首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the rechargeable lithium–oxygen (Li–O2) batteries have extremely high theoretical specific energy, the practical application of these batteries is still limited by the instability of their carbon‐based air‐electrode, Li metal anode, and electrodes, toward reduced oxygen species. Here a simple one‐step in situ electrochemical precharging strategy is demonstrated to generate thin protective films on both carbon nanotubes (CNTs), air‐electrodes and Li metal anodes simultaneously under an inert atmosphere. Li–O2 cells after such pretreatment demonstrate significantly extended cycle life of 110 and 180 cycles under the capacity‐limited protocol of 1000 mA h g?1 and 500 mA h g?1, respectively, which is far more than those without pretreatment. The thin‐films formed from decomposition of electrolyte during in situ electrochemical precharging processes in an inert environment, can protect both CNTs air‐electrode and Li metal anode prior to conventional Li–O2 discharge/charge cycling, where reactive reduced oxygen species are formed. This work provides a new approach for protection of carbon‐based air‐electrodes and Li metal anodes in practical Li–O2 batteries, and may also be applied to other battery systems.  相似文献   

2.
Although Li–O2 batteries are promising next‐generation energy storage systems with superior theoretical capacities, they have a serious limitation regarding the large overpotential upon charging that results from the low conductivity of the discharge product. Thus, various redox mediators (RMs) have been widely studied to reduce the overpotential in the charging process, which should promote the oxidation of Li2O2. However, RMs degrade the Li metal anode through a parasitic reaction between the RM and the Li metal, and a solution for this phenomenon is necessary. In this study, an effective method is proposed to prevent the migration of the RM toward the anode side of the lithium using a separator that is modified with a negatively charged polymer. When DMPZ (5,10‐dihydro‐5,10‐dimethylphenazine) is used as an RM, it is found that the modified separator suppresses the migration of DMPZ toward the counter electrode of the Li metal anode. This is investigated by a visual redox couple diffusion test, a morphological investigation, and an X‐ray diffraction study. This advanced separator effectively maximizes the catalytic activity of the redox mediator. Li–O2 batteries using both a highly concentrated DMPZ and the modified separator exhibit improved performance and maintained 90% round‐trip efficiency up to the 20th cycle.  相似文献   

3.
Lithium–oxygen batteries are in fact the only rechargeable batteries that can rival internal combustion engines, in terms of high energy density. However, they are still under development due to low‐efficiency and short lifetime issues. There are problems of side reactions on the cathode side, high reactivity of the Li anode with solution species, and consumption of redox mediators via reactions with metallic lithium. Therefore, efforts are made to protect/block the lithium metal anode in these cells, in order to mitigate side reactions. However, new approach is required in order to solve the problems mentioned above, especially the irreversible reactions of the redox mediators which are mandatory to these systems with the Li anode. Here, optimized bicompartment two solution cells are proposed, in which detrimental crossover between the cathode and anode is completely avoided. The Li metal anode is cycled in electrolyte solution containing fluorinated ethylene carbonate, in which its cycling efficiency is excellent. The cathode compartment contains ethereal solution with redox mediator that enables oxidation of Li2O2 at low potentials. The electrodes are separated by a solid electrolyte membrane, allowing free transport of Li ions. This approach increases cycle life of lithium oxygen cells and their energy efficiency.  相似文献   

4.
There is a growing concern about the cyclability and safety, in particular, of the high‐energy density lithium–metal batteries. This concern is even greater for Li–O2 batteries because O2 that is transported from the cathode to the anode compartment, can exacerbate side reactions and dendrite growth of the lithium metal anode. The key to solving this dilemma lays in tailoring the solid electrolyte interphase (SEI) formed on the lithium metal anode in Li–O2 batteries. Here it is reported that a new electrolyte, formed from LiFSI as the salt and a mixture of tetraethylene glycol dimethyl ether and polymeric ionic liquid of P[C5O2NMA,11]FSI as the solvent, can produce a stable electrode (both cathode and anode)|electrolyte interface in Li–O2 batteries. Specifically, this new electrolyte, when in contact with lithium metal anodes, has the ability to produce a uniform SEI with high ionic conductivity for Li+ transport and desired mechanical property for suppression of dendritic lithium growth. Moreover, the electrolyte possesses a high oxidation tolerance that is very beneficial to the oxygen electrochemistry on the cathode of Li–O2 batteries. As a result, enhanced reversibility and cycle life are realized for the resultant Li–O2 batteries.  相似文献   

