首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To explore the advantages of emerging all‐polymer solar cells (all‐PSCs), growing efforts have been devoted to developing matched donor and acceptor polymers to outperform fullerene‐based PSCs. In this work, a detailed characterization and comparison of all‐PSCs using a set of donor and acceptor polymers with both conventional and inverted device structures is performed. A simple method to quantify the actual composition and light harvesting contributions from the individual donor and acceptor is described. Detailed study on the exciton dissociation and charge recombination is carried out by a set of measurements to understand the photocurrent loss. It is unraveled that fine‐tuned crystallinity of the acceptor, matched donor and acceptor with complementary absorption and desired energy levels, and device architecture engineering can synergistically boost the performance of all‐PSCs. As expected, the PBDTTS‐FTAZ:PNDI‐T10 all‐PSC attains a high and stable power conversion efficiency of 6.9% without obvious efficiency decay in 60 d. This work demonstrates that PNDI‐T10 can be a potential alternative acceptor polymer to the widely used acceptor N2200 for high‐performance and stable all‐PSCs.  相似文献   

2.
3.
A high electron mobility polymer, poly{[N,N’‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5’‐(2,2’‐bithiophene) (P(NDI2OD‐T2)) is investigated for use as an electron acceptor in all‐polymer blends. Despite the high bulk electron mobility, near‐infrared absorption band and compatible energy levels, bulk heterojunction devices fabricated with poly(3‐hexylthiophene) (P3HT) as the electron donor exhibit power conversion efficiencies of only 0.2%. In order to understand this disappointing photovoltaic performance, systematic investigations of the photophysics, device physics and morphology of this system are performed. Ultra‐fast transient absorption spectroscopy reveals a two‐stage decay process with an initial rapid loss of photoinduced polarons, followed by a second slower decay. This second slower decay is similar to what is observed for efficient P3HT:PCBM ([6,6]‐phenyl C61‐butyric acid methyl ester) blends, however the initial fast decay that is absent in P3HT:PCBM blends suggests rapid, geminate recombination of charge pairs shortly after charge transfer. X‐ray microscopy reveals coarse phase separation of P3HT:P(NDI2OD‐T2) blends with domains of size 0.2 to 1 micrometer. P3HT photoluminescence, however, is still found to be efficiently quenched indicating intermixing within these mesoscale domains. This hierarchy of phase separation is consistent with the transient absorption, whereby localized confinement of charges on isolated chains in the matrix of the other polymer hinders the separation of interfacial electron‐hole pairs. These results indicate that local, interfacial processes are the key factor determining the overall efficiency of this system and highlight the need for improved morphological control in order for the potential benefit of high‐mobility electron accepting polymers to be realized.  相似文献   

4.
A series of four polymers containing benzo[1,2‐b:4,5‐b′]dithiophene (BDT) and 5,6‐difluoro‐4,7‐diiodobenzo[c][1,2,5]thiadiazole (2FBT), PBDT2FBT, PBDT2FBT‐O, PBDT2FBT‐T, and PBDT2FBT‐T‐O, are synthesized with their four different side chains, alkyl‐, alkoxy‐, alkylthienyl‐, and alkoxythienyl. Experimental results and theoretical calculations show that the molecular tuning of the side chains simultaneously influences the solubilities, energy levels, light absorption, surface tension, and intermolecular packing of the resulting polymers by altering their molecular coplanarity and electron affinity. The polymer solar cell (PSC) based on a blend of PBDT2FBT‐T/[6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) exhibits the best photovoltaic performance of the four PBDT2FBT derivatives, with a high open‐circuit voltage of 0.98 V and a power conversion efficiency of 6.37%, without any processing additives, post‐treatments, or optical spacers. Furthermore, PBDT2FBT‐T‐O, which has a novel side chain alkoxythienyl, showed promising properties with the most red‐shifted absorption and strong intermolecular packing property in solid state. This study provides insight into molecular design and fabrication strategies via structural tuning of the side chains of conjugated polymers for achieving highly efficient PSCs.  相似文献   

