首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrochemical reduction of CO2 provides an opportunity to reach a carbon‐neutral energy recycling regime, in which CO2 emissions from fuel use are collected and converted back to fuels. The reduction of CO2 to CO is the first step toward the synthesis of more complex carbon‐based fuels and chemicals. Therefore, understanding this step is crucial for the development of high‐performance electrocatalyst for CO2 conversion to higher order products such as hydrocarbons. Here, atomic iron dispersed on nitrogen‐doped graphene (Fe/NG) is synthesized as an efficient electrocatalyst for CO2 reduction to CO. Fe/NG has a low reduction overpotential with high Faradic efficiency up to 80%. The existence of nitrogen‐confined atomic Fe moieties on the nitrogen‐doped graphene layer is confirmed by aberration‐corrected high‐angle annular dark‐field scanning transmission electron microscopy and X‐ray absorption fine structure analysis. The Fe/NG catalysts provide an ideal platform for comparative studies of the effect of the catalytic center on the electrocatalytic performance. The CO2 reduction reaction mechanism on atomic Fe surrounded by four N atoms (Fe–N4) embedded in nitrogen‐doped graphene is further investigated through density functional theory calculations, revealing a possible promotional effect of nitrogen doping on graphene.  相似文献   

2.
Rare earth doped materials with unique electronic ground state configurations are considered emerging alternatives to conventional Pt/C for the oxygen reduction reaction (ORR). Herein, gadolinium (Gd)‐induced valence structure engineering is, for the first, time investigated for enhanced oxygen electrocatalysis. The Gd2O3–Co heterostructure loaded on N‐doped graphene (Gd2O3–Co/NG) is constructed as the target catalyst via a facile sol–gel assisted strategy. This synthetic strategy allows Gd2O3–Co nanoparticles to distribute uniformly on an N‐graphene surface and form intimate Gd2O3/Co interface sites. Upon the introduction of Gd2O3, the ORR activity of Gd2O3–Co/NG is significantly increased compared with Co/NG, where the half‐wave potential (E1/2) of Gd2O3–Co/NG is 100 mV more positive than that of Co/NG and even close to commercial Pt/C. The density functional theory calculation and spectroscopic analysis demonstrate that, owing to intrinsic charge redistribution at the engineered interface of Gd2O3/Co, the coupled Gd2O3–Co can break the OOH*–OH* scaling relation and result in a good balance of OOH* and OH* binding on Gd2O3–Co surface. For practical application, a rechargeable Zn–air battery employing Gd2O3–Co/NG as an air–cathode achieves a large power density and excellent charge–discharge cycle stability.  相似文献   

3.
The future large‐scale deployment of rechargeable zinc–air batteries requires the development of cheap, stable, and efficient bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). In this work, a highly efficient bifunctional electrocatalyst is prepared by depositing 3–5 nm NiFe layered double hydroxide (NiFe‐LDH) nanoparticles on Co,N‐codoped carbon nanoframes (Co,N‐CNF). The NiFe‐LDH/Co,N‐CNF electrocatalyst displayed an OER overpotential of 0.312 V at 10 mA cm?2 and an ORR half‐wave potential of 0.790 V. The outstanding performance of the electrocatalyst is attributable to the high electrical conductivity and excellent ORR activity of Co,N‐CNF, together with the strong anchoring of 3–5 nm NiFe‐LDH nanoparticles, which preserves active sites. Inspired by the excellent OER and ORR performance of NiFe‐LDH/Co,N‐CNF, a prototype rechargeable zinc–air battery is developed. The battery exhibited a low discharge–charge voltage gap (1.0 V at 25 mA cm?2) and long‐term cycling durability (over 80 h), and superior overall performance to a counterpart battery constructed using a mixture of IrO2 and Pt/C as the cathode. The strategy developed here can easily be adapted to synthesize other bifunctional CNF‐based hybrid electrodes for ORR and OER, providing a practical route to more efficient rechargeable zinc–air batteries.  相似文献   