5.
The nonaqueous lithium–oxygen (Li–O2) battery is considered as one of the most promising candidates for next‐generation energy storage systems because of its very high theoretical energy density. However, its development is severely hindered by large overpotential and limited capacity, far less than theory, caused by sluggish oxygen redox kinetics, pore clogging by solid Li2O2 deposition, inferior Li2O2/cathode contact interface, and difficult oxygen transport. Herein, an open‐structured Co9S8 matrix with sisal morphology is reported for the first time as an oxygen cathode for Li–O2 batteries, in which the catalyzing for oxygen redox, good Li2O2/cathode contact interface, favorable oxygen evolution, and a promising Li2O2 storage matrix are successfully achieved simultaneously, leading to a significant improvement in the electrochemical performance of Li–O2 batteries. The intrinsic oxygen‐affinity revealed by density functional theory calculations and superior bifunctional catalytic properties of Co9S8 electrode are found to play an important role in the remarkable enhancement in specific capacity and round‐trip efficiency for Li–O2 batteries. As expected, the Co9S8 electrode can deliver a high discharge capacity of ≈6875 mA h g?1 at 50 mA g?1 and exhibit a low overpotential of 0.57 V under a cutoff capacity of 1000 mA h g?1, outperforming most of the current metal‐oxide‐based cathodes.  相似文献   

6.
The success of Li–air/O2 batteries has brought extensive attention to the development of various promising non‐Li metal–O2 batteries, such as Zn–O2, Al–O2, Mg–O2 batteries, etc., which have exhibited unique advantages, such as low production cost, high energy density, and much enhanced safety. The versatile non‐Li metal–O2 batteries provide a better opportunity for meeting the practical requirements for sustainable energy supplies in various applications. A high‐performance cathode in non‐Li metal–O2 batteries that can effectively trigger both oxygen reduction and evolution reactions and thus boost the overall battery performance is of great research interest. In this article, a comprehensive review on the development of Li‐free metal–O2 batteries and particularly focusing on the oxygen catalytic cathodes for both primary and secondary non‐Li metal–O2 batteries is carefully performed. The current challenges and potential solutions are also outlined and proposed. Through carefully selecting and rationally designing promising catalytic cathodes, a series of non‐Li metal–oxygen batteries toward practical energy storage applications are highly anticipated.  相似文献   

7.
Recently, a consensus has been reached that using lithium metal as an anode in rechargeable Li‐ion batteries is the best way to obtain the high energy density necessary to power electronic devices. Challenges remain, however, with respect to controlling dendritic Li growth on these electrodes, enhancing compatibility with carbonate‐based electrolytes, and forming a stable solid–electrolyte interface layer. Herein, a groundbreaking solution to these challenges consisting in the preparation of a Li2TiO3 (LT) layer that can be used to cover Li electrodes via a simple and scalable fabrication method, is suggested. Not only does this LT layer impede direct contact between electrode and electrolyte, thus avoiding side reactions, but it assists and expedites Li‐ion flux in batteries, thus suppressing Li dendrite growth. Other effects of the LT layer on electrochemical performance are investigated by scanning electron microscopy, electrochemical impedance spectroscopy, and galvanostatic intermittent titration technique analyses. Notably, LT layer‐incorporating Li cells comprising high‐capacity/voltage cathodes with reasonably high mass loading (LiNi0.8Co0.1Mn0.1O2, LiNi0.5Mn1.5O4, and LiMn2O4) show highly stable cycling performance in a carbonate‐based electrolyte. Therefore, it is believed that the approach based on the LT layer can boost the realization of high energy density lithium metal batteries and next‐generation batteries.  相似文献   

8.
The critical challenges of Li‐O2 batteries lie in sluggish oxygen redox kinetics and undesirable parasitic reactions during the oxygen reduction reaction and oxygen evolution reaction processes, inducing large overpotential and inferior cycle stability. Herein, an elaborately designed 3D hierarchical heterostructure comprising NiCo2S4@NiO core–shell arrays on conductive carbon paper is first reported as a freestanding cathode for Li‐O2 batteries. The unique hierarchical array structures can build up multidimensional channels for oxygen diffusion and electrolyte impregnation. A built‐in interfacial potential between NiCo2S4 and NiO can drastically enhance interfacial charge transfer kinetics. According to density functional theory calculations, intrinsic LiO2‐affinity characteristics of NiCo2S4 and NiO play an importantly synergistic role in promoting the formation of large peasecod‐like Li2O2, conducive to construct a low‐impedance Li2O2/cathode contact interface. As expected, Li‐O2 cells based on NiCo2S4@NiO electrode exhibit an improved overpotential of 0.88 V, a high discharge capacity of 10 050 mAh g?1 at 200 mA g?1, an excellent rate capability of 6150 mAh g?1 at 1.0 A g?1, and a long‐term cycle stability under a restricted capacity of 1000 mAh g?1 at 200 mA g?1. Notably, the reported strategy about heterostructure accouplement may pave a new avenue for the effective electrocatalyst design for Li‐O2 batteries.  相似文献   