5.
6.
In very recent years, growing efforts have been devoted to the development of all‐polymer solar cells (all‐PSCs). One of the advantages of all‐PSCs over the fullerene‐based PSCs is the versatile design of both donor and acceptor polymers which allows the optimization of energy levels to maximize the open‐circuit voltage (Voc). However, there is no successful example of all‐PSCs with both high Voc over 1 V and high power conversion efficiency (PCE) up to 8% reported so far. In this work, a combination of a donor polymer poly[4,8‐bis(5‐(2‐octylthio)thiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl‐alt‐(5‐(2‐ethylhexyl)‐4H‐thieno[3,4‐c]pyrrole‐4,6(5H)‐dione)‐1,3‐diyl] (PBDTS‐TPD) with a low‐lying highest occupied molecular orbital level and an acceptor polymer poly[[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐thiophene‐2,5‐diyl] (PNDI‐T) with a high‐lying lowest unoccupied molecular orbital level is used, realizing high‐performance all‐PSCs with simultaneously high Voc of 1.1 V and high PCE of 8.0%, and surpassing the performance of the corresponding PC71BM‐based PSCs. The PBDTS‐TPD:PNDI‐T all‐PSCs achieve a maximum internal quantum efficiency of 95% at 450 nm, which reveals that almost all the absorbed photons can be converted into free charges and collected by electrodes. This work demonstrates the advantages of all‐PSCs by incorporating proper donor and acceptor polymers to boost both Voc and PCEs.  相似文献   

7.
Morphology is a critical factor to determine the photovoltaic performance of organic solar cells (OSCs). However, delicately fine‐tuning the morphology involving only small molecules is an extremely challenging task. Herein, a simple, generic, and effective concentration‐induced morphology manipulation approach is demonstrated to prompt both the state‐of‐the‐art thin‐film BTR‐Cl:Y6 and thick‐film BTR:PC71BM all‐small‐molecule (ASM) OSCs to a record level. The morphology is delicately controlled by subtly altering the prepared solution concentration but maintaining the identical active layer thickness. The remarkable performance enhancement achieved by this approach mainly results from the enhanced absorption, reduced trap‐assistant recombination, increased crystallinity, and optimized phase‐separated network. These findings demonstrate that a concentration‐induced morphology manipulation strategy can further propel the reported best‐performing ASM OSCs to a brand‐new level, and provide a promising way to delicately control the morphology towards high‐performance ASM OSCs.  相似文献   

8.
The challenge of continuous printing in high‐efficiency large‐area organic solar cells is a key limiting factor for their widespread adoption. A materials design concept for achieving large‐area, solution‐coated all‐polymer bulk heterojunction solar cells with stable phase separation morphology between the donor and acceptor is presented. The key concept lies in inhibiting strong crystallization of donor and acceptor polymers, thus forming intermixed, low crystallinity, and mostly amorphous blends. Based on experiments using donors and acceptors with different degree of crystallinity, the results show that microphase separated donor and acceptor domain sizes are inversely proportional to the crystallinity of the conjugated polymers. This methodology of using low crystallinity donors and acceptors has the added benefit of forming a consistent and robust morphology that is insensitive to different processing conditions, allowing one to easily scale up the printing process from a small‐scale solution shearing coater to a large‐scale continuous roll‐to‐roll (R2R) printer. Large‐area all‐polymer solar cells are continuously roll‐to‐roll slot die printed with power conversion efficiencies of 5%, with combined cell area up to 10 cm2. This is among the highest efficiencies realized with R2R‐coated active layer organic materials on flexible substrate.  相似文献   

9.
While polymer acceptors are promising fullerene alternatives in the fabrication of efficient bulk heterojunction (BHJ) solar cells, the range of efficient material systems relevant to the “all‐polymer” BHJ concept remains narrow, and currently limits the perspectives to meet the 10% efficiency threshold in all‐polymer solar cells. This report examines two polymer acceptor analogs composed of thieno[3,4‐c ]pyrrole‐4,6‐dione (TPD) and 3,4‐difluorothiophene ([2F]T) motifs, and their BHJ solar cell performance pattern with a low‐bandgap polymer donor commonly used with fullerenes (PBDT‐TS1; taken as a model system). In this material set, the introduction of a third electron‐deficient motif, namely 2,1,3‐benzothiadiazole (BT), is shown to (i) significantly narrow the optical gap (E opt) of the corresponding polymer (by ≈0.2 eV) and (ii) improve the electron mobility of the polymer by over two orders of magnitude in BHJ solar cells. In turn, the narrow‐gap P2TPDBT[2F]T analog (E opt = 1.7 eV) used as fullerene alternative yields high open‐circuit voltages (V OC) of ≈1.0 V, notable short‐circuit current values (J SC) of ≈11.0 mA cm−2, and power conversion efficiencies (PCEs) nearing 5% in all‐polymer BHJ solar cells. P2TPDBT[2F]T paves the way to a new, promising class of polymer acceptor candidates.  相似文献   

