首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fiber‐supercapacitors (FSCs) are promising energy storage devices that can complement or even replace microbatteries in miniaturized portable and wearable electronics. Currently, a major challenge for FSCs is achieving ultrahigh volumetric energy and power densities simultaneously, especially when the charge/discharge rates exceed 1 V s?1. Herein, an Au‐nanoparticle‐doped‐MnOx@CoNi‐alloy@carbon‐nanotube (Au–MnOx@CoNi@CNT) core/shell nanocomposite fiber electrode is designed, aiming to boost its charge/discharge rate by taking advantage of the superconductive CoNi alloy network and the greatly enhanced conductivity of the Au doped MnOx active materials. An all‐solid‐state coaxial asymmetric FSC (CAFSC) prototype device made by wrapping this fiber with a holey graphene paper (HGP) exhibits excellent performance at rates up to 10 V s?1, which is the highest charge rate demonstrated so far for FSCs based on pseudocapacitive materials. Furthermore, our fully packaged CAFSC delivers a volumetric energy density of ≈15.1 mW h cm?3, while simultaneously maintaining a high power density of 7.28 W cm?3 as well as a long cycle life (90% retention after 10 000 cycles). This value is the highest among all reported FSCs, even better than that of a typical 4 V/500 µA h thin‐film lithium battery.  相似文献   

2.
Unique nanostructures always lead to extraordinary electrochemical energy storage performance. Here, the authors report a new strategy for using Metal‐organic frameworks (MOFs) derived cobalt sulfide in a carbon matrix with a 3D honeycombed porous structure, resulting in a high‐performance supercapacitor with unrivalled capacity of ≈1887 F g‐1 at the current density of 1 A g‐1. The honeycomb‐like structure of Co9S8@C composite is loosely adsorbed, with plentiful surface area and high conductivity, leading to improved Faradaic processes across the interface and enhanced redox reactions at active Co9S8 sites. Therefore, the heterostructure‐fabricated hybrid supercapacitor, using activated carbon as the counter electrode, demonstrates a high energy density of 58 Wh kg‐1 at the power density of 1000 W kg‐1. Even under an ultrahigh power density of 17 200 W kg‐1, its energy density maintains ≈38 Wh kg‐1. The hybrid supercapacitor also exhibits suitable cycling stability, with ≈90% capacity retention after 10 000 continuous cycles at the current density of 5 A g‐1. This work presents a practical method for using MOFs as sacrificial templates to synthesize metal‐sulfides for highly efficient electrochemical energy storage.  相似文献   

3.
To push the energy density limit of supercapacitors, a new class of electrode materials with favorable architectures is strongly needed. Binary metal sulfides hold great promise as an electrode material for high‐performance energy storage devices because they offer higher electrochemical activity and higher capacity than mono‐metal sulfides. Here, the rational design and fabrication of NiCo2S4 nanosheets supported on nitrogen‐doped carbon foams (NCF) is presented as a novel flexible electrode for supercapacitors. A facile two‐step method is developed for growth of NiCo2S4 nanosheets on NCF with robust adhesion, involving the growth of Ni‐Co precursor and subsequent conversion into NiCo2S4 nanosheets through sulfidation process. Benefiting from the compositional features and 3D electrode architectures, the NiCo2S4/NCF electrode exhibits greatly improved electrochemical performance with ultrahigh capacitance (877 F g?1 at 20 A g?1) and excellent cycling stability. Moreover, a binder‐free asymmetric supercapacitor device is also fabricated by using NiCo2S4/NCF as the positive electrode and ordered mesoporous carbon (OMC)/NCF as the negative electrode; this demonstrates high energy density (≈45.5 Wh kg?1 at 512 W kg?1).  相似文献   

4.
Hierarchically porous nitrogen‐doped carbon (HPC)/polyaniline (PANI) nanowire arrays nanocomposites are synthesized by a facile in situ polymerization. 3D interconnected honeycomb‐like HPC was prepared by a cost‐effective route via one‐step carbonization using urea and alkali‐treated wheat flour as carbon precursor with a high specific surface area (1294 m2 g?1). The specific capacitances of HPC and HPC/PANI (with a surface area of 923 m2 g?1) electrode are 383 and 1080 F g?1 in 1 m H2SO4, respectively. Furthermore, an asymmetric supercapacitor based on HPC/PANI as positive electrode and HPC as negative electrode is successfully assembled with a voltage window of 0–1.8 V in 1 m Na2SO4 aqueous electrolyte, exhibiting high specific capacitance (134 F g?1), high energy density (60.3 Wh kg?1) and power density (18 kW kg?1), and excellent cycling stability (91.6% capacitance retention after 5000 cycles).  相似文献   

