首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Potassium ion storage technology as a promising substitute for the well‐developed lithium ion storage technology is still at the infancy stage of development, and exploring suitable electrode materials is critical for its practical application. Here, the great feasibility of disordered, large interlayer spacing, and oxygen‐rich carbon nanosheets (CNSs) prepared by chemical vapor deposition for potassium ion storage applications is demonstrated. As an anode material, the CNSs exhibit outstanding rate capability as well as excellent cyclic stability. Taking advantage of this, a potassium ion hybrid capacitor (PIHC) is constructed by employing such CNSs as the battery‐type anode and activated carbon as the capacitor‐type cathode. The resulting device displays a high energy density of 149 Wh kg?1, an ultrahigh power output of 21 kW kg?1, as well as a long cycling life (80% capacity retention after 5000 cycles), which are all close to the state‐of‐the‐art values for PIHCs. This work promotes the development of high‐performance anode material for potassium ion storage devices, and the designed PIHC pushes the energy density and power density to a higher level.  相似文献   

2.
The adequate potassium resource on the earth has driven the researchers to explore new‐concept potassium‐ion batteries (KIBs) with high energy density. Graphite is a common anode for KIBs; however, the main challenge faced by KIBs is that K ions have the larger size than Li and Na ions, hindering the intercalation of K ions into electrodes and thus leading to poor rate performance, low capacity, and cycle stability during the potassiation and depotassiation process. Herein, an amorphous ordered mesoporous carbon (OMC) is reported as a new anode material for high‐performance KIBs. Unlike the well‐crystallized graphite, in which the K ions are squeezed into the restricted interlayer spacing, it is found that the amorphous OMC possesses larger interlayer spacing in short range and fewer carbon atoms in one carbon‐layers cluster, making it more flexible to the deformation of carbon layers. The larger interlayer spacing and the unique layered structure in short range can intercalate more K ions into the carbon layer, accommodate the increase of the interlayer spacing, and tolerate the volume expansion, resulting in a battery behavior with high capacity, high rate capability, and long cycle life.  相似文献   

3.
Although potassium‐ion batteries (KIBs) have been considered to be promising alternatives to conventional lithium‐ion batteries due to large abundance and low cost of potassium resources, their development still stays at the infancy stage due to the lack of appropriate cathode and anode materials with reversible potassium insertion/extraction as well as good rate and cycling performance. Herein, a novel dual‐carbon battery based on a potassium‐ion electrolyte (named as K‐DCB), utilizing expanded graphite as cathode material and mesocarbon microbead as anode material is developed. The working mechanism of the K‐DCB is investigated, which is further demonstrated to deliver a high reversible capacity of 61 mA h g‐1 at a current density of 1C over a voltage window of 3.0–5.2 V, as well as good cycling performance with negligible capacity decay after 100 cycles. Moreover, the high working voltage with medium discharge voltage of 4.5 V also enables the K‐DCB to meet the requirement of some high‐voltage devices. With the merits of environmental friendliness, low cost and high energy density, the K‐DCB shows attractive potential for future energy storage application.  相似文献   

4.
Soft carbon has attracted tremendous attention as an anode in rocking‐chair batteries owing to its exceptional properties including low‐cost, tunable interlayer distance, and favorable electronic conductivity. However, it fails to exhibit decent performance for sodium‐ion storage owing to difficulties in the formation of sodium intercalation compounds. Here, microporous soft carbon nanosheets are developed via a microwave induced exfoliation strategy from a conventional soft carbon compound obtained by pyrolysis of 3,4,9,10‐perylene tetracarboxylic dianhydride. The micropores and defects at the edges synergistically leads to enhanced kinetics and extra sodium‐ion storage sites, which contribute to the capacity increase from 134 to 232 mAh g?1 and a superior rate capability of 103 mAh g?1 at 1000 mA g?1 for sodium‐ion storage. In addition, the capacitance‐dominated sodium‐ion storage mechanism is identified through the kinetics analysis. The in situ X‐ray diffraction analyses are used to reveal that sodium ions intercalate into graphitic layers for the first time. Furthermore, the as‐prepared nanosheets can also function as an outstanding anode for potassium‐ion storage (reversible capacity of 291 mAh g?1) and dual‐ion full cell (cell‐level capacity of 61 mAh g?1 and average working voltage of 4.2 V). These properties represent the potential of soft carbon for achieving high‐energy, high‐rate, and low‐cost energy storage systems.  相似文献   