4.
The oxygen reduction reaction (ORR) is one of the most important reactions in renewable energy conversion and storage devices. The full deployment of these devices depends on the development of highly active, stable, and low‐cost catalysts. Herein, a new hybrid material consisting of Na2Ta8O21?x/Ta2O5/Ta3N5 nanocrystals grown on N‐doped reduced graphene oxide is reported. This catalyst shows a significantly enhanced ORR activity by ≈4 orders of magnitude in acidic media and by ≈2 orders of magnitude in alkaline media compared to individual Na2Ta8O21?x on graphene. Moreover, it has excellent stability in both acid and alkaline media. It also has much better methanol tolerance than the commercial Pt/C, which is relevant to methanol fuel cells. The high ORR activity arises not only from the synergistic effect among the three Ta phases, but also from the concomitant nitrogen doping of the reduced graphene oxide nanosheets. A correlation between ORR activity and nitrogen content is demonstrated. Deep insights into the mechanism of the synergistic effect among these three Ta‐based phases, which boosts the ORR's kinetics, are acquired by combining specific experiments and density functional theory calculations.  相似文献   

5.
The development of high‐performance oxygen reduction reaction (ORR) catalysts derived from non‐Pt group metals (non‐PGMs) is urgent for the wide applications of proton exchange membrane fuel cells (PEMFCs). In this work, a facile and cost‐efficient supramolecular route is developed for making non‐PGM ORR catalyst with atomically dispersed Fe‐Nx/C sites through pyrolyzing the metal‐organic polymer coordinative hydrogel formed between Fe3+ and α‐L‐guluronate blocks of sodium alginate (SA). High‐angle annular dark field scanning transmission electron microscopy (HAADF‐STEM) and X‐ray absorption spectroscopy (XAS) verify that Fe atoms achieve atomic‐level dispersion on the obtained SA‐Fe‐N nanosheets and a possible fourfold coordination with N atoms. The best‐performing SA‐Fe‐N catalyst exhibits excellent ORR activity with half‐wave potential (E1/2) of 0.812 and 0.910 V versus the reversible hydrogen electrode (RHE) in 0.5 m H2SO4 and 0.1 m KOH, respectively, along with respectable durability. Such performance surpasses that of most reported non‐PGM ORR catalysts. Density functional theory calculations suggest that the relieved passivation effect of OH* on Fe‐N4/C structure leads to its superior ORR activity to Pt/C in alkaline solution. The work demonstrates a novel strategy for developing high‐performance non‐PGM ORR electrocatalysts with atomically dispersed and stable M‐Nx coordination sites in both acidic and alkaline media.  相似文献   

6.
A promising bifunctional electrocatalyst is reported for air cathodes consisting of Ni3Fe nanoparticles embedded in porous nitrogen‐doped carbon sheets (Ni3Fe/N‐C sheets) by a facile and effective pyrolysis‐based route with sodium chloride (NaCl) crystals as a template. The Ni3Fe/N‐C sheets show excellent catalytic activity, selectivity, and durability toward both the oxygen‐reduction and oxygen‐evolution reactions (ORR and OER). They are shown to provide a superior, low‐cost cathode for a rechargeable Zn‐air battery. At a discharge–charge current density of 10 mA cm?2, the Ni3Fe/N‐C sheets enable a Zn–air battery to cycle steadily up to 420 h with only a small increase in the round‐trip overpotential, outperforming the more costly Pt/C + IrO2 mixture catalyst (160 h). With the simplicity and scalability of the synthetic approach and its remarkable bifunctional electrocatalytic performance, the Ni3Fe/N‐C sheets offer a promising rechargeable air cathode operating at room temperature in an alkaline electrolyte.  相似文献   