5.
High energy density and power density within a limited volume of flexible solid‐state supercapacitors are highly desirable for practical applications. Here, free‐standing high‐quality 3D nanoporous duct‐like graphene (3D‐DG) films are fabricated with high flexibility and robustness as the backbones to deposit flower‐like MnO2 nanosheets (3D‐DG@MnO2). The 3D‐DG is the ideal support for the deposition of large amount of active materials because of its large surface area, appropriate pore structure, and negligible volume compared with other kinds of carbon backbones. Moreover, the 3D‐DG preserve the distinctive 2D coherent electronic properties of graphene, in which charge carriers move rapidly with a small resistance through the high‐quality and continuous chemical vapor deposition‐grown graphene building blocks, which results in a high rate performance. Marvelously, ultrathin (≈50 μm) flexible solid‐state asymmetric supercapacitors (ASCs) using 3D‐DG@MnO2 as the positive electrode and 3D hierarchical nanoporous graphene films as the negative electrode display ultrahigh volumetric energy density (28.2 mW h cm?3) and power density (55.7 W cm?3) at 2.0 V. Furthermore, as‐prepared ASCs show high cycle stability clearly demonstrating their broad applications as power supplies in wearable electronic devices.  相似文献   

6.
7.
8.
Rational construction of atomic‐scale interfaces in multiphase nanocomposites is an intriguing and challenging approach to developing advanced catalysts for both oxygen reduction (ORR) and evolution reactions (OER). Herein, a hybrid of interpenetrating metallic Co and spinel Co3O4 “Janus” nanoparticles stitched in porous graphitized shells (Co/Co3O4@PGS) is synthesized via ionic exchange and redox between Co2+ and 2D metal–organic‐framework nanosheets. This strategy is proven to effectively establish highways for the transfer of electrons and reactants within the hybrid through interfacial engineering. Specifically, the phase interpenetration of mixed Co species and encapsulating porous graphitized shells provides an optimal charge/mass transport environment. Furthermore, the defect‐rich interfaces act as atomic‐traps to achieve exceptional adsorption capability for oxygen reactants. Finally, robust coupling between Co and N through intimate covalent bonds prohibits the detachment of nanoparticles. As a result, Co/Co3O4@PGS outperforms state‐of‐the‐art noble‐metal catalysts with a positive half‐wave potential of 0.89 V for ORR and a low potential of 1.58 V at 10 mA cm?2 for OER. In a practical demonstration, ultrastable cyclability with a record lifetime of over 800 h at 10 mA cm?2 is achieved by Zn–air batteries with Co/Co3O4@PGS within the rechargeable air electrode.  相似文献   

9.
The integration of graphene nanosheets on the macroscopic level using a self‐assembly method has been recognized as one of the most effective strategies to realize the practical applications of graphene materials. Here, a facile and scalable method is developed to synthesis two types of graphene‐based networks, manganese dioxide (MnO2)–graphene foam and carbon nanotube (CNT)–graphene foam, by solution casting and subsequent electrochemical methods. Their practical applications in flexible all‐solid‐state asymmetric supercapacitors are explored. The proposed method facilitates the structural integration of graphene foam and the electroactive material and offers several advantages including simplicity, efficiency, low‐temperature, and low‐cost. The as‐prepared MnO2–graphene and CNT–graphene electrodes exhibit high specific capacitances and rate capability. By using polymer gel electrolytes, a flexible all‐solid‐state asymmetric supercapacitor was synthesized with MnO2–graphene foam as the positive electrode and CNT‐graphene as the negative electrode. The asymmetric supercapacitors can be cycled reversibly in a high‐voltage region of 0 to 1.8 V and exhibit high energy density, remarkable rate capability, reasonable cycling performance, and excellent flexibility.  相似文献   