10.
11.
12.
All‐polymer solar cells (all‐PSCs) are attractive as alternatives to fabricate thermally and mechanically stable solar cells, especially with recent improvements in their power conversion efficiency (PCE). In this work, efficient all‐PSCs with near‐infrared response (up to 850 nm) are developed using newly designed regioregular polymer donors with relatively narrow optical gap. These all‐PSCs systems achieve PCEs up to 6.0% after incorporating fluorine into the polymer backbone. More importantly, these polymers exhibit absorbance that is complementary to previously reported wide bandgap polymer donors. Thus, the superior properties of the newly designed polymers afford opportunities to fabricate the first spectrally matched all‐polymer tandem solar cells with high performance. A PCE of 8.3% is then demonstrated which is the highest efficiency so far for all‐polymer tandem solar cells. The design of narrow bandgap polymers provides new directions to enhance the PCE of emerging single‐junction and tandem all polymer solar cells.  相似文献   

13.
Molecular orientation, with respect to donor/acceptor interface and electrodes, plays a critical role in determining the performance of all‐polymer solar cells (all‐PSCs), but is often difficult to rationally control. Here, an effective approach for tuning the molecular crystallinity and orientation of naphthalenediimide‐bithiophene‐based n‐type polymers (P(NDI2HD‐T2)) by controlling their number average molecular weights (Mn) is reported. A series of P(NDI2HD‐T2) polymers with different Mn of 13.6 ( PL ), 22.9 ( PM ), and 49.9 kg mol?1 ( PH ) are prepared by changing the amount of end‐capping agent (2‐bromothiophene) during polymerization. Increasing the Mn values of P(NDI2HD‐T2) polymers leads to a remarkable shift of dominant lamellar crystallite textures from edge‐on ( PL ) to face‐on ( PH ) as well as more than a twofold increase in the crystallinity. For example, the portion of face‐on oriented crystallites is dramatically increased from 21.5% and 46.1%, to 78.6% for PL , PM, and PH polymers. These different packing structures in terms of the molecular orientation greatly affect the charge dissociation efficiency at the donor/acceptor interface and thus the short‐circuit current density of the all‐PSCs. All‐PSCs with PTB7‐Th as electron donor and PH as electron acceptor show the highest efficiency of 6.14%, outperforming those with PM (5.08%) and PL (4.29%).  相似文献   

14.
The authors present efficient all‐polymer solar cells comprising two different low‐bandgap naphthalenediimide (NDI)‐based copolymers as acceptors and regioregular P3HT as the donor. It is shown that these naphthalene copolymers have a strong tendency to preaggregate in specific organic solvents, and that preaggregation can be completely suppressed when using suitable solvents with large and highly polarizable aromatic cores. Organic solar cells prepared from such nonaggregated polymer solutions show dramatically increased power conversion efficiencies of up to 1.4%, which is mainly due to a large increase of the short circuit current. In addition, optimized solar cells show remarkable high fill factors of up to 70%. The analysis of the blend absorbance spectra reveals a surprising anticorrelation between the degree of polymer aggregation in the solid P3HT:NDI copolymer blends and their photovoltaic performance. Scanning near‐field optical microscopy (SNOM) and atomic force microscopy (AFM) measurements reveal important information on the blend morphology. It is shown that films with high degree of aggregation and low photocurrents exhibit large‐scale phase‐separation into rather pure donor and acceptor domains. It is proposed that, by suppressing the aggregation of NDI copolymers at the early stage of film formation, the intermixing of the donor and acceptor component is improved, thereby allowing efficient harvesting of photogenerated excitons at the donor–acceptor heterojunction.  相似文献   

15.
To realize high power conversion efficiencies (PCEs) in green‐solvent‐processed all‐polymer solar cells (All‐PSCs), a long alkyl chain modified perylene diimide (PDI)‐based polymer acceptor PPDIODT with superior solubility in nonhalogenated solvents is synthesized. A properly matched PBDT‐TS1 is selected as the polymer donor due to the red‐shifted light absorption and low‐lying energy level in order to achieve the complementary absorption spectrum and matched energy level between polymer donor and polymer acceptor. By utilizing anisole as the processing solvent, an optimal efficiency of 5.43% is realized in PBDT‐TS1/PPDIODT‐based All‐PSC with conventional configuration, which is comparable with that of All‐PSCs processed by the widely used binary solvent. Due to the utilization of an inverted device configuration, the PCE is further increased to over 6.5% efficiency. Notably, the best‐performing PCE of 6.58% is the highest value for All‐PSCs employing PDI‐based polymer acceptors and green‐solvent‐processed All‐PSCs. The excellent photovoltaic performance is mainly attributed to a favorable vertical phase distribution, a higher exciton dissociation efficiency (Pdiss) in the blend film, and a higher electrode carrier collection efficiency. Overall, the combination of rational molecular designing, material selection, and device engineering will motivate the efficiency breakthrough in green‐solvent‐processed All‐PSCs.  相似文献   

