首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
State‐of‐the‐art perovskite solar cells (PSCs) have bandgaps that are invariably larger than 1.45 eV, which limits their theoretically attainable power conversion efficiency. The emergent mixed‐(Pb, Sn) perovskites with bandgaps of 1.2–1.3 eV are ideal for single‐junction solar cells according to the Shockley–Queisser limit, and they have the potential to deliver higher efficiency. Nevertheless, the high chemical activity of Sn(II) in these perovskites makes it extremely challenging to control their physical properties and chemical stability, thereby leading to PSCs with relatively low PCE and stability. In this work, the authors employ the Lewis‐adduct SnF2·3FACl additive in the solution‐processing of ideal‐bandgap halide perovskites (IBHPs), and prepare uniform large‐grain perovskite thin films containing continuously functionalized grain boundaries with the stable SnF2 phase. Such Sn(II)‐rich grain‐boundary networks significantly enhance the physical properties and chemical stability of the IBHP thin films. Based on this approach, PSCs with an ideal bandgap of 1.3 eV are fabricated with a promising efficiency of 15.8%, as well as enhanced stability. The concept of Lewis‐adduct‐mediated grain‐boundary functionalization in IBHPs presented here points to a new chemical route for approaching the Shockley–Queisser limit in future stable PSCs.  相似文献   

2.
A rapid layer‐specific annealing on perovskite active layer enabled by ultraviolet (UV) light‐emitting diode (LED) is demonstrated and efficiency close to 19% is achieved in a simple planar inverted structure ITO/PEDOT:PSS/MAPbI3/PC71BM/Al without any device engineering. These results demonstrate that if the UV dosage is well managed, UV light is capable of annealing perovskite into high‐quality film rather than simply damaging it. Different in principle from other photonic treatment techniques that can heat up and damage underlying films, the UV‐LED‐annealing method enables layer‐specific annealing because LED light source is able to provide a specific UV wavelength for maximum light absorption of target film. Moreover, the layer‐specific photonic treatment allows accurate estimation of the crystallization energy required to form perovskite film at device quality level.  相似文献   

3.
Layer deposition of organometal halide perovskites for solar cells usually involves tedious experimentation to establish the optimum processing conditions. Important parameters are the time and temperature of thermal annealing. Here, it is demonstrated that in situ photoluminescence allows to determine the optimal annealing procedure without fabricating complete solar cells. A deposition method is used in which dense layers of perovskite crystals are formed within seconds in ambient air by hot casting a mixture of lead acetate, lead chloride, and methylammonium iodide. The as‐cast perovskite layers are highly luminescent because charge carriers are unable to reach the charge extraction layers that quench the photoluminescence. Thermal annealing enhances charge transport and quenches the photoluminescence, but deteriorates the photovoltaic performance via decomposition of the perovskite if applied for a too long time. It is demonstrated that the optimal annealing time coincides with the time required for the in situ measured photoluminescence intensity to reach its baseline value for annealing temperatures in the range of 80–100 °C. This results in efficient (>14%) perovskite solar cells and shows that in situ photoluminescence is a simple but powerful tool for in‐line quality monitoring of perovskite films.  相似文献   

4.
Through detailed device characterization using cross‐sectional Kelvin probe force microscopy (KPFM) and trap density of states measurements, we identify that the JV hysteresis seen in planar organic–inorganic hybrid perovskite solar cells (PVSCs) using SnO2 electron selective layers (ESLs) synthesized by low‐temperature plasma‐enhanced atomic‐layer deposition (PEALD) method is mainly caused by the imbalanced charge transportation between the ESL/perovskite and the hole selective layer/perovskite interfaces. We find that this charge transportation imbalance is originated from the poor electrical conductivity of the low‐temperature PEALD SnO2 ESL. We further discover that a facile low‐temperature thermal annealing of SnO2 ESLs can effectively improve the electrical mobility of low‐temperature PEALD SnO2 ESLs and consequently significantly reduce or even eliminate the JV hysteresis. With the reduction of JV hysteresis and optimization of deposition process, planar PVSCs with stabilized output powers up to 20.3% are achieved. The results of this study provide insights for further enhancing the efficiency of planar PVSCs.  相似文献   

5.
6.
The presence of surface and grain boundary defects in organic–inorganic halide perovskite films can be detrimental to both the performance and operational stability of perovskite solar cells (PSCs). Here, the effect of chloride additives is studied on the bulk and surface defects of the mixed cation and halide PSCs. It is found that using an antisolvent technique, the perovskite film is divided into two layers, i.e., a bottom layer with large grains and a thin capping layer with small grains. The addition of formamidinium chloride (FACl) into the precursor solution removes the small‐grained perovskite capping layer and suppresses the formation of bulk and surface defects, providing a perovskite film with enhanced crystallinity and large grain size of over 1 µm. Time‐resolved photoluminescence measurements show longer lifetimes for perovskite films modified by FACl and subsequently passivated by 1‐adamantylamine hydrochloride as compared to the reference sample. Impedance spectroscopy measurements show that these treatments reduce the recombination in the PSCs, leading to a champion device with power conversion efficiency (PCE) of 21.2%, an open circuit voltage of 1152 mV and negligible hysteresis. The Cl treated PSC also shows improved operational stability with only 12% PCE loss after 700 h under continuous illumination.  相似文献   