10.
3D‐networked, ultrathin, and porous Ni3S2/CoNi2S4 on Ni foam (NF) is successfully designed and synthesized by a simple sulfidation process from 3D Ni–Co precursors. Interestingly, the edge site‐enriched Ni3S2/CoNi2S4/NF 3D‐network is realized by the etching‐like effect of S2? ions, which made the surfaces of Ni3S2/CoNi2S4/NF with a ridge‐like feature. The intriguing structural/compositional/componental advantages endow 3D‐networked‐free‐standing Ni3S2/CoNi2S4/NF electrodes better electrochemical performance with specific capacitance of 2435 F g?1 at a current density of 2 A g?1 and an excellent rate capability of 80% at 20 A g?1. The corresponding asymmetric supercapacitor achieves a high energy density of 40.0 W h kg?1 at an superhigh power density of 17.3 kW kg?1, excellent specific capacitance (175 F g?1 at 1A g?1), and electrochemical cycling stability (92.8% retention after 6000 cycles) with Ni3S2/CoNi2S4/NF as the positive electrode and activated carbon/NF as the negative electrode. Moreover, the temperature dependences of cyclic voltammetry curve polarization and specific capacitances are carefully investigated, and become more obvious and higher, respectively, with the increase of test temperature. These can be attributed to the components' synergetic effect assuring rich redox reactions, high conductivity as well as highly porous but robust architectures. This work provides a general, low‐cost route to produce high performance electrode materials for portable supercapacitor applications on a large scale.  相似文献   

11.
Transition metal oxides hold great promise as high‐energy anodes in next‐generation lithium‐ion batteries. However, owing to the inherent limitations of low electronic/ionic conductivities and dramatic volume change during charge/discharge, it is still challenging to fabricate practically viable compacted and thick TMO anodes with satisfactory electrochemical performance. Herein, with mesoporous cobalt–boride nanoflakes serving as multifunctional bridges in ZnCo2O4 micro‐/nanospheres, a compacted ZnCo2O4/Co–B hybrid structure is constructed. Co–B nanoflakes not only bridge ZnCo2O4 nanoparticles and function as anchors for ZnCo2O4 micro‐/nanospheres to suppress the severe volume fluctuation, they also work as effective electron conduction bridges to promote fast electron transportation. More importantly, they serve as Li+ transfer bridges to provide significantly boosted Li+ diffusivity, evidenced from both experimental kinetics analysis and density functional theory calculations. The mesopores within Co–B nanoflakes help overcome the large Li+ diffusion barriers across 2D interfaces. As a result, the ZnCo2O4/Co–B electrode delivers high gravimetric/volumetric/areal capacities of 995 mAh g?1/1450 mAh cm?3/5.10 mAh cm?2, respectively, with robust rate capability and long‐term cyclability. The distinct interfacial design strategy provides a new direction for designing compacted conversion‐type anodes with superior lithium storage kinetics and stability for practical applications.  相似文献   

12.
13.
3D CoNi2S4‐graphene‐2D‐MoSe2 (CoNi2S4‐G‐MoSe2) nanocomposite is designed and prepared using a facile ultrasonication and hydrothermal method for supercapacitor (SC) applications. Because of the novel nanocomposite structures and resultant maximized synergistic effect among ultrathin MoSe2 nanosheets, highly conductive graphene and CoNi2S4 nanoparticles, the electrode exhibits rapid electron and ion transport rate and large electroactive surface area, resulting in its amazing electrochemical properties. The CoNi2S4‐G‐MoSe2 electrode demonstrates a maximum specific capacitance of 1141 F g?1, with capacitance retention of ≈108% after 2000 cycles at a high charge–discharge current density of 20 A g?1. As to its symmetric device, 109 F g?1 at a scan rate of 5 mV s?1 is exhibited. This pioneering work should be helpful in enhancing the capacitive performance of SC materials by designing nanostructures with efficient synergetic effects.  相似文献   

14.
Metal–organic frameworks (MOFs) with intrinsically porous structures are promising candidates for energy storage, however, their low electrical conductivity limits their electrochemical energy storage applications. Herein, the hybrid architecture of intrinsically conductive Cu‐MOF nanowire arrays on self‐supported polypyrrole (PPy) membrane is reported for integrated flexible supercapacitor (SC) electrodes without any inactive additives, binders, or substrates involved. The conductive Cu‐MOFs nanowire arrays afford high conductivity and a sufficiently active surface area for the accessibility of electrolyte, whereas the PPy membrane provides decent mechanical flexibility, efficient charge transfer skeleton, and extra capacitance. The all‐solid‐state flexible SC using integrated hybrid electrode demonstrates an exceptional areal capacitance of 252.1 mF cm?2, an energy density of 22.4 µWh cm?2, and a power density of 1.1 mW cm?2, accompanied by an excellent cycle capability and mechanical flexibility over a wide range of working temperatures. This work not only presents a robust and flexible electrode for wide temperature range operating SC but also offers valuable concepts with regards to designing MOF‐based hybrid materials for energy storage and conversion systems.  相似文献   