5.
Antimony (Sb) has emerged as an attractive anode material for both lithium and sodium ion batteries due to its high theoretical capacity of 660 mA h g?1. In this work, a novel peapod‐like N‐doped carbon hollow nanotube encapsulated Sb nanorod composite, the so‐called nanorod‐in‐nanotube structured Sb@N‐C, via a bottom‐up confinement approach is designed and fabricated. The N‐doped‐carbon coating and thermal‐reduction process is monitored by in situ high‐temperature X‐ray diffraction characterization. Due to its advanced structural merits, such as sufficient N‐doping, 1D conductive carbon coating, and substantial inner void space, the Sb@N‐C demonstrates superior lithium/sodium storage performance. For lithium storage, the Sb@N‐C exhibits a high reversible capacity (650.8 mA h g?1 at 0.2 A g?1), excellent long‐term cycling stability (a capacity decay of only 0.022% per cycle for 3000 cycles at 2 A g?1), and ultrahigh rate capability (343.3 mA h g?1 at 20 A g?1). For sodium storage, the Sb@N‐C nanocomposite displays the best long‐term cycle performance among the reported Sb‐based anode materials (a capacity of 345.6 mA h g?1 after 3000 cycles at 2 A g?1) and an impressive rate capability of up to 10 A g?1. The results demonstrate that the Sb@N‐C nanocomposite is a promising anode material for high‐performance lithium/sodium storage.  相似文献   

6.
ReS2 (rhenium disulfide) is a new transition‐metal dichalcogenide that exhibits 1T′ phase and extremely weak interlayer van der Waals interactions. This makes it promising as an anode material for sodium‐ion batteries. However, achieving both a high‐rate capability and a long‐life has remained a major research challenge. Here, a new composite is reported, in which both are realized for the first time. 1T′‐ReS2 is confined through strong interfacial interaction in a 2D‐honeycombed carbon nanosheets that comprise an rGO inter‐layer and a N‐doped carbon coating‐layer (rGO@ReS2@N‐C). The strong interfacial interaction between carbon and ReS2 increases overall conductivity and decreases Na+ diffusion resistance, whilst the intended 2D‐honeycombed carbon protective layer maintains structural morphology and electrochemical activity during long‐term cycling. These findings are confirmed by advanced characterization techniques, electrochemical measurement, and density functional theory calculation. The new rGO@ReS2@N‐C exhibits the greatest rate performance reported so far for ReS2 of 231 mAh g?1 at 10 A g?1. Significantly, this is together with ultra‐stable long‐term cycling of 192 mAh g?1 at 2 A g?1 after 4000 cycles.  相似文献   

7.
Metal‐organic coordination frameworks have been widely used as efficient precursors for the preparation of functional carbon‐based materials with various nanostructures. However, to date, the design of 2D carbon nanostructures from single coordination frameworks remains a great challenge. Herein, an efficient strategy for the fabrication of N‐rich porous carbon nanosheets from 2D Zn‐hexamine coordination framework nanosheets is developed. Remarkably, the N‐doping level of carbon nanosheets can attain 16.54 at%. In addition, the thickness of the carbon nanosheets can effectively be tuned by simply adjusting the molar ratio of the starting materials. As a proof‐of‐concept application, the as‐prepared carbon nanosheets as an anode material for sodium‐ion batteries exhibit an ultrafast sodium storage capability of 194 mAh g?1 even at 10 A g?1. As far as it is known, such a high‐rate capability has been rarely achieved in previous studies on carbonaceous anode materials for Na‐ion storage. Moreover, this approach is readily controllable and could be extended to prepare a series of 2D N‐doped carbon‐based nanomaterials on a large scale.  相似文献   

8.
Layered transition metal sulfides (LTMSs) have tremendous commercial potential in anode materials for sodium‐ion batteries (SIBs) in large‐scale energy storage application. However, it is a great challenge for most LTMS electrodes to have long cycling life and high‐rate capability due to their larger volume expansion and the formation of soluble polysulfide intermediates caused by the conversion reaction. Herein, layered CuS microspheres with tunable interlayer space and pore volumes are reported through a cost‐effective interaction method using a cationic surfactant of cetyltrimethyl ammonium bromide (CTAB). The CuS–CTAB microsphere as an anode for SIBs reveals a high reversible capacity of 684.6 mAh g?1 at 0.1 A g?1, and 312.5 mAh g?1 at 10 A g?1 after 1000 cycles with high capacity retention of 90.6%. The excellent electrochemical performance is attributed to the unique structure of this material, and a high pseudocapacitive contribution ensures its high‐rate performance. Moreover, in situ X‐ray diffraction is applied to investigate their sodium storage mechanism. It is found that the long chain CTAB in the CuS provides buffer space, traps polysulfides, and restrains the further growth of Cu particles during the conversion reaction process that ensure the long cycling stability and high reversibility of the electrode material.  相似文献   