9.
Energy storage challenges have triggered growing interest in various battery technologies and electrocatalysis. As a particularly promising variety, the Li–O2 battery with an extremely high energy density is of great significance, offering tremendous opportunities to improve cell performance via understanding catalytic mechanisms and the exploration of new materials. Furthermore, focus on nonaqueous electrolyte‐based Li–O2 batteries has markedly intensified since there could be a higher probability of commercialization, compared to that of solid‐state or aqueous electrolytes. The recent advancements of the nonaqueous Li–O2 battery in terms of fundamental understanding and material challenges, including electrolyte stability, water effect, and noncarbon cathode materials are summarized in this review. Further, the current status of water impact on discharge products, possible mechanisms, and parasitic reactions in nonaqueous electrolytes are reviewed for the first time. The key challenges of noncarbon oxygen electrode materials, such as noble metals and metal oxides‐based cathodes, transition metals, transition metal compounds (carbides, oxides) based cathodes as well as noncarbon supported catalysts are discussed. This review concludes with a perspective on future research directions for nonaqueous Li–O2 batteries.  相似文献   

10.
The altering of electronic states of metal oxides offers a promising opportunity to realize high‐efficiency surface catalysis, which play a key role in regulating polysulfides (PS) redox in lithium–sulfur (Li–S) batteries. However, little effort has been devoted to understanding the relationship between the electronic state of metal oxides and a catalyst's properties in Li–S cells. Herein, defect‐rich heterojunction electrocatalysts composed of ultrathin TiO2‐x nanosheets and carbon nanotubes (CNTs) for Li–S batteries are reported. Theoretical simulations indicate that oxygen vacancies and heterojunction can enhance electronic conductivity and chemical adsorption. Spectroscopy and electrochemical techniques further indicate that the rich surface vacancies in TiO2‐x nanosheets result in highly activated trapping sites for LiPS and lower energy barriers for fast Li ion mobility. Meanwhile, the redistribution of electrons at the heterojunction interfaces realizes accelerated surface electron exchange. Coupled with a polyacrylate terpolymer (LA132) binder, the CNT@TiO2‐x–S electrodes exhibit a long cycle life of more than 300 cycles at 1 C and a high area capacity of 5.4 mAh cm?2. This work offers a new perspective on understanding catalyst design in energy storage devices through band engineering.  相似文献   

11.
Double‐shelled NiO‐NiCo2O4 heterostructure@carbon hollow nanocages as efficient sulfur hosts are synthesized to overcome the barriers of lithium–sulfur (Li–S) batteries simultaneously. The double‐shelled nanocages can prevent the diffusion of lithium polysulfides (LiPSs) effectively. NiO‐NiCo2O4 heterostructure is able to promote polysulfide conversion reactions. Furthermore, the thin carbon layer outside can improve the electrical conductivity during cycling. Besides, such unique double‐shelled hollow nanocage architecture can also accommodate the volumetric effect of sulfur upon cycling. As a result, the prepared S/NiO‐NiCo2O4@carbon (C) electrode exhibits good rate capacities and stable cycling life up to 500 cycles at 0.5 C with a very low capacity decay rate of only ≈0.059% per cycle.  相似文献   

12.
Triggering oxygen‐related activity is demonstrated as a promising strategy to effectively boost energy density of layered cathodes for sodium‐ion batteries. However, irreversible lattice oxygen loss will induce detrimental structure distortion, resulting in voltage decay and cycle degradation. Herein, a layered structure P2‐type Na0.66Li0.22Ru0.78O2 cathode is designed, delivering reversible oxygen‐related and Ru‐based redox chemistry simultaneously. Benefiting from the combination of strong Ru 4d‐O 2p covalency and stable Li location within the transition metal layer, reversible anionic/cationic redox chemistry is achieved successfully, which is proved by systematic bulk/surface analysis by in/ex situ spectroscopy (operando Raman and hard X‐ray absorption spectroscopy, etc.). Moreover, the robust structure and reversible phase transition evolution revealed by operando X‐ray diffraction further establish a high degree reversible (de)intercalation processes (≈150 mAh g?1, reversible capacity) and long‐term cycling (average capacity drop of 0.018%, 500 cycles).  相似文献   