7.
Rational design and construction of a multifunctional electrocatalyst featuring with high efficiency and low cost is fundamentally important to realize new energy technologies. Herein, a trifunctional electrocatalyst composed of FePx nanoparticles and Fe–N–C moiety supported on the N‐, P‐codoped carbon (NPC) is masterly synthesized by a facile one‐pot pyrolysis of the mixture of tannic acid, ferrous chloride, and sodium hydrogen phosphate. The synergy of each component in the FePx/Fe–N–C/NPC catalyst renders high catalytic activities and excellent durability toward both oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The electrocatalytic performance and practicability of the robust FePx/Fe–N–C/NPC catalyst are further investigated under the practical operation conditions. Particularly, the overall water splitting cell assembled by the FePx/Fe–N–C/NPC catalyst only requires a voltage of 1.58 V to output the benchmark current density of 10 mA cm?2, which is superior to that of IrO2–Pt/C‐based cell. Moreover, the FePx/Fe–N–C/NPC‐based zinc–air batteries deliver high round‐trip efficiency and remarkable cycling stability, much better than that of Pt/C–IrO2 pair‐based batteries. This work offers a new strategy to design and synthesize highly effective multifunctional electrocatalysts using cheaper tannic acid derived carbon as support applied in electrochemical energy devices.  相似文献   

8.
Ternary NiCoFe‐layered double hydroxide (NiCoIIIFe‐LDH) with Co3+ is grafted on nitrogen‐doped graphene oxide (N‐GO) by an in situ growth route. The array‐like colloid composite of NiCoIIIFe‐LDH/N‐GO is used as a bifunctional catalyst for both oxygen evolution/reduction reactions (OER/ORR). The NiCoIIIFe‐LDH/N‐GO array has a 3D open structure with less stacking of LDHs and an enlarged specific surface area. The hierarchical structure design and novel material chemistry endow high activity propelling O2 redox. By exposing more amounts of Ni and Fe active sites, the NiCoIIIFe‐LDH/N‐GO illustrates a relatively low onset potential (1.41 V vs reversible hydrogen electrode) in 0.1 mol L?1 KOH solution under the OER process. Furthermore, by introducing high valence Co3+, the onset potential of this material in ORR is 0.88 V. The overvoltage difference is 0.769 V between OER and ORR. The key factors for the excellent bifunctional catalytic performance are believed to be the Co with a high valence, the N‐doping of graphene materials, and the highly exposed Ni and Fe active sites in the array‐like colloid composite. This work further demonstrates the possibility to exploit the application potential of LDHs as OER and ORR bifunctional electrochemical catalysts.  相似文献   

9.
Currently, it is still a significant challenge to simultaneously boost various reactions by one electrocatalyst with high activity, excellent durability, as well as low cost. Herein, hybrid trifunctional electrocatalysts are explored via a facile one‐pot strategy toward an efficient oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The catalysts are rationally designed to be composed by FeCo nanoparticles encapsuled in graphitic carbon films, Co2P nanoparticles, and N,P‐codoped carbon nanofiber networks. The FeCo nanoparticles and the synergistic effect from Co2P and FeCo nanoparticles make the dominant contributions to the ORR, OER, and HER activities, respectively. Their bifunctional activity parameter (?E) for ORR and OER is low to 0.77 V, which is much smaller than those of most nonprecious metal catalysts ever reported, and comparable with state‐of‐the‐art Pt/C and RuO2 (0.78 V). Accordingly, the as‐assembled Zn–air battery exhibits a high power density of 154 mW cm?2 with a low charge–discharge voltage gap of 0.83 V (at 10 mA cm?2) and excellent stability. The as‐constructed overall water‐splitting cell achieves a current density of 10 mA cm?2 (at 1.68 V), which is comparable to the best reported trifunctional catalysts.  相似文献   

10.
A single material that can perform water oxidation and oxygen reduction reactions (ORR), also called bifunctional catalyst, represents a novel concept that emerged from recent materials research and that has led to applications in new‐generation energy‐storage systems, such as regenerative fuel cells. Here, metal/metal‐oxide free, doped graphene derived from rhombohedral boron carbide (B4C) is demonstrated to be an effective bifunctional catalyst for the first time. B4C, one of the hardest materials in nature next to diamond and cubic boron nitride, is converted and separated in bulk to form heteroatom (boron, B) doped graphene (BG, yield ≈7% by weight, after the first cycle). This structural conversion of B4C to graphene is accompanied by in situ boron doping and results in the formation of an electrochemically active material from a non‐electrochemically active material, broadening its potential for application in various energy‐related technologies. The electrocatalytic efficacy of BG is studied using various voltammetric techniques. The results show a four‐electron transfer mechanism as well as a high methanol tolerance and stability towards ORR. The results are comparable to those from commercial 20 wt% Pt/C in terms of performance. Furthermore, the bifunctionality of the BG is also demonstrated by its performance in water oxidation.  相似文献   