9.
The electrochemical performance of mesoporous carbon (C)/tin (Sn) anodes in Na‐ion and Li‐ion batteries is systematically investigated. The mesoporous C/Sn anodes in a Na‐ion battery shows similar cycling stability but lower capacity and poorer rate capability than that in a Li‐ion battery. The desodiation potentials of Sn anodes are approximately 0.21 V lower than delithiation potentials. The low capacity and poor rate capability of C/Sn anode in Na‐ion batteries is mainly due to the large Na‐ion size, resulting in slow Na‐ion diffusion and large volume change of porous C/Sn composite anode during alloy/dealloy reactions. Understanding of the reaction mechanism between Sn and Na ions will provide insight towards exploring and designing new alloy‐based anode materials for Na‐ion batteries.  相似文献   

10.
The current Na+ storage performance of carbon‐based materials is still hindered by the sluggish Na+ ion transfer kinetics and low capacity. Graphene and its derivatives have been widely investigated as electrode materials in energy storage and conversion systems. However, as anode materials for sodium‐ion batteries (SIBs), the severe π–π restacking of graphene sheets usually results in compact structure with a small interlayer distance and a long ion transfer distance, thus leading to low capacity and poor rate capability. Herein, partially reduced holey graphene oxide is prepared by simple H2O2 treatment and subsequent low temperature reduction of graphene oxide, leading to large interlayer distance (0.434 nm), fast ion transport, and larger Na+ storage space. The partially remaining oxygenous groups can also contribute to the capacity by redox reaction. As anode material for SIBs, the optimized electrode delivers high reversible capacity, high rate capability (365 and 131 mAh g?1 at 0.1 and 10 A g?1, respectively), and good cycling performance (163 mAh g?1 after 3000 cycles at a current density of 2 A g?1), which is among the best reported performances for carbon‐based SIB anodes.  相似文献   

11.
Sodium‐ion batteries with abundant and low‐cost sodium resources is a promising alternative to Li‐ion batteries in large‐scale energy applications. While the anode materials, due to their insufficient cycling life and insecure voltage, could not still satisfy the market demands, especially in the wide‐temperature fields, here, a high‐crystallinity anode material with post‐spinel structure, namely NaV1.25Ti0.75O4, which always maintains excellent electrochemical performance at the widely variable temperatures, is reported. The results indicate that this anode delivers a high‐safety and ultrastable room‐temperature performance (i.e., an average output voltage of 0.7 V vs Na+/Na and the ultralong cycling life over 10 000 cycles) and good wide‐temperature performance (below 9% capacity variation at 60 and ?20 °C compared to that at 25 °C). These excellent achievements could benefit from the long durability and stability of 1D channels and superfast ion diffusion in a temperature‐dependent range. This finding provides a promising strategy to construct the safe and stable full‐cell prototypes and promotes the wide‐temperature application of sodium‐ion batteries.  相似文献   

12.
Carbon materials have attracted significant attention as anode materials for sodium ion batteries (SIBs). Developing a carbon anode with long‐term cycling stability under ultrahigh rate is essential for practical application of SIBs in energy storage systems. Herein, sulfur and nitrogen codoped mesoporous hollow carbon spheres are developed, exhibiting high rate performance of 144 mA h g?1 at 20 A g?1, and excellent cycling durability under ultrahigh current density. Interestingly, during 7000 cycles at a current density of 20 A g?1, the capacity of the electrode gradually increases to 180 mA h g?1. The mechanisms for the superior electrochemical performance and capacity improvement of the cells are studied by electrochemical tests, ex situ transmission electron microscopy, X‐ray diffraction, X‐ray photoelectron spectroscopy, and Raman analysis of fresh and cycled electrodes. The unique and robust structure of the material can enhance transport kinetics of electrons and sodium ions, and maintain fast sodium storage from the capacitive process under high rate. The self‐rearrangement of the carbon structure, induced by continuous discharge and charge, lead to the capacity improvement with cycles. These results demonstrate a new avenue to design advanced anode materials for SIBs.  相似文献   