13.
Redox meditators (RMs) are soluble catalysts located in an electrolyte that can improve the energy efficiency (reduced overpotential) and cyclability of Li–oxygen (Li–O2) batteries. In this work, 20 RMs within a Li–O2 system with dimethyl sulfoxide and tetraethylene glycol dimethyl ether electrolytes are studied and their electrochemical features such as redox potential, the separation of cathodic and anodic peaks, and their current intensities are measured using cyclic voltammetry (CV) experiments. Six RMs are selected as “primary” choices based on their electrochemical performance, and stability tests are then performed to examine their electrochemical responses after consecutive cycles. Moreover, galvanostatic cycling tests are performed within a Li–O2 battery system assembled with selected six RMs for real case consistency investigations. It is found that results from CV to galvanostatic cycling tests are consistent for halides and organometallic RMs, where the former exhibit much higher stability. However, the organic RMs show high reversibility in CV but low in battery cycling results. Density functional theory calculations are carried out to gain more understanding of the stability and redox potentials of the RMs. This study provides comparative information to select the most reliable RMs for Li–O2 batteries along with new fundamental understanding of their electrochemical activity and stability.  相似文献   

14.
Li7La3Zr2O12 (LLZO) garnet‐based materials doped with Al, Nb, or Ta to stabilize the Li+‐conductive cubic phase are a particularly promising class of solid electrolytes for all‐solid‐state lithium metal batteries. Understanding of the intrinsic reactivity between solid electrolytes and relevant electrode materials is crucial to developing high voltage solid‐state batteries with long lifetimes. Using a novel, surface science‐based approach to characterize the intrinsic reactivity of the Li–solid electrolyte interface, it is determined that, surprisingly, some degree of Zr reduction takes place for all three dopant types, with the extent of reduction increasing as Ta < Nb < Al. Significant reduction of Nb also takes place for Nb‐doped LLZO, with electrochemical impedance spectroscopy (EIS) of Li||Nb–LLZO||Li symmetric cells further revealing significant increases in impedance with time and suggesting that the Nb reduction propagates into the bulk. Density functional theory (DFT) calculations reveal that Nb‐doped material shows a strong preference for Nb dopants toward the interface between LLZO and Li, while Ta does not exhibit a similar preference. EIS and DFT results, coupled with the observed reduction of Zr at the interface, are consistent with the formation of an “oxygen‐deficient interphase” (ODI) layer whose structure determines the stability of the LLZO–Li interface.  相似文献   

15.
Cathode materials with high energy density, long cycle life, and low cost are of top priority for energy storage systems. The Li‐rich transition metal (TM) oxides achieve high specific capacities by redox reactions of both the TM and oxygen ions. However, the poor reversible redox reaction of the anions results in severe fading of the cycling performance. Herein, the vacancy‐containing Na4/7[Mn6/7(?Mn)1/7]O2 (?Mn for vacancies in the Mn? O slab) is presented as a novel cathode material for Na‐ion batteries. The presence of native vacancies endows this material with attractive properties including high structural flexibility and stability upon Na‐ion extraction and insertion and high reversibility of oxygen redox reaction. Synchrotron X‐ray absorption near edge structure and X‐ray photoelectron spectroscopy studies demonstrate that the charge compensation is dominated by the oxygen redox reaction and Mn3+/Mn4+ redox reaction separately. In situ synchrotron X‐ray diffraction exhibits its zero‐strain feature during the cycling. Density functional theory calculations further deepen the understanding of the charge compensation by oxygen and manganese redox reactions and the immobility of the Mn ions in the material. These findings provide new ideas on searching for and designing materials with high capacity and high structural stability for novel energy storage systems.  相似文献   

16.
A challenge still remains to develop high‐performance and cost‐effective air electrode for Li‐O2 batteries with high capacity, enhanced rate capability and long cycle life (100 times or above) despite recent advances in this field. In this work, a new design of binder‐free air electrode composed of three‐dimensional (3D) graphene (G) and flower‐like δ‐MnO2 (3D‐G‐MnO2) has been proposed. In this design, graphene and δ‐MnO2 grow directly on the skeleton of Ni foam that inherits the interconnected 3D scaffold of Ni foam. Li‐O2 batteries with 3D‐G‐MnO2 electrode can yield a high discharge capacity of 3660 mAh g?1 at 0.083 mA cm?2. The battery can sustain 132 cycles at a capacity of 492 mAh g?1 (1000 mAh gcarbon ?1) with low overpotentials under a high current density of 0.333 mA cm?2. A high average energy density of 1350 Wh Kg?1 is maintained over 110 cycles at this high current density. The excellent catalytic activity of 3D‐G‐MnO2 makes it an attractive air electrode for high‐performance Li‐O2 batteries.  相似文献   

