaics devices on various unconventional substrates (e.g., paper) is demonstrated. Unlike previous approaches of using solely water/oxygen barriers, the encapsulation effect of polymer films on OPV devices is improved by a thin layer capping of evaporated UV‐screening material, Cerium(IV) oxide (CeO2) over the iCVD polymer layer. This bilayer encapsulation strategy efficiently slows the degradation of OPVs and represents a new method to encapsulate OPV and other organic devices.  相似文献   

15.
A efficient indium tin oxide (ITO)‐free transparent electrode based on an improved Ag film is designed by introducing small amount of Al during co‐deposition, producing ultrathin and smooth Ag film with low loss. A transparent electrode as thin as 4 nm is achieved by depositing the film on top of Ta2O5 layer, and organic solar cells based on such ultrathin electrode are built, producing power conversion efficiency over 7%. The device efficiency can be optimized by simply tuning Ta2O5 layer thickness external to the organic photovoltaic (OPV) structure to create an optical cavity resonance inside the photoactive layer. Therefore Ta2O5/Al‐doped Ag films function as a high‐performance electrode with high transparency, low resistance, improved photon management capability and mechanical flexibility.  相似文献   

16.
Time‐of‐flight secondary‐ion mass spectrometry (TOF‐SIMS), a powerful analytical technique sensitive to all components of perovskite solar cell (PSC) materials, can differentiate between the various organic species within a PSC absorber or a complete device stack. The ability to probe chemical gradients through the depth of a device (both organic and inorganic), with down to 100 nm lateral resolution, can lead to unique insights into the relationships between chemistry in the absorber bulk, at grain boundaries, and at interfaces as well as how they relate to changes in performance and/or stability. In this review, the technique is described; then, from the literature, several examples of how TOF‐SIMS have been used to provide unique insight into PSC absorbers and devices are covered. Finally, the common artifacts that can be introduced if the data are improperly collected, as well as methods to mitigate these artifacts are discussed.  相似文献   

17.
Charge selective interlayers are of critical importance in order for solar cells based on low mobility materials, such as polymer‐fullerene blends, to perform well. Commonly used anode interlayers consist of high work function transition metal oxides, with molybdenum trioxide (MoO3) being arguably the most used. Here, it is shown that a thin interlayer of MoO3 causes unintentional bulk doping in solar cells based on polymers and polymer‐fullerene blends. The doping concentrations determined from capacitance–voltage measurements are larger than 1016 cm?3 and are seen to increase closer to the anode, reference devices without MoO3 are undoped. Using time of flight secondary ion mass spectroscopy it is furthermore shown that molybdenum is present on the surface of all films with an interfacial layer of MoO3 beneath the active layer. Doping concentrations of this magnitude are detrimental for device performance, especially for active layers >100 nm.  相似文献   

18.

In this paper, the light absorption in the active layer of polymer solar cells (OPV) by using plasmonic nanocrystals with a hexagonal lattice structure is investigated. To study the relationship between the performance of the OPV solar cell and its active layer, a three-dimensional model of its morphology is utilized. Therefore, the three-dimensional (3D) finite-difference time-domain method and Lumerical software were used to measure the field distribution and light absorption in the active layer in terms of wavelength. OPV solar cells with bilayer and bulk heterojunction structured cells were designed using hexagonal lattice crystals with plasmonic nanoparticles, as well as core–shell geometry to govern a design to optimize light trapping in the active layer. The parameters of shape, material, periodicity, size, and the thickness of the active layer as a function of wavelength in OPV solar cells have been investigated. A very thin active layer and an ultra-thin shell were used to achieve the highest increase in optical absorption. The strong alternating electromagnetic field around the core–shell plasmonic nanoparticles resulting from the localized surface plasmon resonance (LSPR) suggested by the Ag plasmonic nanocrystals increased the intrinsic optical absorption in the active layer poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PCBM). Based on the photovoltaic results, the short circuit current ranged from 19.7 to 26.7 mA/cm2.

  相似文献   

19.
With the advances in organic photovoltaics (OPVs), the invention of model polymers with superior properties and wide applicability is of vital importance to both the academic and industrial communities. The recent inspiring advances in OPV research have included the emergence of poly(benzodithiophene‐co‐thieno[3,4‐b]thiophene) (PBDTTT)‐based materials. Through the combined efforts on PBDTTT polymers, over 10% efficiencies have been realized recently in various types of OPV devices. This review attempts to critically summarize the recent advances with respect to five well‐known PBDTTT polymers and their design considerations, basic properties, photovoltaic performance, as well as device application in conventional, inverted, tandem solar cells. These PBDTTT polymers also make great contributions to the rapid advances in the field of emerging ternary blends and fullerene‐free OPVs with top performances. Addtionally, new challenges in developing novel photovoltaic polymers with more superior properties are prospected. More importantly, the research of highly efficient PBDTTT‐based polymers provides useful insights and builds fundamentals for new types of OPV applications with various architectures.  相似文献   

20.
Despite a rapid increase in light harvesting efficiencies, organic–inorganic hybrid perovskite solar cells (PSCs) exhibit relatively inefficient photocurrent generation in the UV region and severe degradation when exposed to UV light and humidity. Herein, to enhance UV and humidity stability as well as photocurrent generating efficiency, a water‐repellent platinum(II) complex, Pt‐F , is developed as a luminescent photon downshifting layer (PDL) for PSCs. The Pt‐F PDL is fabricated on the glass substrate of a PSC using ultrasonic spray deposition, resulting in a considerably higher crystallinity and photoluminescence quantum yield (PLQY) than those fabricated by conventional spin‐coating processes (PLQYs of 77% and 19%, respectively). A maximum device performance of 22.0% is achieved through the addition of a PDL coating to a 21.4% efficient PSC owing to the long‐range photon downshifting effect of Pt‐F , as confirmed by the enhanced spectral response of the device in the UV region. Moreover, remarkable improvements in UV and humidity stability are observed in Pt‐F ‐coated PSCs. The versatile effects of the Pt‐F ‐based PDL, when fabricated by ultrasonic spray deposition, suggest wide ranging applicability that can improve the performance and stability of other optoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号