7.
High temperature stable inorganic CsPbX3 (X: I, Br, or mixed halides) perovskites with their bandgap tailored by tuning the halide composition offer promising opportunities in the design of ideal top cells for high‐efficiency tandem solar cells. Unfortunately, the current high‐efficiency CsPbX3 perovskite solar cells (PSCs) are prepared in vacuum, a moisture‐free glovebox or other low‐humidity conditions due to their poor moisture stability. Herein, a new precursor system (HCOOCs, HPbI3, and HPbBr3) is developed to replace the traditional precursors (CsI, PbI2, and PbBr2) commonly used for solar cells of this type. Both the experiments and calculations reveal that a new complex (HCOOH?Cs+) is generated in this precursor system. The new complex is not only stable against aging in humid air ambient at 91% relative humidity, but also effectively slows the perovskite crystallization, making it possible to eliminate the popular antisolvent used in the perovskite CsPbI2Br film deposition. The CsPbI2Br PSCs based on the new precursor system achieve a champion efficiency of 16.14%, the highest for inorganic PSCs prepared in ambient air conditions. Meanwhile, high air stability is demonstrated for an unencapsulated CsPbI2Br PSC with 92% of the original efficiency remaining after more than 800 h aging in ambient air.  相似文献   

8.
Efficient conventional bulk heterojunction (BHJ) perovskite hybrid solar cells (pero‐HSCs) solution‐processed from a composite of CH3NH3PbI3 mixed with PC61BM ([6,6]‐phenyl‐C61‐butyric acid methyl ester), where CH3NH3PbI3 acts as the electron donor and PC61BM acts as the electron acceptor, are reported for the first time. The efficiency of 12.78% is twofold enhancement in comparison with the conventional planar heterojunction pero‐HSCs (6.90%) fabricated by pristine CH3NH3PbI3. The BHJ pero‐HSCs are further optimized by using PC61BM/TiO2 bi‐electron‐extraction‐layer (EEL), which are both solution‐processed and then followed with low‐temperature thermal annealing. Due to higher electrical conductivity of PC61BM over that of TiO2, an efficiency of 14.98%, the highest reported efficiency for the pero‐HSCs without incorporating high‐temperature‐processed mesoporous TiO2 and Al2O3 as the EEL and insulating scaffold, is observed from PC61BM modified BHJ pero‐HSCs. Thus, the findings provide a simple way to approach high efficiency low‐cost pero‐HSCs.  相似文献   

9.
10.
The disorderly distribution of defects in the perovskite or at the grain boundaries, surfaces, and interfaces, which seriously affect carrier transport through the formation of nonradiative recombination centers, hinders the further improvement on the power conversion efficiency (PCE) of perovskite solar cells (PSCs). Several defect passivation strategies have been confirmed as an efficient approach for promoting the performance of PSCs. Herein, recent progress in the defect passivation toward efficient perovskite solar cells are summarized, and a classification of common passivation strategies that elaborate the mechanism according to the location of the defects and the type of passivation agent is presented. Finally, this review offers likely prospects for future trends in the development of passivation strategies.  相似文献   

11.
Hole‐transporting materials (HTMs) are essential for enabling highly efficient perovskite solar cells (PVSCs) to extract and transport the hole carriers. Among numerous HTMs that are studied so far, the single‐spiro‐based compounds are the most frequently used HTMs for achieving highly efficient PVSCs. In fact, all the new spiro‐based HTMs reported so far that render PVSCs over 20% are based on spiro[fluorene‐9,9′‐xanthene] or spiro [cyclopenta [2,1‐b:3,4b′]dithiophene‐4,9′‐fluorene] cores; therefore, there is a need to diversify the design of their structures for further improving their function and performance. In addition, the fundamental understanding of structure–performance relationships for the spiro‐based HTMs is still lagging, for example, how molecular configuration, spiro numbers, and heteroatoms in spiro‐rings impact the efficacy of HTMs. To address these needs, two novel H‐shaped HTMs, G1 and G2 based on the di‐spiro‐rings as the cores are designed and synthesized. The combined good film‐forming properties, better interactions with perovskite, slightly deeper highest occupied molecular orbital, higher mobility and conductivity, as well as more efficient charge transfer for G2 help devices reach a very impressive power conversion efficiency of 20.2% and good stability. This is the first report of demonstrating the feasibility of using di‐spiro‐based HTMs for highly efficient PVSCs.  相似文献   