11.
Nonprecious metals are promising catalysts to avoid the sluggish oxygen reduction reaction (ORR) in next‐generation regenerative fuel cells or metal–air batteries. Therefore, development of nonprecious metal catalysts for ORR is highly desirable. Herein, precise tuning of the atomic ratio of Fe and Co encapsulated in melamine‐derived nitrogen‐rich graphitic tube (NGT) is reported. The Co1.08Fe3.34 hybrid with metal? nitrogen bonds ( 1 : Co1.08Fe3.34@NGT) shows remarkable ORR catalytic activities (80 mV higher in onset potential and 50 mV higher in half‐wave potential than those of state‐of‐the‐art commercial Pt/C catalysts), high current density, and stability. In acidic solution, 1 also shows compatible performance to commercial Pt/C in terms of ORR activity, current density, stability, and methanol tolerance. The high ORR activity is ascribed to the co‐existence of Fe? N, Co? N, and sufficient metallic FeCo alloys which favor faster electron movement and better adsorption of oxygen molecules on the catalyst surface. In the alkaline anion exchange membrane fuel cell setup, this cell delivers the power density of 117 mW cm?2, demonstrating its potential use for energy conversion and storage applications.  相似文献   

12.
Construction of well‐defined metal–organic framework precursor is vital to derive highly efficient transition metal–carbon‐based electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in water splitting. Herein, a novel strategy involving an in situ transformation of ultrathin cobalt layered double hydroxide into 2D cobalt zeolitic imidazolate framework (ZIF‐67) nanosheets grafted with 3D ZIF‐67 polyhedra supported on the surface of carbon cloth (2D/3D ZIF‐67@CC) precursor is proposed. After a low‐temperature pyrolysis, this precursor can be further converted into hybrid composites composed of ultrafine cobalt nanoparticles embedded within 2D N‐doped carbon nanosheets and 3D N‐doped hollow carbon polyhedra (Co@N‐CS/N‐HCP@CC). Experimental and density functional theory calculations results indicate that such composites have the advantages of a large number of accessible active sites, accelerated charge/mass transfer ability, the synergistic effect of components as well as an optimal water adsorption energy change. As a result, the obtained Co@N‐CS/N‐HCP@CC catalyst requires overpotentials of only 66 and 248 mV to reach a current density of 10 mA cm?2 for HER and OER in 1.0 m KOH, respectively. Remarkably, it enables an alkali‐electrolyzer with a current density of 10 mA cm?2 at a low cell voltage of 1.545 V, superior to that of the IrO2@CC||Pt/C@CC couple (1.592 V).  相似文献   

13.
Hierarchical Cu2S microspheres wrapped by reduced graphene oxide (RGO) nanosheets are prepared via a one‐step solvothermal process. The amount of graphene oxide used in the synthesis process has a remarkable effect on the features of Cu2S microspheres. Compared to Pt and Cu2S electrodes, RGO‐Cu2S electrodes show better electrocatalytic activity, greater stability, lower charge‐transfer resistance, and higher exchange current density. As expected, RGO‐Cu2S electrodes exhibit superior performance when functioning as counter electrodes in CdS/CdSe quantum dot‐sensitized solar cells (QDSSCs) using a polysulfide electrolyte. A power conversion efficiency up to 3.85% is achieved for the QDSSC employing an optimized RGO‐Cu2S counter electrode, which is higher than those of the QDSSCs featuring Pt (2.14%) and Cu2S (3.39%) counter electrodes.  相似文献   