16.
The device performance of polymer solar cells (PSCs) is strongly dependent on the blend morphology. One of the strategies for improving PSC performance is side‐chain engineering, which plays an important role in controlling the aggregation properties of the polymers and thus the domain crystallinity/purity of the donor–acceptor blends. In particular, for a family of high‐performance donor polymers with strong temperature‐dependent aggregation properties, the device performances are very sensitive to the size of alkyl chains, and the best device performance can only be achieved with an optimized odd‐numbered alkyl chain. However, the synthetic route of odd‐numbered alkyl chains is costly and complicated, which makes it difficult for large‐scale synthesis. Here, this study presents a facile method to optimize the aggregation properties and blend morphology by employing donor polymers with a mixture of two even‐numbered, randomly distributed alkyl chains. In a model polymer system, this study suggests that the structural and electronic properties of the random polymers comprising a mixture of 2‐octyldodecyl and 2‐decyltetradecyl alkyl chains can be systematically tuned by varying the mixing ratio, and a high power conversion efficiency (11.1%) can be achieved. This approach promotes the scalability of donor polymers and thus facilitates the commercialization of PSCs.  相似文献   

17.
Designing polymers that facilitate exciton dissociation and charge transport is critical for the production of highly efficient all‐polymer solar cells (all‐PSCs). Here, the development of a new class of high‐performance naphthalenediimide (NDI)‐based polymers with large dipole moment change (Δµge) and delocalized lowest unoccupied molecular orbital (LUMO) as electron acceptors for all‐PSCs is reported. A series of NDI‐based copolymers incorporating electron‐withdrawing cyanovinylene groups into the backbone (PNDITCVT‐R) is designed and synthesized with 2‐hexyldecyl (R = HD) and 2‐octyldodecyl (R = OD) side chains. Density functional theory calculations reveal an enhancement in Δµge and delocalization of the LUMO upon the incorporation of cyanovinylene groups. All‐PSCs fabricated from these new NDI‐based polymer acceptors exhibit outstanding power conversion efficiencies (7.4%) and high fill factors (65%), which is attributed to efficient exciton dissociation, well‐balanced charge transport, and suppressed monomolecular recombination. Morphological studies by grazing X‐ray scattering and resonant soft X‐ray scattering measurements show the blend films containing polymer donor and PNDITCVT‐R acceptors to exhibit favorable face‐on orientation and well‐mixed morphology with small domain spacing (30–40 nm).  相似文献   

18.
The introduction of oligomeric polystyrene (PS) side chains into the conjugated backbone is proven to enhance the processability and electronic properties of semiconducting polymers. Here, two series of donor and acceptor polymers are prepared with different molar percentages of PS side chains to elucidate the effect of their substitution arrangement on the all‐polymer solar cell performance. The observed device performance is lower when the PS side chains are substituted on the donor polymer and higher when on the acceptor polymer, indicating a clear arrangement effect of the PS side chain. The incorporation of PS side chains to the acceptor polymer contributes to the decrease in phase separation domain size in the blend films. However, the reduced domain size was still an order of magnitude larger than the typical exciton diffusion length. A detailed morphological study together with the estimation of solubility parameter of the pristine PS, donor, and acceptor polymers reveals that the relative value of solubility parameter of each component dominantly contributes to the purity of the phase separated domain, which strongly impacts the amount of generated photocurrent and overall solar cell performance. This study provides an understanding of the design strategies to improve the all‐polymer solar cells.  相似文献   

19.
20.
Tuning the blend composition is an essential step to optimize the power conversion efficiency (PCE) of organic bulk heterojunction (BHJ) solar cells. PCEs from devices of unoptimized donor:acceptor (D:A) weight ratio are generally significantly lower than optimized devices. Here, two high‐performance organic nonfullerene BHJ blends PBDB‐T:ITIC and PBDB‐T:N2200 are adopted to investigate the effect of blend ratio on device performance. It is found that the PCEs of polymer‐polymer (PBDB‐T:N2200) blend are more tolerant to composition changes, relative to polymer‐molecule (PBDB‐T:ITIC) devices. In both systems, short‐circuit current density (Jsc) is tracked closely with PCE, indicating that exciton dissociation and transport strongly influence PCEs. With dilute acceptor concentrations, polymer‐polymer blends maintain high electron mobility relative to the polymer‐molecule blends, which explains the dramatic difference in PCEs between them as a function of D:A blend ratio. In addition, polymer‐polymer solar cells, especially at high D:A blend ratio, are stable (less than 5% relative loss) over 70 d under continuous heating at 80 °C in a glovebox without encapsulation. This work demonstrates that all‐polymer solar cells show advantage in operational lifetime under thermal stress and blend‐ratio resilience, which indicates their high potential for designing of stable and scalable solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号