12.
Although perovskite solar cells (PVSCs) have achieved rapid progress in the past few years, most of the high‐performance device results are based on the doped small molecule hole‐transporting material (HTM), spiro‐OMeTAD, which affects their long‐term stability. In addition, some defects from under‐coordinated Pb atoms on the surface of perovskite films can also result in nonradiative recombination to affect device performance. To alleviate these problems, a dopant‐free HTM based on a donor‐acceptor polymer, PBT1‐C, synthesized from the copolymerization between the benzodithiophene and 1,3‐bis(4‐(2‐ethylhexyl)thiophen‐2‐yl)‐5,7‐bis(2‐alkyl)benzo[1,2‐c:4,5‐c′]dithiophene‐4,8‐dione units is introduced. PBT1‐C not only possesses excellent hole mobility, but is also able to passivate the surface traps of the perovskite films. The derived PVSC shows a high power conversion efficiency of 19.06% with a very high fill factor of 81.22%, which is the highest reported for dopant‐free polymeric HTMs. The results from photoluminescence and trap density of states measurements validate that PBT1‐C can effectively passivate both surface and grain boundary traps of the perovskite.  相似文献   

13.
All current highest efficiency perovskite solar cells (PSCs) use highly toxic, halogenated solvents, such as chlorobenzene (CB) or toluene (TLN), in an antisolvent step or as solvent for the hole transporter material (HTM). A more environmentally friendly antisolvent is highly desirable for decreasing chronic health risk. Here, the efficacy of anisole (ANS), as a greener antisolvent for highest efficiency PSCs, is investigated. The fabrication inside and outside of the glovebox showing high power conversion efficiencies of 19.9% and 15.5%, respectively. Importantly, a fully nonhalogenated solvent system is demonstrated where ANS is used as both the antisolvent and the solvent for the HTM. With this, state‐of‐the‐art efficiencies close to 20.5%, the highest to date without using toxic CB or TLN, are reached. Through scanning electron microscopy, UV–vis, photoluminescence, and X‐ray diffraction, it is shown that ANS results in similar mixed‐ion perovskite films under glovebox atmosphere as CB and TLN. This underlines that ANS is indeed a viable green solvent system for PSCs and should urgently be adopted by labs and companies to avoid systematic health risks for researchers and employees.  相似文献   

14.
Semitransparent perovskite solar cells (st‐PSCs) have received remarkable interest in recent years because of their great potential in applications for solar window, tandem solar cells, and flexible photovoltaics. However, all reported st‐PSCs require expensive transparent conducting oxides (TCOs) or metal‐based thin films made by vacuum deposition, which is not cost effective for large‐scale fabrication: the cost of TCOs is estimated to occupy ≈75% of the manufacturing cost of PSCs. To address this critical challenge, this study reports a low‐temperature and vacuum‐free strategy for the fabrication of highly efficient TCO‐free st‐PSCs. The TCO‐free st‐PSC on glass exhibits 13.9% power conversion efficiency (PCE), and the four‐terminal tandem cell made with the st‐PSC top cell and c‐Si bottom cell shows an overall PCE of 19.2%. Due to the low processing temperature, the fabrication of flexible st‐PSCs is demonstrated on polyethylene terephthalate and polyimide, which show excellent stability under repeated bending or even crumbing.  相似文献   

15.
Scaling large‐area solar cells is in high demand for the commercialization of perovskite solar cells (PSCs) with a high power‐conversion efficiency (PCE). However, few roll‐to‐roll‐compatible deposition methods for the formation of highly oriented uniform perovskite films are reported. Herein, a facile cold antisolvent bathing approach compatible with large‐area fabrication is introduced. The wet precursor films are submerged in a cold antisolvent bath at 0 °C, and the retarded nucleation and growth kinetics allow highly oriented perovskite to be grown along the [110] and [220] directions, perpendicular to the substrate. The high degree of the preferred crystal orientation benefits the effective charge extraction and reduces the amount of inter‐ and intra‐grain defects inside the perovskite films, improving the PCE from 16.48% (ambient‐bathed solar cell) to 18.50% (cold‐bathed counterpart). The cold antisolvent bathing method is employed for the fabrication of large‐area (8 × 10 cm2) PSCs with uniform photovoltaic device parameters, thereby verifying the scale‐up capability of the method.  相似文献   