14.
Nonprecious metal catalysts (NPMCs) Fe?N?C are promising alternatives to noble metal Pt as the oxygen reduction reaction (ORR) catalysts for proton‐exchange‐membrane fuel cells. Herein, a new modulation strategy is reported to the active moiety Fe?N4 via a precise “single‐atom to single‐atom” grafting of a Pt atom onto the Fe center through a bridging oxygen molecule, creating a new active moiety of Pt1?O2?Fe1?N4. The modulated Fe?N?C exhibits remarkably improved ORR stabilities in acidic media. Moreover, it shows unexpectedly high catalytic activities toward oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), with overpotentials of 310 mV for OER in alkaline solution and 60 mV for HER in acidic media at a current density of 10 mA cm?2, outperforming the benchmark RuO2 and comparable with Pt/C(20%), respectively. The enhanced multifunctional electrocatalytic properties are associated with the newly constructed active moiety Pt1?O2?Fe1?N4, which protects Fe sites from harmful species. Density functional theory calculations reveal the synergy in the new active moiety, which promotes the proton adsorption and reduction kinetics. In addition, the grafted Pt1?O2? dangling bonds may boost the OER activity. This study paves a new way to improve and extend NPMCs electrocatalytic properties through a precisely single‐atom to single‐atom grafting strategy.  相似文献   

15.
Effectively active oxygen evolution reaction (OER) electrocatalysts are highly desired for water splitting. Herein, the design and fabrication of nanometer‐sized Fe‐modulated CoOOH nanoparticles by a novel conversion tailoring strategy is reported for the first time and these nanoparticles are assembled on graphene matrix to construct 2D nanohybrids (Fe? CoOOH/G) with ultrasmall particles and finely modulated local electronic structure of Co cations. The Fe components are capable of tailoring and converting the micrometer‐sized sheets into nanometer‐sized particles, indicative of ultrasensitive Fe‐triggered behavior. The as‐made Fe? CoOOH/G features highly exposed edge active sites, well‐defined porous structure, and finely modulated electron structure, together with effectively interconnected conducting networks endowed by graphene. Density functional theory calculations have revealed that the Fe dopants in the Fe? CoOOH nanoparticles have an enhanced adsorption capability toward the oxygenated intermediates involved in OER process, thus facilitating the whole catalytic reactions. Benefiting from these integrated characteristics, the as‐made Fe? CoOOH/G nanohybrids as an oxygen evolution electrocatalyst can deliver a low overpotential of 330 mV at 10 mA cm?2 and excellent electrochemical durability in alkaline medium. This strategy provides an effective, durable, and nonprecious‐metal electrocatalyst for water splitting.  相似文献   

16.
Development of highly active and stable bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalysts from earth‐abundant elements remains a grand challenge for highly demanded reversible fuel cells and metal–air batteries. Carbon catalysts have many advantages over others due to their low cost, excellent electrical conductivity, high surface area, and easy functionalization. However, they typically cannot withstand the highly oxidative OER environment. Here, a new class of bifunctional electrocatalyst is reported, consisting of ultralarge sized nitrogen doped graphene tubes (N‐GTs) (>500 nm) decorated with FeCoNi alloy particles. These tubes are prepared from an inexpensive precursor, dicyandiamide, via a template‐free graphitization process. The ORR/OER activity and the stability of these graphene tube catalysts depend strongly on the transition metal precursors. The best performing FeCoNi‐derived N‐GT catalyst exhibits excellent ORR and OER activity along with adequate electrochemical durability over a wide potential window (0–1.9 V) in alkaline media. The measured OER current is solely due to desirable O2 evolution, rather than carbon oxidation. Extensive electrochemical and physical characterization indicated that high graphitization degree, thicker tube walls, proper nitrogen doping, and presence of FeCoNi alloy particles are vital for high bifunctional activity and electrochemical durability of tubular carbon catalysts.  相似文献   