15.
The success of Li–air/O2 batteries has brought extensive attention to the development of various promising non‐Li metal–O2 batteries, such as Zn–O2, Al–O2, Mg–O2 batteries, etc., which have exhibited unique advantages, such as low production cost, high energy density, and much enhanced safety. The versatile non‐Li metal–O2 batteries provide a better opportunity for meeting the practical requirements for sustainable energy supplies in various applications. A high‐performance cathode in non‐Li metal–O2 batteries that can effectively trigger both oxygen reduction and evolution reactions and thus boost the overall battery performance is of great research interest. In this article, a comprehensive review on the development of Li‐free metal–O2 batteries and particularly focusing on the oxygen catalytic cathodes for both primary and secondary non‐Li metal–O2 batteries is carefully performed. The current challenges and potential solutions are also outlined and proposed. Through carefully selecting and rationally designing promising catalytic cathodes, a series of non‐Li metal–oxygen batteries toward practical energy storage applications are highly anticipated.  相似文献   

16.
17.
To achieve high‐performance wearable supercapacitors (SCs), a new class of flexible electrodes with favorable architectures allowing large porosity, high conductivity, and good mechanical stability is strongly needed. Here, this study reports the rational design and fabrication of a novel flexible electrode with nanotube‐built multitripod architectures of ternary metal sulfides' composites (FeCo2S4–NiCo2S4) on a silver‐sputtered textile cloth. Silver sputtering is applicable to almost all kinds of textiles, and S2? concentration is optimized during sulfidation process to achieve such architectures and also a complete sulfidation assuring high conductivity. New insights into concentration‐dependent sulfidation mechanism are proposed. The additive‐free FeCo2S4–NiCo2S4 electrode shows a high specific capacitance of 1519 F g?1 at 5 mA cm?2 and superior rate capability (85.1% capacitance retention at 40 mA cm?2). All‐solid‐state SCs employing these advanced electrodes deliver high energy density of 46 W h kg?1 at 1070 W kg?1 as well as achieve remarkable cycling stability retaining 92% of initial capacitance after 3000 cycles at 10 mA cm?2, and outstanding reliability with no capacitance degradation under large twisting. These are attributed to the components' synergy assuring rich redox reactions, high conductivity as well as highly porous but robust architectures. An almost linear increase in capacitance with devices' area indicates possibility to meet various energy output requirements. This work provides a general, low‐cost route to wearable power sources.  相似文献   

18.
To date, most studies have focused only on the interaction between oxygen and the catalyst, with the intention of minimizing the mass‐transfer resistance by using the rotating disk electrode (RDE) method, which is based on the forced‐convection theory. To begin with, in order to increase the reaction rate, the oxygen should be able to reach the active sites of the catalyst readily (mass transfer). Next, a moderate (i.e., not too strong or weak) interaction (kinetics) should be maintained between the oxygen molecules and the catalyst, in order to allow for better adsorption and desorption. Therefore, these two factors should be taken into consideration when designing electrocatalysts for oxygen reduction. Further, there is bound to be a demand for large‐scale metal‐air batteries in the future. With these goals in mind, in this study, a facile and scalable method is developed for fabricating metal‐air batteries based on the fact that the Prussian blue analogue Mn3[Co(CN)6]2?nH2O and gelatin‐coated Ketjenblack carbon thermally decompose at 400 °C in air (i.e., without requiring high‐temperature pyrolysis under inert conditions) to form porous spinel oxides and N‐doped carbon materials. The intrinsic kinetics characteristics and the overall performance of the resulting catalysts are evaluated using the RDE method and a Zn‐air full cell, respectively.  相似文献   

19.
20.
Both the energy density and cycle stability are still challenges for lithium–sulfur (Li–S) batteries in future practical applications. Usually, light‐weight and nonpolar carbon materials are used as the hosts of sulfur, however they struggle on the cycle stability and undermine the volumetric energy density of Li–S batteries. Here, heavy NiCo2O4 nanofibers as carbon‐free sulfur immobilizers are introduced to fabricate sulfur‐based composites. NiCo2O4 can accelerate the catalytic conversion kinetics of soluble intermediate polysulfides by strong chemical interaction, leading to a good cycle stability of sulfur cathodes. Specifically, the S/NiCo2O4 composite presents a high gravimetric capacity of 1125 mAh g?1 at 0.1 C rate with the composite as active material, and a low fading rate of 0.039% per cycle over 1500 cycles at 1 C rate. In particular, the S/NiCo2O4 composite with the high tap density of 1.66 g cm?3 delivers large volumetric capacity of 1867 mAh cm?3, almost twice that of the conventional S/carbon composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号