16.
CsPbI2Br is emerging as a promising all‐inorganic material for perovskite solar cells (PSCs) due to its more stable lattice structure and moisture resistance compared to CsPbI3, although its device performance is still much behind this counterpart. Herein, a preannealing process is developed and systematically investigated to achieve high‐quality CsPbI2Br films by regulating the nucleation and crystallization of perovskite. The preannealing temperature and time are specifically optimized for a dopant‐free poly(3‐hexylthiophene) (P3HT)‐based device to target dopant‐induced drastic performance degradation for spiro‐OMeTAD‐based devices. The resulting P3HT‐based device exhibits comparable power conversion efficiency (PCE) to spiro‐OMeTAD‐based devices but much enhanced ambient stability with over 95% PCE after 1300 h. A diphenylamine derivative is introduced as a buffer layer to improve the energy‐level mismatch between CsPbI2Br and P3HT. A record‐high PCE of 15.50% for dopant‐free P3HT‐based CsPbI2Br PSCs is achieved by alleviating the open‐circuit voltage loss with the buffer layer. These results demonstrate that the preannealing processing together with a suitable buffer layer are applicable strategies for developing dopant‐free P3HT PSCs with high efficiency and stability.  相似文献   

17.
Organic‐inorganic halide perovskite materials have become a shining star in the photovoltaic field due to their unique properties, such as high absorption coefficient, optimal bandgap, and high defect tolerance, which also lead to the breathtaking increase in power conversion efficiency from 3.8% to over 22% in just seven years. Although the highest efficiency was obtained from the TiO2 mesoporous structure, there are increasing studies focusing on the planar structure device due to its processibility for large‐scale production. In particular, the planar p‐i‐n structure has attracted increasing attention on account of its tremendous advantages in, among other things, eliminating hysteresis alongside a competitive certified efficiency of over 20%. Crucial for the device performance enhancement has been the interface engineering for the past few years, especially for such planar p‐i‐n devices. The interface engineering aims to optimize device properties, such as charge transfer, defect passivation, band alignment, etc. Herein, recent progress on the interface engineering of planar p‐i‐n structure devices is reviewed. This review is mainly focused on the interface design between each layer in p‐i‐n structure devices, as well as grain boundaries, which are the interfaces between polycrystalline perovskite domains. Promising research directions are also suggested for further improvements.  相似文献   

18.
Recently, the stability of organic–inorganic perovskite thin films under thermal, photo, and moisture stresses has become a major concern for further commercialization due to the high volatility of the organic cations in the prototype perovskite composition (CH3NH3PbI3). All inorganic cesium (Cs) based perovskite is an alternative to avoid the release or decomposition of organic cations. Moreover, substituting Pb with Sn in the organic–inorganic lead halide perovskites has been demonstrated to narrow the bandgap to 1.2–1.4 eV for high‐performance perovskite solar cells. In this work, a series of CsPb1?xSnxIBr2 perovskite alloys via one‐step antisolvent method is demonstrated. These perovskite films present tunable bandgaps from 2.04 to 1.64 eV. Consequently, the CsPb0.75Sn0.25IBr2 with homogeneous and densely crystallized morphology shows a remarkable power conversion efficiency of 11.53% and a high Voc of 1.21 V with a much improved phase stability and illumination stability. This work provides a possibility for designing and synthesizing novel inorganic halide perovskites as the next generation of photovoltaic materials.  相似文献   

19.
Although all‐inorganic perovskite solar cells (PSCs) demonstrate high thermal stability, cesium‐lead halide perovskites with high iodine content suffer from poor stability of the black phase (α‐phase). In this study, it is demonstrated that incorporating InCl3 into the host perovskite lattice helps to inhibit the formation of yellow phase (δ‐phase) perovskite and thereby enhances the long‐term ambient stability. The enhanced stability is achieved by a strategy for the structural reconstruction of CsPbI2Br perovskite by means of In3+ and Cl? codoping, which gives rise to a significant improvement in the overall spatial symmetry with a closely packed atom arrangement due to the crystal structure transformation from orthorhombic (Pnma) to cubic (Pm‐3m). In addition, a novel thermal radiation heating method that further improves the uniformity of the perovskite thin films is presented. This approach enables the construction of all‐inorganic InCl3:CsPbI2Br PSCs with a champion power conversion efficiency of 13.74% for a small‐area device (0.09 cm2) and 11.4% for a large‐area device (1.00 cm2).  相似文献   

20.
Chemical bonding dictates not only the optoelectronic properties of materials, but also the intrinsic and extrinsic stability of materials. Here, the causes of intrinsic and extrinsic instability of perovskite materials are reviewed considering their correlation with the unique chemical‐bonding nature of perovskite materials. There are a number of key standardized stability tests established by the International Electrotechnical Commission for commercialized photovoltaic modules. Based on these procedures, the possible causes and related mechanisms of the material degradation that can arise during the test procedures are identified, which are discussed in terms of their chemical bonds. Based on the understanding of the critical causes, promising strategies for mitigating the causes to enhance the stability of perovskite solar cells are summarized. The stability of the state‐of‐the‐art perovskite solar cells implies a need for the development of improved stability‐testing protocols to move onto the next stage toward commercialization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号