13.
Silicon has been intensively pursued as the most promising anode material for Li‐ion batteries due to its high theoretical capacity of 3579 mAh/g. Micro‐sized Si–C composites composed of nanoscale primary building blocks are attractive Si‐based anodes for practical application because they not only achieve excellent cycling stability, but also offer both gravimetric and volumetric capacity. However, the effects of key parameters in designing such materials on their electrochemical performance are unknown and how to optimize them thus remains to be explored. Herein, the influence of Si nanoscale building block size and carbon coating on the electrochemical performance of the micro‐sized Si–C composites is investigated. It is found that the critical Si building block size is 15 nm, which enables a high capacity without compromising the cycling stability, and that carbon coating at higher temperature improves the first cycle coulombic efficiency (CE) and the rate capability. Corresponding reasons underlying electrochemical performance are revealed by various characterizations. Combining both optimized Si building block size and carbon coating temperature, the resultant composite can sustain 600 cycles at 1.2 A/g with a fixed lithiation capacity of 1200 mAh/g, the best cycling performance with such a high capacity for micro‐sized Si‐based anodes.  相似文献   

14.
Sodium‐ion batteries (SIBs) are considered to be a promising alternative for large‐scale electricity storage. However, it is urgent to develop new anode materials with superior ultralong cycle life performance at high current rates. Herein, a low‐cost and large‐scalable sulfur‐doped carbon anode material that exhibits the best high‐rate cycle performance and the longest cycle life ever reported for carbon anodes is developed. The material delivers a reversible capacity of 142 mA h g?1 at a current rate up to 10 A g?1. After 10 000 cycles the capacity is remained at 126.5 mA h g?1; 89.1% of the initial value. Density functional theory computations demonstrate that the sulfur‐doped carbon has a strong binding affinity for sodium which promotes sodium storage. Meanwhile, the kinetics analysis identifies the capacitive charge storage as a large contributor to sodium storage, which favors ultrafast storage of sodium ions. These results demonstrate a new way to design carbon‐based SIBs anodes for next‐generation large‐scale electricity storage.  相似文献   

15.
To develop high‐power and high‐energy batteries with a long life remains a great challenge, even combining the benefits of metal (fast kinetics and high capacity) and carbon materials (robust structure). Among them, Al‐ion batteries based on aluminum anode and graphite carbon cathode have gained lots of interests as one of the most promising technologies. Here, it is demonstrated that the size of graphitic material in ab plane and c direction plays an important role in anion intercalation chemistry. Sharply decreasing the size of vertical dimension (c direction) strongly facilitates the kinetics and charge transfer of anions (de)intercalation. On the other hand, increasing the size of horizontal dimension (ab plane) contributes to improving the flexibility of graphitic materials, which results in raising the cycling stability. Meanwhile, chloroaluminate anions are reversibly intercalated into the interlayer of graphite materials, leading to the staging behaviors. In the end, an ultrafast Al‐ion battery with exceptional long life is achieved based on large‐sized few‐layer graphene as a cathode and aluminum metal as an anode.  相似文献   

16.
Potassium‐based dual‐ion batteries (KDIBs) have emerged as a new generation of rechargeable batteries, due to their high cell voltage, low cost, and the natural abundance of potassium resources. However, the low capacity and poor cycling stability largely hinder the further development of KDIBs. Herein, the fabrication of hierarchically porous N‐doped carbon fibers (HPNCFs) as a free‐standing anode for high‐performance KDIBs is reported. With a free‐standing hierarchical structure (micro/meso/macropores and nanochannels) and high‐content of nitrogen doping, the HPNCFs not only provide intrinsic electron pathways and efficient ion transport channels, but also afford sufficient free space to tolerate the volume change during cycling. Consequently, the KDIBs made from a graphite cathode and an optimized HPNCFs anode deliver a high reversible capacity of 197 mAh g?1 at a specific current of 50 mA g?1, and excellent cycling stability (65 mAh g?1 after 346 cycles at a specific current of 100 mA g?1, the capacity calculation of the KDIBs is based on the mass of the anode). These results indicate that the properly designed HPNCFs can effectively improve the capacity and cycling stability of the KDIBs, indicating a great potential for applications in the field of high‐performance energy‐storage devices.  相似文献   