17.
Li‐O2 batteries are promising next‐generation energy storage systems because of their exceptionally high energy density (≈3500 W h kg?1). However, to achieve stable operation, grand challenges remain to be resolved, such as preventing electrolyte decomposition and degradation of carbon, a commonly used air electrode in Li‐O2 batteries. In this work, using in situ differential electrochemical mass spectrometry, it is demonstrated that the application of a ZnO coating on the carbon electrode can effectively suppress side reactions occurring in the Li‐O2 battery. By probing the CO2 evolution during charging of 13C‐labeled air electrodes, the major sources of parasitic reactions are precisely identified, which further reveals that the ZnO coating retards the degradation of both the carbon electrode and electrolyte. The successful suppression of the degradation results in a higher oxygen efficiency, leading to enhanced stability for more than 100 cycles. Nevertheless, the degradation of the carbon electrode is not completely prevented by the coating, because the Li2O2 discharge product gradually grows at the interface between the ZnO and carbon, which eventually results in detachment of the ZnO particles from the electrode and subsequent deterioration of the performance. This finding implies that surface protection of the carbon electrode is a viable option to enhance the stability of Li‐O2 batteries; however, fundamental studies on the growth mechanism of the discharge product on the carbon surface are required along with more effective coating strategies.  相似文献   

18.
All‐solid‐state Li‐ion batteries based on Li7La3Zr2O12 (LLZO) garnet structures require novel electrode assembly strategies to guarantee a proper Li+ transfer at the electrode–electrolyte interfaces. Here, first stable cell performances are reported for Li‐garnet, c‐Li6.25Al0.25La3Zr2O12, all‐solid‐state batteries running safely with a full ceramics setup, exemplified with the anode material Li4Ti5O12. Novel strategies to design an enhanced Li+ transfer at the electrode–electrolyte interface using an interface‐engineered all‐solid‐state battery cell based on a porous garnet electrolyte interface structure, in which the electrode material is intimately embedded, are presented. The results presented here show for the first time that all‐solid‐state Li‐ion batteries with LLZO electrolytes can be reversibly charge–discharge cycled also in the low potential ranges (≈1.5 V) for combinations with a ceramic anode material. Through a model experiment, the interface between the electrode and electrolyte constituents is systematically modified revealing that the interface engineering helps to improve delivered capacities and cycling properties of the all‐solid‐state Li‐ion batteries based on garnet‐type cubic LLZO structures.  相似文献   

19.
Solid‐state Li secondary batteries may become high energy density storage devices for the next generation of electric vehicles, depending on the compatibility of electrode materials and suitable solid electrolytes. Specifically, it is a great challenge to obtain a stable interface between these solid electrolytes and cathodes. Herein, this issue can be effectively addressed by constructing a poly(acrylonitrile‐co‐butadiene) coated layer onto the surface of LiNi0.6Mn0.2Co0.2O2 cathode materials. The polymer layer plays a vital role in working as a protective shell to retard side reaction and ameliorate the contact of the solid–solid interface during the cycling process. In the resultant solid‐state batteries, both rate capacity (99 mA h g?1 at 3 C) and cycling stability (75% capacity retention after 400 cycles) are improved after coating. This impressive performance highlights the great importance of layer modification in the cathode and inspires the development of solid‐state batteries toward practical applications.  相似文献   

20.
Alkali metal–O2 batteries, by coupling high‐capacity alkali metal anodes with gaseous oxygen, possess extremely high gravimetric energy density that is comparable to gasoline and are potential energy storage technologies beyond lithium–ion batteries. The development of alkali metal–O2 batteries has achieved great progress in recent years, from materials to prototype devices and on fundamental mechanisms. The stability of alkali metal–O2 batteries is still poor, however, leading to a huge gap between laboratory research and commercial applications. A series of parasitic reactions result in the instability, which occur during electrochemical discharging and charging. The ubiquitous active oxygen species attack both the organic electrolyte and the carbon cathode, triggering various parasitic reactions. Meanwhile, dendrite growth and volume expansion upon repeated plating/stripping and O2 crossover severely limit the reversibility of alkali metal anodes. Here, an overview of the strategies against these issues is given to improve the stability of nonaqueous alkali metal–O2 batteries, which is discussed from three aspects: air cathodes, alkali metal anodes, and aprotic electrolytes. Furthermore, perspectives for future research of stable alkali metal–O2 batteries are outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号