17.
Graphene and quasi‐2D graphene‐like materials with an ultrathin thickness have been investigated as a new class of nanoscale materials due to their distinctive properties. A novel “molecular tools‐assistances” strategy is developed to fabricate two kinds of graphene‐based electrodes, ultrathin Fe‐doped MnO2 network coverage–graphene composites (G‐MFO) and ultrathin MoS2 network coverage–graphene composites (G‐MoS2) with special hierarchical structures. Such structures enable a large contact interface between the active materials and graphene and thus fully exploit the synergistic effect from both the high specific capacitance of MFO or MoS2 and the superb conductivity of graphene. Benefiting from their unique structural features, G‐MFO and G‐MoS2 films directly use as free‐standing electrodes for flexible asymmetric supercapacitors with a nonaqueous gel electrolyte. The device achieves a high energy/power density, superior flexibility, good rate capability as well as outstanding performance stability even at a high temperature. This work represents a promising prototype to design new generation of hybrid supercapacitors for future energy storage devices.  相似文献   

18.
The most efficient electrocatalyst for the hydrogen evolution reaction (HER) is a Pt‐based catalyst, but its high cost and nonperfect efficiency hinder wide‐ranging industrial/technological applications. Here, an electrocatalyst of both ruthenium (Ru) single atoms (SAs) and N‐doped‐graphitic(GN)‐shell‐covered nitrided‐Ru nanoparticles (NPs) (having a Ru‐Nx shell) embedded on melamine‐derived GN matrix { 1 : [Ru(SA)+Ru(NP)@RuNx@GN]/GN}, which exhibits superior HER activity in both acidic and basic media, is presented. In 0.5 m H2SO4/1 m KOH solutions, 1 shows diminutive “negative overpotentials” (?η = |η| = 10/7 mV at 10 mA cm?2, lowest ever) and high exchange current densities (4.70/1.96 mA cm?2). The remarkable HER performance is attributed to the near‐zero free energies for hydrogen adsorption/desorption on Ru(SAs) and the increased conductivity of melamine‐derived GN sheets by the presence of nitrided‐Ru(NPs). The nitridation process forming nitrided‐Ru(NPs), which are imperfectly covered by a GN shell, allows superb long‐term operation durability. The catalyst splits water into molecular oxygen and hydrogen at 1.50/1.40 V (in 0.1 m HClO4/1 m KOH), demonstrating its potential as a ready‐to‐use, highly effective energy device for industrial applications.  相似文献   

19.
Two kinds of free‐standing electrodes, reduced graphene oxide (rGO)‐wrapped Fe‐doped MnO2 composite (G‐MFO) and rGO‐wrapped hierarchical porous carbon microspheres composite (G‐HPC) are fabricated using a frozen lake‐inspired, bubble‐assistance method. This configuration fully enables utilization of the synergistic effects from both components, endowing the materials to be excellent electrodes for flexible and lightweight electrochemical capacitors. Moreover, a nonaqueous HPC‐doped gel polymer electrolyte (GPE‐HPC) is employed to broad voltage window and improve heat resistance. A fabricated asymmetric supercapacitor based on G‐MFO cathode and G‐HPC anode with GPE‐HPC electrolyte achieves superior flexibility and reliability, enhanced energy/power density, and outstanding cycling stability. The ability to power light‐emitting diodes also indicates the feasibility for practical use. Therefore, it is believed that this novel design may hold great promise for future flexible electronic devices.  相似文献   

20.
Facile design of low‐cost and highly active catalysts from earth‐abundant elements is favorable for the industrial application of water splitting. Here, a simple strategy to synthesize an ultrathin molybdenum disulfide/nitrogen‐doped reduced graphene oxide (MoS2/N‐RGO‐180) nanocomposite with the enlarged interlayer spacing of 9.5 Å by a one‐step hydrothermal method is reported. The synergistic effects between the layered MoS2 nanosheets and N‐doped RGO films contribute to the high activity for hydrogen evolution reaction (HER). MoS2/N‐RGO‐180 exhibits the excellent catalytic activity with a low onset potential of ?5 mV versus reversible hydrogen elelctrode (RHE), a small Tafel slope of 41.3 mV dec?1, a high exchange current density of 7.4 × 10?4 A cm?2, and good stability over 5 000 cycles under acidic conditions. The HER performance of MoS2/N‐RGO‐180 nanocomposite is superior to the most reported MoS2‐based catalysts, especially its onset potential and exchange current density. In this work, a novel and simple method to the preparation of low‐cost MoS2‐based electrocatalysts with the extraordinary HER performance is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号