17.
Metal phosphides are promising anode candidates for sodium‐ion batteries (SIBs) due to their high specific capacity and low operating potential but suffer from poor cycling stability caused by huge volume expansion and poor solid‐state ion transfer rate. Herein, a new strategy to grow a new class of mesoporous metal phosphide nanoarrays on carbon felt (CF) as binder‐free anodes for SIBs is reported. The resultant integrated electrodes demonstrate excellent cycling life up to 1000 times (>90% retention rate) and high rate capability of 535 mAh g?1 at a current density of 4 A g?1. Detailed characterization reveals that the synergistic effect of unique mesoporous structure for accommodating huge volume expansion during sodiation/desodiation process, ultrasmall primary particle size (≈10 nm) for providing larger electrode/electrolyte contact area and shorter ion diffusion distance, and 3D conductive networks for facilitating the electrochemical reaction, leads to the extraordinary battery performance. Remarkably, a full SIB using the new CoP4/CF anode and a Na3V2(PO4)2F3 cathode delivers an average operating voltage of ≈3.0 V, a reversible capacity of 553 mAh g?1, and very high energy density of ≈280 Wh kg?1 for SIBs. A flexible SIB with outstanding mechanical strength based on this binder‐free new anode is also demonstrated.  相似文献   

18.
The development of sodium‐ion batteries for large‐scale applications requires the synthesis of electrode materials with high capacity, high initial Coulombic efficiency (ICE), high rate performance, long cycle life, and low cost. A rational design of freestanding anode materials is reported for sodium‐ion batteries, consisting of molybdenum disulfide (MoS2) nanosheets aligned vertically on carbon paper derived from paper towel. The hierarchical structure enables sufficient electrode/electrolyte interaction and fast electron transportation. Meanwhile, the unique architecture can minimize the excessive interface between carbon and electrolyte, enabling high ICE. The as‐prepared MoS2@carbon paper composites as freestanding electrodes for sodium‐ion batteries can liberate the traditional electrode manufacturing procedure, thereby reducing the cost of sodium‐ion batteries. The freestanding MoS2@carbon paper electrode exhibits a high reversible capacity, high ICE, good cycling performance, and excellent rate capability. By exploiting in situ Raman spectroscopy, the reversibility of the phase transition from 2H‐MoS2 to 1T‐MoS2 is observed during the sodium‐ion intercalation/deintercalation process. This work is expected to inspire the development of advanced electrode materials for high‐performance sodium‐ion batteries.  相似文献   

19.
Potassium‐ion batteries (KIBs) are very promising alternatives to lithium‐ion batteries (LIBs) for large‐scale energy storage. However, traditional carbon anode materials usually show poor performance in KIBs due to the large size of K ions. Herein, a carbonization‐etching strategy is reported for making a class of sulfur (S) and oxygen (O) codoped porous hard carbon microspheres (PCMs) material as a novel anode for KIBs through pyrolysis of the polymer microspheres (PMs) composed of a liquid crystal/epoxy monomer/thiol hardener system. The as‐made PCMs possess a porous architecture with a large Brunauer–Emmett–Teller surface area (983.2 m2 g?1), an enlarged interlayer distance (0.393 nm), structural defects induced by the S/O codoping and also amorphous carbon nature. These new features are important for boosting potassium ion storage, allowing the PCMs to deliver a high potassiation capacity of 226.6 mA h g?1 at 50 mA g?1 over 100 cycles and be displaying high stability by showing a potassiation capacity of 108.4 mA h g?1 over 2000 cycles at 1000 mA g?1. The density functional theory calculations demonstrate that S/O codoping not only favors the adsorption of K to the PCMs electrode but also reduces its structural deformation during the potassiation/depotassiation. The present work highlights the important role of hierarchical porosity and S/O codoping in potassium storage.  相似文献   

20.
A three‐dimensional porous core‐shell Sn@carbon anode on nickel foam substrate was fabricated by electrostatic spray deposition (ESD) technique followed by high temperature treatment. The carbon shell with a thickness of about 3.2 nm was formed on porous Sn structure at high temperature. 3D porous structure and carbon shell were designed to buffer volume expansion/shrinkage of Sn lattice upon cycling and increase the electrical conductivity. After 315 charge/discharge cycles Sn@carbon anode exhibited high specific capacity of 638 mAh g?1 with the low capacity fade of average 0.11 mAh g?1 per cycle. Sn@carbon based anodes was demonstrated to have promising potential for high performance lithium ion batteries application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号